纯水中PET的微波解聚—方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着世界上 PET 聚酯消费量的迅猛增加,由此而产生的纤维及废旧塑料也不断增多。大力开发聚酯回收技术,处理废弃聚酯已成为聚酯工业可持续发展的关键之一。目前 PET 聚酯回收主要有水解、醇解、胺解等方法,而真正实现材料循环利用、可持续发展的唯一途径就是 PET 水解法。
    本实验以微波作为热源对 PET 水解反应进行了研究,考察了解聚反应条件对 PET解聚率的影响;对解聚反应动力学进行了初步研究;通过用显微镜和扫描电镜对未完全解聚的 PET 外部形貌和脆断面形貌进行研究,揭示了反应过程和反应机理,结论如下:
    1.(1)压力、时间、解聚水量和微波输出功率对 PET 的解聚反应影响依次为:时间﹥压力﹥解聚水量﹥微波输出功率。其中时间和压力为主要影响因素,解聚水量和微波输出功率为次要影响因素。最佳反应条件为:时间 105 min、压力 19 bar、水与 PET质量比 6、微波输出功率 500 W。(2)草酸钾、醋酸钾和醋酸锌对 PET 微波的解聚反应均有催化作用,其中草酸钾用量在 1%时效果最好,可使 PET 解聚率达到 88.5%;醋酸钾催化剂用量在 0.5%时效果最好,也可使 PET 解聚率达到 85%以上;醋酸锌用量变化对 PET 解聚率影响不大,可使 PET 解聚率达到 60%以上。综合考虑催化剂成本和催化效果,三种催化剂用量在 0.5~2%较为合适,催化效果依次为:草酸钾>醋酸钾>醋酸锌。(3)PET 粒度增大,解聚率减小。(4)PET 结晶度增大,解聚率下降,但下降幅度不大,说明原料 PET 的结晶度对解聚率的影响很小,解聚反应在 PET 结晶部分和非结晶部分难易程度相近,反应并非首先在非晶区进行。
    2. PET 解聚率在 5.06%~35.81%时,作图法求得反应级数近似为一级反应。微波辐射下的 PET 水解反应过程为无规解聚与有规解聚相结合的过程。
    3. 反应初期,PET 聚酯切片形状未变,但变得很脆,这说明聚酯颗粒内部发生了变化;显微镜观察反应后期扩散到水中固体的形状为一团一团的大块物质,说明反应不仅仅由原料颗粒外表面向内部进行,而是内部和外表面同时进行反应;对未完全解聚的PET 切片截面的扫描电镜分析说明,截面上有部分单体 TPA 溶于碱液中,说明反应是在聚酯颗粒内部和外表面同时进行的。
Recently with the rapid incresing of the PET polyester consumption in the world, fibreand waste plastic were continuously increasing. It is the key technology for polyesterindustry continuance development that developping on polyester recovery technology anddisposalling of polyester abandoned.. At present, the methods used to recovery PET polyesterare hydrolyzation, alcoholysis and amination, etc. However, only hydrolyzation of PET canrealize recycling utilization of resource and keep developing forever.
    We have researched on the hydrolyzation of PET using microwave as heat source. Theeffects of reaction condition on the depolymerization rate of PET were studied. At the sametime, the kinetics of depolymerization reaction was investigated. The surface and sectionmorphology of undepolymerized PET residues were pictured with Polarized Microscopy(POM) and Scanning Electronic Microscopy (SEM). The results indicate the process andmechanism of the depolymerization reaction. The following results were obtained:
    1. (1) The effective degree of factors on the depolymerization reaction is ordered inreaction time, pressure, water and microwave power. Reaction time and pressure were themajor factors. The best reaction conditions are that: reaction time is 150 min, pressure is 19bar, mass rate of water and PET is 6, microwave power is 500 W. (2) Dipotassium oxalate,Potassium acetate and Zinc acetate all have catalysis on the depolymerization reaction of PET.The order is oxalate> acetate> zinc acetate. Dipotassium oxalate has the best effect on thedepolymerization reaction and the depolymerization rate can reach 88.5% when the loading ofcatalyst is 1%. The depolymerization rate can exceed 85% when the loading of Potassiumacetate is 0.5%. The quantity of Zinc acetate makes no difference to .depolymerization rate,and the depolymerization rate can reach 60%. The optimal quantity of catalyst is 0.5~2%. (3)With the increasing of particle size of PET, the rate of depolymerization decreased. (4) Therate of PET depolymerization decreased slightly with the increasing of crystallinity of PET,This indicated that the crystallinity of PET has a little effect on the reaction, and thehydrolysis was not preferentially occurred on the amorphous phase of PET resin.
