微波环境下催化解聚PET的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的加强以及聚酯降解问题不断引起世人的关注,对于聚酯解聚反应特性和解聚规律的进一步认识显得更为重要。到目前为止,聚酯PET降解的研究主要处在优化反应条件、选择最佳催化剂等阶段;聚酯降解机理研究远落后于聚酯回收技术水平,在一定程度上制约着聚酯降解工艺的发展。我们已对微波环境下无催化水解PET的反应机理和动力学等进行了大量研究,以期待为催化解聚反应的实际应用提供理论依据。此外,对进一步明晰化学反应中微波效应也具有重要的科学意义。
     本文主要研究聚酯PET在微波功率为260W,水与PET质量比为10:1 ,催化剂(醋酸锌、氧化亚锡、硫酸锌)为0.5% ,三个温度(190℃、180℃、170℃)中不同反应时间的催化解聚过程。通过对单体产物及残留物的测定、分析和表征来跟踪反应,研究其相应催化体系下的反应机理,并建立相应的动力学模型。采用电位滴定仪对各催化体系中PET解聚的单体产物量(TPA)和残留物PET的端羧基含量进行测定,而其未解聚完的残留物分子量则以端基法进行计算,同时对残留物进行扫描电镜(SEM)、红外(IR)、热分析(TG-DSC联用)等各种分析,以此研究各催化体系的解聚程度和催化解聚残留物的形貌情况。
     由催化解聚产物单体和残留物端羧基浓度含量的测定可以看出,相同催化剂和反应温度体系下,产物单体TPA浓度随反应时间的推进而增加,残留物端羧基浓度随反应时间的增加而先增后减。在相同催化剂和反应时间的体系下,温度越高产物羧基浓度越高。产物单体、残留物的端羧基浓度与反应时间的递增并不是线性正比关系,而是出现一定的突跃性变化。用端羧基分析方法计算催化解聚残留物的数均分子量(Mn),其结果显示PET大分子链在特定时间段内迅速断裂,而其分子量随时间的推进不断降低并逐渐趋向于稳定。综合各种分析技术的(FT-IR、TG-DSC、SEM)结果可知,在PET的催化解聚过程中,分子链断裂方式是有规-无规-有规催化解聚的循环过程。由分析结果可将解聚反应以分子链断裂方式分为无规和有规两个阶段。无规解聚随反应温度的升高更容易进行。
     在相同催化剂体系下,建立阶段性的催化解聚反应速率方程,并计算相应的速率常数和活化能。结果表明:微波环境下,催化解聚要比无催化剂的反应活化能都要低些,原因可能是微波的特殊加热和非热效应与催化剂之间的协同效应致使聚酯解聚反应更容易进行。
With the strengthening of people's awareness of environmental protection and the ingcreasing attention about polyethylene terephthalate (PET) depolymerization, further understanding of PET depolymerization reaction characteristics and accumulation seems more important. Prestently, the study of PET depolymerization is just optimization of reaction conditions, the best catalyst selection stage, etc. the study of depolymerization mechanism is far behind the level of PET recycling technology, and thus to some extent restricting the development of PET depolymerization process. The reaction mechanism and kinetics of hydrolytic depolymerization of PET without catalyzer under the microwave irradiation had been studied. It is expected that the theoretical foundation could been afforded to the practical application of the catalysis hydrolytic depolymerization. Moreover, it is of great scientific significance to further clarify the microwave effect in the chemical reaction.
     In this thesis, the catalysis hydrolytic depolymerization of PET under microwave irradiation at different times for different temperatures was studied, in which the proportion of water to PET was 10:1and the catalyst was 0.5%of PET. the reaction mechanism and corresponding dynamic model were investigated by the way of analyzing the monomer and residues. In various catalytic systems, the carboxyl concentration of monomer TPA and residues could be measured by potentiometric titration. At the same time, the relative number average molecular weight(Mn) of the residues was determined by end-group method. And then the PET residues were studied by the analytical techniques such as SEM, FT-IR and TG- DSC, etc.
