微波法在离子液体制备及催化降解PET聚酯回收对苯二甲酸上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯是一种优良的聚酯材料,在诸多领域如饮料瓶、纤维、薄膜等领域中都有应用。但随着PET产业的快速发展和产品的广泛使用,产生大量的PET废弃物。降解PET废弃物的传统方法需要大量浓酸或浓碱,且催化剂不能重复回用,设备腐蚀和污染现象严重。离子液体是一类极具应用前景的环保型溶剂及催化剂,不挥发、对水和空气稳定,对许多高分子材料具有良好溶解性及催化降解性。另外,微波加热法可极大促进有机反应。本论文采用微波加热法合成了若干种离子液体,并选取其中一种离子液体,在微波条件下对废弃的PET进行催化降解并回收对苯二甲酸,为废弃PET的降解提供了新的方法与思路。主要研究内容如下:
     首先,在微波条件下,以氯化1-丁基-3-甲基咪唑([Bmim]Cl)、氯化锌为原料,合成离子液体1-丁基-3-甲基咪唑氯锌酸盐,并与常规合成方法进行对比。同时考察了溶剂对离子液体合成的影响。结果表明:运用微波法合成离子液体的效率远高于常温合成法;所用溶剂对离子液体的合成产率影响较大;不同原料比对所合成离子液体的化学结构影响不大;原料摩尔比为[Bmim][Cl]:ZnCl2=1:2时,合成的产率最高。
     以合成的离子液体1-丁基-3-甲基咪唑氯化锌盐为催化剂,醇解聚对苯二甲酸乙二醇酯(PET),回收生成的对苯二甲酸(TPA)。考察了离子液体的合成条件、离子液体加入量、溶剂加入量、降解温度、降解反应时间等因素对离子液体降解效果的影响。结果表明:(1)合成的离子液体可有效的催化降解PET,且对TPA的回收率可达20%左右。微波法与常温合成法制备的离子液体具有相同降解效果;使用不同溶剂合成的离子液体对PET的降解效果差异不大。
     本实验成功的从聚酯降解产物中回收了对苯二甲酸,且纯度较高;随着离子液体加入量的增加,对苯二甲酸的回收率反而会降低;降解反应中,增加溶剂乙二醇的用量不会对对苯二甲酸的回收率产生明显影响;降解温度越高,聚酯的降解效果越好;随着反应时间的延长,TPA的回收率会增加,但回收率有极限值。
     运用常规常温合成法或微波反应合成法合成了氢氧化1-丁基-3-甲基咪唑,测定合成产率并运用指示剂滴定法、电位滴定法对其羟基含量进行了测定。结果表明:以环己烷为溶剂合成氢氧化1-丁基-3-甲基咪唑时,随着反应物中KOH比例的增加,离子液体产率呈先增加后减少的趋势;随着常温合成反应时间的延长,合成离子液体的产率逐渐下降;生成的离子液体中的羟基含量与理论值较接近,大约都在21%左右;电位滴定法滴定离子液体所得结果与指示剂滴定法所得结果差异较大。
     同时,合成了1-丁基-3-甲基咪唑氯锡酸盐,并考察了合成溶剂、原料摩尔比例、加热条件对合成产率的影响。1-丁基-3-甲基咪唑氯锡酸盐离子液体中不能存在水分;变化原料比例来合成1-丁基-3-甲基咪唑氯锡酸盐离子液体不会影响到离子液体阳离子部分的化学结构。
Polyethylene terephthalate is a kind of excellent polyester material, it is applied in many fields, such as beverage bottle, fibre, thin film and so on. However, due to the rapid growth of PET industry and the wide appliance of PET product, lots of PET waste is produced. The conventional method of depolymerization of PET needs a large quantity of concentrated acid or alkali as catalyst, which can't be reused. Moreover, the appratus is seriously corroded and contaminated.
     Ionic liquid is a kind of environment-friendly solvent and catalyst which has a good prospect of appliance, property of non-volatile and stability to water and air. It can dissolve or depolymerize many macromolecular material.