    2. The reaction order is close to unity by drawing when the depolymerization rate isbetween 5.06% and 35.81%, which is different from that by calculation. Hydrolyzationreaction of PET under microwave radiation is a combined process of rulelessdepolymerization and ruly depolymerization.3. At the beginning of the reaction, the shape of PET resin was not changed but the resinbecame fragile. This proved that some changes happened inside the PET resin. It can be alsoobserved that big blocks of PET were diffused into water, which showed that the hydrolysisreacted not only outside the PET resin, but also inside the PET resin.
引文
[1] 薛大明,全燮,赵雅芝等.废弃聚乙烯塑料热解过程能量收支理论分析[J] .大连理工大学学报,1997,37(4):410~413
    [2] 余德辉,王金南.循环经济 21 世纪的战略选择[N].中国环境报,2001-09-03(5)
    [3] 曲格平.发展循环经济是 21 世纪的大趋势[J].机电产品开发与创新,2001,6(71):10~13
    [4] 马凯.贯彻落实科学发展观,推进循环经济发展[N].宏观经济管理,2004-10-20(10)
    [5] 赵亚凡,宋明.循环经济——我国实现可持续发展的途径[J].城市规划汇刊,2002,18(2):59~62
    [6] 吴易名.循环经济与经济可持续发展[J].经济师.2002,25(10):84~85
    [7] Udo de Haes HA, Jolliet O,Finnveden G, Hauschild M,Krewitt W. Best available practice regarding impact categories and category indicators in life cycleimpact assessment, background document for the second working groupon life cycleimpact assessment of SETAC-Europe[J].Part 1. International Journal of Life Cycle Assessment , 1999,4: 66~74
    [8] Goran Finnveden, Jessica Johansson, Per Lind. Life cycle assessment of energy from solid waste—part 1: general methodology and results [J].Journal of Cleaner Production, 2005, 13: 213~229
    [9] Clift R, Doig A, Finnveden G. The application of life cycle assessment to integrated solid waste management, part I —methodology. Transactions of the Institution of Chemical Engineers[J] .Process Safety and Environmental Protection , 2000, 78(B4):279~287
    [10] Finnveden G. Methodological aspects of life cycle assessment of integrated solid waste management systems[J].Resources, Conservation and Recycling, 1999, 26: 173~187
    [11] Tillman A-M. Significance of decision-making for LCA methodology[J].Environmental Impact Assessment Review, 1999, 20: 113~123 [12 ]Weidema BP, Frees N, Nielsen A-M. Marginal production technologies for life-cycle inventories[J]. International Journal of Life Cycle Assessment , 1999, 4: 48~56
    [13] Otoma S, Mori Y, Terazono A. Estimation of energy recovery and reduction of CO2 emissions in municipal solid waste power generation[J]. Resources, onservation and Recycling, 1997, 20: 95~117
    [14] Finnveden G, Ekvall T. Life cycle assessment as a decision-support tool—the case of recycling vs incineration of paper[J]. Resources,Conservation and Recycling, 1998, 24: 235~256
    [15] Ekvall T, Finnveden G. The application of life cycle assessment to integrated solid waste management, part II—perspectives on energy and material recovery from paper. Transactions of the Institution of Chemical Engineers[J]. Process Safety and Environmental Protection , 2000, 78(B4): 288~294
    [16] Finnveden G, Albertsson A-C, Berendson J. Solid waste treatment within the framework of life-cycle assessment[J]. Journal of Cleaner Production, 1995, 3: 189~199
    [17] Finnveden G. On the limitations of life cycle assessment and environmental systems analysis tools in general[J]. International Journal of Life Cycle Assessment, 2000, 5: 229~238
    [18] Finnveden G, Ostlund P. Exergies of natural resources in lifecycle assessment and other applications[J]. Energy, 1997, 22: 923~31