     Based on experimental results, it could be found that under the same system of catalyst and reaction temperature, The concentration of TPA with reaction time moving forward had increased, the carboxyl concentration of the residues with reaction time increasing had increased first and then decreased. under the same catalyst and reaction time, the concentration of carboxyl group had increased with temperature increasing. The relationship of carboxyl-group concentration versus time did not change by linear Proportion,but had a certain shock.The result of residues Mn which was determined by end-group method showed that the chains of PET moleculars would quickly break into end-group moleculars in a certain period, and the Mn would decrease fast, then tend to stability little by little. Combining with various kinds of the characterization results,it was indicated that in the process of the PET catalysis depolymerization, the way of molecular chain break was the rule-random-rule catalysis degradation course. There would be two different stages, in which one was mainly rule depolymerization and another was the random cleavage degradation happening quickly.With the increase of the reaction temperature,the random chain cleavage degradation reaction was more easily carried out.
     Under the same catalysis system, the reaction rate equations for different stages were established, respectively. The reaction rate constants and the reaction activation energy were calculated. The results showed that the reaction activation energy with catalyst was much less than the needed energy without catalyst under the microwave irradiation. The reason may be a special synergy among the catalyst, the microwave heating effect and the microwave non-heating effect, which resulted in polymerization of polyester more easily.
引文
[1]郭大生,王文科.聚酯纤维科学与工程[M].上海:中国纺织出版社,2001.6-28
    [2]钱伯章.聚酯回收利用及技术进展[J].橡塑资源利用,2008,4:30-35
    [3]卢静.我国聚酯产业链发展趋势及建议[J].内蒙古石油化工,2009,7:48-49
    [4]吴剑南.我国聚酯工业现状和前景展望[J].当代石油石化,2004,12(6):16-19
    [5]钱伯章.PET聚酯需求走入下行通道[N].中国化工报.20081205(3)
    [6]王信.世界经济危机对聚酯产业链的影响[J].精细化工原料及中间体,2009,4:35-37
    [7]王信.今年全球聚酯需求继续增长[J].精细化工原料及中间体,2008,5:39-40
    [8]钱伯章.世界聚酯需求今后10年将年增10%[N].中国化工报,20070503(2)
    [9]刘立新,张东,安立佳.纯水中PET的微波解聚及其反应机理研究[D].中国科学院博士学位研究生学位论文.2005
    [10]谢亚芬.废聚酯的循环利用[J].化工时刊,2005,19(3):56-58
    [11] Goto M, Hiroshi K, Akio K, etal. Depolymerization of polyethylene terephthalate in supercritical methanol[J]. Journal of physics:condensed matter, 2002, 14:11427-11430
    [12] Goje A S.Auto-Catalyzed Hydrolytic Depolymerization of Poly(Butylene Terephthalate) Waste at High Temperature[J]. Polymer-Plastics Technology and Engineering, 2006, 45:171-181
    [13]谢尔斯,赵国梁.现代聚酯[M].上海:化学工业出版社,2007.30-50
    [14] Chiua S J, Cheng W H. Thermal degradation and catalytic cracking of poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 1999, 63:407-412