     Microwave-assisted method can promote organic reaction significantly. In this paper, ionic liquids were first synthesized by microwave-assisted synthesis method. A new method for the depolymerization of PET was developed by using synthesized ionic liquids. During the depolymerization, terephthalic acid was recovered. The main conclusions are given as follows:
     A series of ionic liquid of 1-butyl-3-methylimidazolium zinc chloride was synthesized by 1-butyl-3-methylimidazolium chloride and zinc chloride using microwave-assisted synthesis method which is then compared with the reported synthesis method. The influence of solvents on the synthesis of ionic liquid was also investigated. The results show that the synthesis of ionic liquid by microwave-assisted synthesis method is much more efficient than that by normal synthesis method. The influence of solvents on the productivity of ionic liquid was notable. The chemical structure of ionic liquid synthesized is not influenced significantly by different reactant ratio and a highest yield can be obtained when the reactant ratio [Bmim][Cl]:ZnC12=1:2.
     PET was alcoholyzed to recover terephthalic acid (TPA) using the synthesized ionic liquid as catalyst by microwave-assisted method. The influence of the synthesis-condition, dosage of ionic liquid, dosage of solvent, reacting temperature and reacting time on the depolymerization of PET was studied. The results show that the synthesized ionic liquid can catalyze and depolymerize the waste PET effectively. The recovery coefficient of terephthalic acid can reach up to approximately 20 percent. The ionic liquids prepared by microwave method have the same depolymerizing effect as the ionic liquid prepared by the reported synthesis method. The differences among the depolymerizing effects of the ionic liquids synthesized by different solvents are not significant.
     This experiment has successfully recover terephthalic acid which has a high purity from PET-depolymerizing product. As the increase of the dosage of ionic liquid, the recovery coefficient decreases. During the depolymerization reaction, the increase of dosage of glycol will not affect the recovery coefficient of terephthalic acid apparently. Higher depolymerizing temperature makes a better PET-depolymerizing effect. The recovery coefficient of TPA will increase with the increase of reaction time, but it has a limit value.
     1-Butyl-3-methylimidazolium hydroxide was synthesized using the reported synthesis method and microwave-assisted method. The content of the hydroxyl radicals was detennined by indicator titration method and electric potential titration method. The results showed that when 1-butyl-3-methylimidazolium hydroxide was synthesized using cyclohexane as solvent, the yield of the ionic liquid increases first and then decreases as the enhance of the proportion of the potassium hydroxide in the reactants. The yield of the ionic liquid decreases gradually as the normal temperature synthesis reaction time lengthened. The content of hydroxyl radicals in the synthesized ionic liquids is fairly approaching the theoretical value, approximately 21 percent of the total weight. The result of titrating ionic liquid using potential titration method is very different from that of using indicator titration method.
     Meanwhile,1-butyl-3-methyl- imidazolium stannum chloride was synthesized. The influence of solvent, reactant ratio and heating method on synthesis yield was studied. The synthesized 1-butyl-3-methyl-imidazolium stannum chloride should be kept from moisture. The change of reactant ratio in the synthesis of 1-butyl-3-methylimidazolium stannum chloride did not affect the chemical structure of its cationic part.
引文
[1]张师民.聚酯的生产及应用[M].北京:中国石化出版社,1997:295-296.
    [2]胡绍华,谷清雄.化学纤维工业和环境[J].合成纤维工业.2002,30(3):7.
    [3]Pusztaszeri S F. Method for recovery of terephthalic acid from polyester scrap. US4355175 [P].1982-10-19.
    [4]Yoshika T, Sato T, Okuwa A. A hydrolysis of PET waste by sulfuric acid at 150℃ for a chemical recycling [J]. J Appl Polym Sci,1994,52(9):1353-1355.
    [5]Oku A, Hu L C, Yamada E. Decomposition of poly(ethylene terephthalate) with sodium hydroxide in non-aqueous ethylene glycol:a study on recycling of terephthalic acid and ethylene glycol [J]. J Appl Polym Sci,1997,63(5):595-601.
    [6]Welton T. Room temperature ionic liquids solvents for synthesis and catalysis [J]. Chem. Rev.,1999,99:2071-2082.
    [7]Cinzia C, Daniela P. Ionic liquids:solvent properties and organic reactivity [J]. J Phys Org Chem,2005,18:275-297.