    [19] Huijbregts MAJ. A general framework for the analysis of uncertainty and variability in life cycle assessment[J]. International Journal of Life Cycle Assessment, 1999, 3: 273~280
    [20] Denison RA. Environmental life-cycle comparisons of recycling, landfilling and incineration, A review of recent studies[J]. Annual Review of Energy Environment , 1996, 21: 191~237
    [21] 杨震,江勇,王世明等.废聚苯乙烯塑料热降解回收苯乙烯单体的研究[J] .环境科学,1997,18(2):43~45
    [22] 王静荣,陈大俊.聚氨酯废弃物的化学降解机理[J] .高分子通报,2004,(2):85~90
    [23] 庾晋,白杉.废旧轮胎回收利用现状和利用途径[J].橡塑技术与装备,2003,29(9):11~18
    [24] Toshiaki Yoshioka, Nobuchika Okayama, Akitsugu Okuwaki. Kinetics of hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model[J]. Ind. Eng. Chem. Res, 1998, 37: 336-340
    [25] Toshiaki Yoshioka, Guido Grause, Christian Eger, Pyrolysis of poly (ethylene terephthalate) in a fluidised bed plantcc[J]. Polymer Degradation and Stability, 2004, 86(3): 499~504
    [26] S. Mishra, A. S. Goje. Kinetics of glycolysis of poly(ethylene terephthalate) waste powder at moderate pressure and temperature[J]. Appl. Polym. Sci., 2003, 87: 1569~1573
    [27] Franck Hubert, Gerard Durand, Gilles Tersac. Equilibria in the alcoholysis reactions of terephthalic esters and chemical valorization of polyethyleneterephthalate waste. I. Equilibrium constants determination[J]. Appl. Polym. Sci., 1999, 72: 329~340
    [28] Hideki Kurokawa, Masa-aki Ohshima, Kazuo Sugiyama. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol [J]. Poly. Deg. Stab., 2003, 79: 529~533
    [29] Gallagher F G. Monomer recovery process for contaminated polymers [P]. US patent: 5 710 315. 1998
    [30] Naujokas A A,Gamble W J,Webster N Y. Recovery of components from polyester resins [P]. US patent: 5 654 470. 1997
    [31] Maxathe M N, Dabholkex D A, Jain M K. Process for the Recovery of Dimethyl Terephthalate From Polyethylene Terephthalate Polymer Waste[P]. GB Patent: 2 041 916. 1980
    [32] Debriun B R,Tenn K,Naujokas A A. Process of recovering components from polyester resins [P]. US patent: 5 432 203. 1995
    [33] 扬始.合成纤维工业[M] . 北京:化学工业出版社,1978.4~8
    [34] Fujita A. Process for the depolymerization of polyester scrap [P].US patent: 4 609 680. 1986
    [35] Pepper T P. Styrene soluble unsatured polyester resin from polyethylene terephthalate [P]. US patent: 5 380 793. 1995
    [36] Rosen B J. reparation of purified terephthalic acid from waste polyethylene terephthalate [P]. US patent: 5 095 145.1991
    [37] Wei Tzner Jorge Mandoki. Continuous procedure for obtaining pure terephthalic acid and glycol starting from polyethylene terephthalate waste[P]. GB Patent : 2 123 403. 1984
    [38] Mandaki J W. Depolymerization of condensation polymers [P]. US patent: 4 605 762. 1986
    [39] Campanelli J R, Cooper D G, Kammal M R. Catalyzed hydrolysis of polyethylene terephthalate melts[J]. Appl. Poly. Sci., 1994, 53: 985~991
    [40] Loupy A, Pigeon P, Ramdani M. Synthesis of long chain aromatic esters in a solvent-free procedure under microwave[J]. Tetrahedron, 1996, 52(19): 6705~6712
    [41] Bram G, Loupy A, Majoub M. Microwave irradiation plus solid-liquid phase transfer catalysis without solvent: Further improvement in anionic activation[J], Synth. Commum., 1990, 20: 125~129
    [42] Yuan Y. C., Gao D. B., Jiang Y. L. Ethoxylation of o-or p –nitro chloro benzene using phases transfer catalysis under microwave irradiation[J]. Synth. Commum., 1992, 22: 2117~2119
    [43] Bogdal D., Pielichowski J., Boron A. Remarkable fast microwave-assisted Nalkylation of phthalimide in dry media[J]. Syn. Lett., 1996, 873~874