    [15] Xi Guoxi, Lu Maixi, Sun Chen. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate)[J]. Polymer Degradation and Stability, 2005, 87:117-120
    [16]史元元,陈衍夏,施亦东等.聚酯回收料的再资源化及其纺织产品的开发[J].纺织科技进展,2008,1:29-31
    [17]汪海,杨松伟,陈庆华.简析废旧塑料回收现状[J].中国资源综合利用,2009,27(7):11-13
    [18]王德诚.新技术使聚酯实现完全回收再生[J].资料中国,2009,4:16-17
    [19]钱伯章.帝人公司在泰国推行聚酯回收利用计划[J].合成纤维,2009,33:55-56
    [20]王德诚.帝人集团在泰国推出聚酯循环再生项目[J].聚酯工业,2009,22(2):44-46
    [21]李娟.发展循环经济必须重点突出[N].中国纺织报,20081002(3)
    [22]王鸣义.“环境友好型”聚酯纤维的产品开发[J].合成纤维,2009,3:3-6
    [23]黄发荣,陈涛,沈学宁等.高分子材料的循环利用[M].上海:化学工业出版社,2000.23-40
    [24]庄苏宁.聚酯回收技术及前景[J].应用科技,2003,8:80-82
    [25]张淑珍,张东.微波条件下PET水解的动力学研究[D].温州大学硕士学位研究生学位论文. 2009
    [26] Francis P, Gilles T. Comparative reactivity of glycols in PET glycolysis[J]. Polymer Degradation and Stability, 2006, 91(11):2567-2578
    [27]王晓春,张健飞.PET降解研究[J].合成纤维,2002,36(6):5-7
    [28]刘立新,张东,安立佳等.聚对苯二甲酸乙二醇酯(PET)的解聚与反应机理研究[J].功能材料,2004,35:2576-2578
    [29] Aramaki P. Hydrolysis of Waste PET by Sulfuric Acid at 150℃for a Chemical Recycling[J]. Applied Polymer Science,1994, 52:1353-1355
    [30] Mishra S, Goje A S. Kinetics of Glycolysis of Poly(ethylene tere- phthalate) Waste Powder at Moderate Pressure and Temperature[J]. Applied Polymer Science, 2003, 87:1569-1573
    [31] Darwin P R, Antxon M D, Jordi J B. Poly(ethylene terephthalate) copolymers containing Nitroterephthalic unitsⅢ. Methanolytic Degradation[J]. Applied Polymer Science, 2002, 40:2276-2285
    [32] Kao C Y. PET recycling and recovery of terephthalic acid by alkaline hydrolysis[J]. Advances in Polymer Technology, 2000, 21(4):250-259
    [33] Hideki K, Ohshima M, Kazuo S, et al. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol[J]. Polymer Degradation and Stability, 2003, 79:529-533
    [34]程为庄.废PET饮料瓶的醇解反应动力学[J].建筑材料学报,2002,5(3):298-302
    [35] launay A, Thominette F, Verdu J. Hydrolysis of Poly(ethylene terephtalate) steric exclusion chromatograrhy study[J]. Polymer Degradation and Stability, 1999, 63:385-389
    [36] Jordi J B. The molecular weight distribution and oligomers of sodium hydroxide poly(ethylene terephthalate)[J]. Applied Polymer Science, 1992, 45:797-804
    [37] Kao C Y. Investigation of Alkaline Hydrolysis of Polyethy-lene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analysis[J]. Applied Polymer Science, 1998, 70:1939-1945
    [38] Wan B Z, Kao C Y, Cheng W H. Kinetics of Depolymerization of Poly(ethyl-ene terephthalate) in a Potassium Hydroxide Solution[J]. industry Engineering Chemistry Research, 2001, 40:509-514
    [39] Teare D O H, Bradley R H, Tonthat C. Surface characterization and ageing of ultravio-let-ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy[J]. Surface interface Analysis, 2000, 29:276-283