    [8]顾彦龙,杨宏洲,邓友全.离子液体中聚碳酸酯光盘的降解——碳酸二苯酯的回收.化学学报[J],2002,60(4):753-757.
    [9]Perreux L, Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations [J]. Tetrahedron,2001,57(45):9199-9223.
    [10]Dallinger D, Kappe O. Microwave-assisted synthesis in water as solvent [J]. Chemical Reviews,2007,107(6):2563-2591.
    [11]韩春艳.PET瓶级聚酯质量及加工性能研究[D].浙江大学硕士专业学位论文,2005:1-2.
    [12]韩亚东.PET树脂的生产状况及其发展趋势[J].塑料工业,1988,(6):4.
    [13]卢静.我国聚酯产业链发展趋势及建议[J].内蒙古石油化工,2009,7:48-49.
    [14]王心明.聚酯产业链的生产和需求动向.当代石油石化.2001,9(11):19.
    [15]胡为工.全球纤维市场的发展前景.国际化工信息.2002,(4):8.
    [16]胡波,张延静.2003年聚酯工业将面临严峻挑战.化工科技市场.2003,26(4):21.
    [17]潘祖仁等.高分子化学第二版.1997,202-203.
    [18]张卓.国内外纺织品回收业的现状[J].国外纺织技术,2001,(2):37-39.
    [19]罗伟国.日本用回收聚酯瓶切片生产纺粘无纺布[J].中国化纤信息,2000,(7):22.
    [20]Janzer L. Polyester Waster Recycling Technolgy. Chem Fibers Intern,1998,48(5): 390-392.
    [21]Buhler. PET Bottle to Bottle Proeess. Chem Fibers Intern,1999, (5):387.
    [22]钱伯章.聚酯回收利用及技术进展[J].橡塑资源利用,2008,(4):30-35.
    [23]Donald E. Process for recovery of clean polyester materials. US3928253 [P]. 1982-10-19.
    [24]Sharma N D, Vaidya A A, et al. Chemical processing of synthetic fibres and blends. Ind163 385 [P],1985.
    [25]Yoshioka T, Sato T, Okuwaki A. Kinetics of Hydrolysis of Poly(ethylene terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model [J]. J Appl Polym Sci,1994,52:1353.
    [26]Collins M J, Zeronain S H. The molecular weight distribution and oligomers of sodium hydroxide hydrolyzed Poly(ethylene terephthalate) [J]. J Appl Polym Sci, 1992,45,797-804.
    [27]Kosmidis V A, Achilias D S, etal. Poly(ethylene terephthalate) recycling and recover of pure terephthalic acid. Kineties of a phase transfer catalyzed alkaline hydrolysis. Macromolecular Materials and Engineering [J].2001,286,640-647.
    [28]Karayannidis G P, Chatziavgooustis A P, etal. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis [J]. Advances in Polymer Technology,2002,21,250-259.
    [29]Wan B Z, Kao C Y, et al. Kinetics of depolymerization of poly(ethylene terephthalate) in a potassium hydroxide solution [J]. Industrial & Engineering Chemistry Research 2001,40,509-514.
    [30]Goje A S, Thakur S A, et al. Chemical recycling kinetics and thermodynamics of hydrolysis of poly(ethylene terephthalate) waste with non-aqueous potassium hydroxide solution [J]. Polymer-Plastics Technology and Engineering 2004,43: 369-388.
    [31]Kao C Y, Cheng W H, et al. Investigation of alkaline hydrolysis of polyethylene terphthalate by differential scanning calorimetry and thermogravimetric analysis [J].J Appl Polym Sci,1998,70,1939-1945.
    [32]Lamparter R A. Barna B A, et al. Process for recovering terephthalic acid from waste polyethylene terephthalate. US4542239 [P],1985.
    [33]Rollick K L. Process for recovering dicarboxylic acid with reduced impurities from polyester polymer. WO9510499 [P],1995.
    [34]Masuda T, Miway, Tamagawaa, etal. Degradation of waste poly(ethylene terephthalate) in a steam atmosphere to recover terephthalic acid and to minimize carbonaceous residue [J]. Polymer Degradation and Stability,1997,58(3): 315-320.
    [35]Rosen B I. Preparation of purified terephthalic acid from waste polyethylene terephthalate. US5095145 [P].1991.