    [44] 邓润华.α-苯硫乙酸乙醋的微波快速烷基化[J].应用化学,1993,2:83~86
    [45] Wang Y. L., Jiang Y. Z. Solid –liquid phase transfer catalytic synthesis (III):The rapid alkylation of ethyl phenylsulfony lacetate under microwave irradiation[J]. Synth. Commun., 1992, 22: 2287~2291
    [46] 王存德.微波快速合成芳氧乙酸[J].化学试剂,1996,18(6):355~356
    [47] ANDREJ KRZAN. Microwave irradiation as an energy source in poly(ethylene terephthalate) solvolysis[J]. Appl. Polym. Sci.,1998, 69:1115~1118
    [48] U. Klun, A. Krzan. Rapid microwave induced depolymerization of polyamide-6 [J]. Polymer, 2000, 41: 4361
    [49] Lixin Liu, Dong Zhang, Lijia An. Hydrolytic Depolymerization of PET under Microwave Irradiation [J]. Appl. Polym. Sci., 2005, 95(3): 719~723
    [50] Campanelli, J.R. Cooper[J]. D.G.J Appl Polym Sci, 1993, 48: 443
    [51] 任之恭.微波量子物理学[M] . 北京:科学出版社,1980
    [52] Carlos Ludlow-Palafox, Howard A.Chase. Microwave-Induced Pyrolysis of Plastic Wastes [J]. Ind. Eng. Chem. Res., 2001, 40: 4749~4756
    [53] Andrej Kr an. Poly(ethylene terephthalate)glycolysis under microwave irradiation polym [J]. adv.technal, 1999, 10: 603~606
    [54] Andrej Kr a .microwave irradiation as an energy source in poly(ethylene terephthalate) solvolysis[J]. Journal of Applied Polymer Science , 1998,69(6):1115~1118
    [55] B.-K. Kim, G.-C. Hwang, S.-Y. Bae, S.-C. Yi, H. Kumazawa. Depolymerization of polyethyleneterephthalate in supercritical methanol[J]. Appl. Polym. Sci., 2001, 81: 2102
    [56] 刘向文,朱忠南.聚对苯二甲酸乙二醇酯缩聚反应过程中平衡规律的研究[J].聚酯工业,1994,24(3):16~19
    [57] 杨勇,吕毅军,徐元源.废旧聚酯 PET 的化学循环利用[J].化学进展,2001,13(1):65-72
    [58] Lixin LIU, Dong ZHANG, Lijia An. Hydrolytic Depolymerization of PET under Microwave Irradiation [J]. Journal of Applied Polymer Science, 2005, 95(3): 719~723
    [59] 席国喜.废聚酯醇解条件的研究[J].环境科学研究,2004,17(5):37~40
    [60] Darwin P. R. Kint, Antxon Martinez De Ilarduya, Jordi j. Bou. Poly(ethylene terephthalate)copolymers containing Nitroterephthalic units Ⅲ . Methanolytic Degradation[J]. Appl. Polym. Sci., 2002, 40: 2276-2285.
    [61] A. Launay. F. Thominette, J. Verdu. Hydrolysis of Poly(ethylene terephtalate). A steric exclusion chromatography studyPoly[J]. Deg. Stab., 1999, 63: 385-389.
    [62] Hideki Kurokawa, Masa-aki Ohshima, Kazuo Sugiyama. Methanolysis of Polyethylene terephthalate in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol[J]. Poly. Deg. Stab., 2003, 79: 529-533.
    [63] Collins M. J., Zeronian S. H. The molecular weight distribution and oligomers of sodium hydroxide hydrolyzed poly(ethylene terephthalate)[J]. Appl. Polym. Sci., 1992, 30: 2017-2022.
    [64] Toshiaki Yoshioka, Tsutomu Motoki, Akitsugu Okuwaki. Kinetics of hydrolysis of Poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model[J]. Ind. Eng. Chem. Res., 2001, 40: 75~79
    [65] S. Mishra, AS Goje. Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder[J]. Polym. Int., 2003, 52: 337~342
    [66] Ben-zu Wan, Chih-yu Kao, Wu-hsun Cheng. Kinetics of Depolymerization of Poly(ethylene terephthalate)in a Potassium Hydroxide Solution[J]. Ind. Eng. Chem. Res., 2001, 40: 509~514
    [67] Toshiaki Yoshioka, Nobuchika Okayama, Akisugu Okuwaki. Kinetics of hydrolysis of PET powder in nitric acid by modifier shrinking-core model[J]. Ind. Eng. Chem. Res, 1998, 37: 336-340.
    [68] Toshiaki Yoshioka, Tsutomu Motoki, Akisugu Okuwaki. Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model[J]. Ind. Eng. Chem. Res, 2001, 40: 75-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700