    [40] Liu Lixin, Zhang Dong, An Lijia, etal. Hydrolytic depolymerization of PET under microwave irradiation[J]. Applied Polymer Science, 2005, 95(3):719-720
    [41]刘立新,张东,赵晓非等.聚对苯二甲酸乙二醇醋微波水解反应方式分析及机理研究[J].材料导报,2007,21(11):10-12
    [42]刘丽华,李葭,李燕立.聚酯醇解反应动力学研究[J].北京服装学院学报,2003,23(2):1-3
    [43]陈磊,吴勇强,倪燕慧等.聚对苯二甲酸乙二醇酯在超临界甲醇中解聚的研究[J].高校化学工程学报,2004,18(5):587-589
    [44] Sun Kang. Macroscopic Reaction Kinetic and Analytic Method[M]. Beijing: Metallurgy Industry Press, 1989. 3-5
    [45] Mitsuhiro S, Masuda T, Ryutoku Y. Depolymerization of poly(butylene terephthalate) using high-temperature and high-pressure methanol[J]. Journal of Applied Polymer Science, 2000, 77:3228-3233
    [46]王禹,王宝辉,张东.纯水中PET的微波解聚─方法的研究[D].大庆石油学院硕士研究生学位论文.2006
    [47]苏跃增,孙晓娟,刘萍.关于微波化学反应机理的探讨[J].化学通报,2000,3:3-4
    [48] Sanches N B. Comparative techniques for molecalar weight evaluation of poly(ethylene terephthalate)(PET)[J]. Polymer Testing, 2005, 24:688-693
    [49]梁亮,梁逸曾.微波辐射技术在有机合成中的应用[J].化学通报,1996,3:26-28
    [50]刘成勤.电导滴定法测定聚酯浆料中对苯二甲酸含量[J].云南化工,1999,2:31-33
    [51]周瑞山.涤纶片基羧基含量的测定[J].中国学术期刊电子出版社,2006,1:49-50
    [52]许淑珍,张东.PET中间产物及最终产物的端羧基含量测定[J].北京服装学院学报,1993,13(10):72-77
    [53] Giguere R J. Tetrahedron Letters[J]. Chemistry Commun, 1986, 41(27):4945-4948
    [54]胡希明,张莲华.微波化学[J].化学通报,1998,12:33-36
    [55]胡希明,梅治乾,黄仲涛等.微波与合成[J].华南理工大学学报,1997,25(12):34-35
    [56]银董红.微波辐射促进ZnCl2与Y分子筛固相反应的研究[J].化学通报,1997,8:55-56
    [57] Hwang D R, Moerlein S M. Microwave Chemistry[J]. Chemistry Commun. 1987, 23:1799-1800
    [58] Laurent A, Jacquault P J. Chemistry Sociaty[J]. Chemistry Commun. 1995, 11:1101-1103
    [59]宋小芳.微波辐射活性炭负载醋酸锌降解PET的催化研究[J].辽宁化工,2007,36(9):577-578
    [60]潘道皑,赵成大,郑载新.物质结构(第二版)[M].北京:高等教育出版社,1994.382-390
    [61]胡英,陈学让,吴树森.物理化学[M].北京:高等教育出版社,1983.164-166
    [62]张华莲,胡希明,赖声礼.微波在化学中的应用[J].华南理工大学学报,1997,25(9):46-48
    [63]徐光宪.物质结构[M].北京:人民教育出版社,1978.150-153
    [64] Liu Lixin, Dong Zhang, An Lijia, etal. Hydrolytic Depolymerization of Poly(ethylene terephthalate) Under Microwave Irradiation[J]. Journal of Applied Polymer Science, 2005, 95:719-723
    [65]李恺翔,张东.PET纯水中的微波解聚及动力学研究[D].温州大学硕士学位研究生学位论文.2007
    [66]宋小芳,张东.微波环境下醋酸盐、金属氧化物对PET催化水解的研究[D].温州大学硕士学位研究生学位论文.2008
    [67]张鑫,贾延华,张东等.微波环境下硫酸盐对聚苯二甲酸乙二醇酯水解的催化解聚.应用化学[C].应用化学.桂林:科学出版社,2009.26:575-577
    [68]张东,张鑫,贾延华.微波环境下PET的催化解聚方法[P].中国,发明,200910153094.5
    [69]陈海平,张东.氨纶废丝甘油解聚及其工艺条件研究[D].温州大学硕士学位研究生学位论文.2008
    [70]郑昌仁.高聚物分子量及其分布[M].北京:化学工业出版社,1986.30-209
    [71]国家标准纤维级聚酯切片分析方法[S].GB/T14190-93
    [72] Campanelli J R, Cooper D G, Kammal M R. Kinetic Study of the Hydrolytic Degradation of Polyethylene Terephthalate at High Temperatures[J]. Journal of Applied Polymer Science, 1993, 48(3):443-451
    [73]张淑珍,张东.PET微波水解中端羧基含量的测定[J].辽宁化工,2008,37(12):852-853
    [74] Novick S E,Engelking P,Jones C P L.Chemistry[J].Physics.1979,70(6):2652.