    [36]Launay A, Thominette F, Verdu J. Hydrolysis of Poly(ethylene terephtalate). A Steric Exclusion Chromatography Study [J]. Polymer Degradation and Stability, 1999,63(3):385-389.
    [37]Campanelli J R, Kamalm R, Cooper D G. Kinetic Study of the Hydrolytic Degradation of Polyethylene Terephthalate at High Temperatures [J]. Journal of Applied Polymer Science,1993,48(3):443-451.
    [38]Gruschke H, Hammerschick W, Medem H. US3403115 [P].1968.
    [39]Lotz R, Wick G, Neuhous D A. US3321510 [P].1967.
    [40]Campanelli J R, Kamel M R, Cooper D G. A kinetic Study of the Hydrolytic Degradation of Polyethylene Terephthalate at High Temperatures [J]. Journal of Applied Polymer Science,1993,48:443-451.
    [41]Chambretr F. Production of terephthalic acid. US3120561 [P].1964.
    [42]Xi Guoxi, Lu Maixi, Sun Chen. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethylterephthalate) [J]. Polymer Degradation and Stability,2005, (87):117-120.
    [43]Collinsm J, Haiq Zeronian S, Marshallm L. Analysis of the Molecular Weight Distributions of Aminolyzed Poly (ethylene terephthalate) by Using Gel Permeation Chromatography [J]. Journal of Macromolecular Science Chemistry, 1991, A28(8):775-792.
    [44]Kacperskm, Spychaj T. Rigid Polyurethane Foams With Poly(ethylene terephthalate)/Triethanolamine Recycling Products [J]. Polymers for Advanced Technologies,1999,10(10):620-624.
    [45]Shukla S R, Harad A M. Aminolysis of Polyethylene Terephthalate Waste [J]. Polymer Degradation and Stability,2006,91(8):1850-1854.
    [46]Blackmon K P, et al. Photodegradable plastic composition containing a N-halo imide. EP365842 [P].1998.
    [47]William H. Process for modifying linear polymer resins. US 154774 [P].1998.
    [48]Nadaf R N, Siddiqui S A, Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions [J]. Bull Acad Imper Sci. (St.Petersburg),1914,1800.
    [49]Hussey C L. Ionic liquids in synthesis [J]. Adv Molten Salt Chem,1983,5,185.
    [50]Chum H L, Kock V R, Miller L L, Osteryoung R A. Uses of Ionic Liquids in Analytical Chemistry [J]. J Am Chem Soc,1975,97,3264.
    [51]Wilkes J S, Levinsky J A, Wilson R A, Hussey C A. Uses of Ionic Liquids in Analytical Chemistry [J]. Inorg Chem.1982,21,1263.
    [52]Zhao D B, Wu M, Kou Y, Min E Z. Ionic liquids:applications in catalysis [J]. Catalysis Today,2002,74,157.
    [53]何鸣,张赛丹,黄敬平等.离子液体的合成[J].广州化工,2005,33(4):3-5,8.
    [54]王娜.配位离子液体的合成与表征其在汽油模型脱硫中的应用[D].河北科技大学学位论文,2007:34-35.
    [55]马军德,李冰,颜灵光,陈彦.ZnCl2-EMIC离子液体中电沉积锌[J].中国有色金属学报,2008,18(6):62-66.
    [56]Bonhote P, Dias A P, Papageorigiou N, etal. Hydrophobic highly conductive ambient-temperature molten salts [J]. Inorg Chem,1996,35(5):1168-1178.
    [57]赵地顺,李雪刚,刘宝友,徐智策,王娜.离子液体体系ZnC12-尿素的制备及性质.精细化工,2007,24(7):632-635.
    [58]Quarmny I C, Mantz R A, goldenberg L M, et al. Stoichiometry of latent acidity in buffered chloroaluminate ionic liquids [J]. Anal Chem,1994,66:3558-3561.
    [59]Quarmby I C, Osteryoung R A. Latent Acidity in Buffered Chloroaluminate Ionic Liquids [J]. J Am Chem Soc,1994,116:2649-2650.
    [60]魏颖,张庆国.锌基离子液体BMIZn2Cl5的性质研究[J].化学学报,2008,66(16):1879-1883.