    [75] Hubbard J, Onsager L. Chemical application[J]. Physics, 1977, 67:4850-4851
    [76]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.72-77
    [77]金钦汉.微波化学[M].上海:科学出版社,1999.5-6
    [78]清山哲郎.金属氧化物及其催化作用[M].合肥:中国科学技术大学出版社,1991.103-104
    [79]王真.微波场中气液固态介质行为研究[D].吉林大学博士论文.1994
    [80] Francis P, Gilles T. Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. I. Evolution of liquid and solid phases[J]. Polymer Degradation and Stability. 2006, 91(12):2840-2847
    [81]毕先钧.微波辐射下甲烷部分氧化制合成气的研究[D].吉林大学博士论文.1998
    [82] Bachmann H G, Ahmed F R, Barnes W H, etal. Microwave[J]. Physics, 1961,115:110-112
    [83]多罗间公雄,寺西士一郎,服部研太郎等.微波技术[N].日化,19600801(2)
    [84] Kumar H S, Guria C. Alkaline Hydrolysis of Waste Poly(ethylene terephthalate): A Modified Shrinking Core Model[J]. Chemistry, 2005,42:237-240
    [85]张东,宋小芳,李恺翔.微波辐射下PET的催化解聚方法[P].中国,发明,200710069215.9
    [86]王国甲,李荣生,毕颖丽等.催化作用基础[M].第三版.北京:科学出版社,2005.72-90
    [87]汪杰,张东.密度变化对聚酯化反应动力学的影响[D].温州大学硕士学位论文.2008
    [88]龙智.废弃聚对苯二甲酸乙二醇酯的再资源化研究[D].重庆大学硕士学位论文.2008
    [89] Genta M, Tomoko I, Mitsuru S. Depolymerization Mechanism of Poly(ethylene terephthalate) in Supercritical Methanol[J]. Industry Engineering Chemistry Research, 2005, 44:3894-3900
    [90] Mansour S H. Ikladious N E. Depolymerization of poly (ethylene terephthalate) wastes using 1,4-butanediol and triethylene glycol[J]. Polymer Testing, 2002, 21:497-505
    [91] Ghaemy M, Mossaddegh K. Depolymerization of poly(ethylene terephthalate) fibre wastes using ethylene glycol[J]. Polymer Degradation and Stability, 2005, 90:570-576
    [92] Seyed H, Somaye T, Ali Z. Hydrolytic Degradation of Poly(ethylene terephthalate)[J]. Applied Polymer Science, 2007, 103:2304-2309
    [93]汤子强.聚苯乙烯热解反应动力学[J].太原理工大学学报,1999,30(5):10-11
    [94]朱新生,戴建平.聚苯乙烯热降解动力学参数与降解反应机理关系[J].火灾科学,2001,10(1):24-28
    [95]张华阳,张东.纯水中PET的微波解聚研究[D].大庆石油学院硕士研究生学位论文.2004
    [96]刘立新,张东.结晶度对微波作用下PET水解解聚的影响[J].高等学校化学学报,2005, 26(12):2394-2396
    [97]刘立新,张东,赵晓非.热分析法研究聚对苯二甲酸乙二醇酯微波水解解聚反应[J].材料导报,2007,21(11A):7-9
    [98]刘立新,张东,赵晓非.微波对聚酯水解解聚反应选择性作用的研究[J].材料导报,2007, 21(11):13-15
    [99]王禹,张东,王宝辉.微波的热效应与非热效应[J].辽宁化工,2006,35(3):167-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700