    [61]石家华,孙逊,杨春和等.离子液体研究进展[J].化学通报,2002,4:243-250.
    [62]孙德,许振良.ZnCl2离子液体催化合成六氯环三磷腈.化学反应工程与工艺,2010,26(5):472-475.
    [63]Fraga-Dubreuil J, Bazureau J P. Grafted ionic liquid-phase-supported synthesis of small organic molecules [J]. Tetrahedron Lett,2001,42:6097-6100.
    [64]Kun Q, Youquan D. Alkylations of Benzene in Room Temperature Ionic Liquids Modified with HCl [J]. Molecular Catalysis A:Chemical,2001,171:81-84.
    [65]乔琨,邓友全.氯铝酸室温离子液体系中HC1促进的苯的烷基化反应研究[J].分子催化,2002,16(3):187-190.
    [66]Jiajian Peng, Youquan Deng. Catalytic Beckmann Rearrangement of Ketoximes in Ionic Liquids [J]. Tetrahedron Letters,2001,42:403-405.
    [67]Jiajian Peng, Youquan Deng. Ionic Liquids Catalyzed Biginelli Reaction under Solvent-free Conditions[J]. Tetrahedron Letters,2001,42:5917-5919.
    [68]Youquan Deng, Feng Shi, Jiajian Peng, et al. Ionic Liquid as a Green Catalytic Reaction Medium for Esterifications [J]. Molecular Catalysis A:Chemical,2001, 165:33-36.
    [69]乔琨,邓友全.氯铝酸室温离子液体介质中正十二碳烯的选择环化反应[J].催化学报,2002,23(2):165-167.
    [70]王雨,郑晓宇,吴肇亮.N(C2H5)3HCl-2ZnCl2离子液体催化十二烷基苯的氯甲基化反应研究[J].石油学报(石油加工),2007,23(2):12-16.
    [71]李昌志.离子液体在精细有机合成反应中的应用[D].湖南师范大学硕士学位论文,2005:1-2.
    [72]Huddlestou J G, Willauer H D, Swatloski R P. RoomTemperature Ionic Liquids as Novel Media for Clean Liquid Liquid Extraction [J]. Chem Commun,1998,16: 1765-1766.
    [73]Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels [J]. Chem Commun,2001(3):195-296.
    [74]翟秀静,符岩,张跃宏,李斌川.ZnCl2/TMAC离子液体中电沉积锌的研究[J].中国有色冶金,2010(4):65-67.
    [75]Krzan A. Microwave irradiation as an energy source in poly(ethylene terephthalate) solvolysis [J]. Journal of Applied Polymer Science,1998,69, 1115-1118.
    [76]Krzan A. Poly(ethylene terephthalate) glycolysis under microwave irradiation [J]. Polymers for Advanced Technologies,1999,10,603-606.
    [77]Nikje M M A, Nazari F, Microwave-assisted depolymerization of Poly(ethylene terephthalate) at atmospheric pressure [J]. Advances in Polymer Technology, 2006,25:242-246.
    [78]Guo Jian-Ping(郭建平),Huang Xue-Yuan(黄雪原),Yin Du-Lin(尹笃林).PMMA在路易斯酸性离子液体[Bmim]Cl-ZnCl2中原位聚合,Chinese J Appl Chem(应用化学)[J],2008,25(6):685.
    [79]张华阳.纯水中PET的微波解聚研究[D].大庆石油学院专业学位论文,2004:11-12.
    [80]Kappe O. Controlled microwave heating in modern organic synthesis [J]. Angew Chem Int Ed,2004,17(43):6250-6284.
    [81]C.O.卡帕,A.斯塔德勒著,微波在有机和医药化学中的应用[M].北京:化学工业出版社,2007.
    [82]Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate) [J]. Ind Eng Chem Res,1997,36 (4),1373-1383.
    [83]WSS:Spectral data were obtained from Wiley Subscription Services, Inc. (US)
    [84]Ranu B C, Banerjee S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specificionic liquid, [bmim]OH, in michael addition of active methylene compounds to conjugated ketones, earboxylie esters, and nitriles [J]. OrgLett,2005,7(14):3049-3052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700