微生物转化虎杖中白藜芦醇苷及其产物的分离纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药虎杖是蓼科植物虎杖(Polygonum cuspidatum Sieb.et Zucc.)的根和茎,具有祛风利湿,散瘀定痛,止咳化痰等功效。白藜芦醇是虎杖中最有价值的成分,具有抗菌、抗炎、抗病毒、抗氧化和抗癌等功效,现已广泛应用在食品添加剂、保健品、化妆品等行业。但是白藜芦醇的含量偏低,加大了其生产成本。白藜芦醇的糖苷化合物白藜芦醇苷和白藜芦醇具有相似的药理作用,其含量远高于白藜芦醇,但其生物利用度远低于白藜芦醇。将糖苷转化为其苷元通常由酸水解或碱水解来实现。但是反应需要高温高压等剧烈条件,不仅对设备要求高,而且对环境造成很大的污染。相比之下,生物转化法条件温和,操作简单,成本低廉,环境友好。本文利用生物转化法直接将虎杖粗药材中的白藜芦醇苷转化为白藜芦醇,并对其分离纯化工艺进行了研究。
     首先,筛选β-葡萄糖苷酶的高效产生菌食品级微生物米曲霉,对其所产β-葡萄糖苷酶的性质进行了研究,并用此酶液对虎杖粗药材中的白藜芦醇苷进行转化。结果表明,该β-葡萄糖苷酶的最适pH值为4.8,最适温度为50℃。用β-葡萄糖苷酶粗酶液对虎杖粗药材中的白藜芦醇苷转化12小时,体系中白藜芦醇苷的转化率达100%,白藜芦醇的含量提高到原来的2.9倍。
     在此基础上,用米曲霉直接将虎杖粗药材中的白藜芦醇苷转化为白藜芦醇,并对其转化机理进行了研究。摇瓶发酵46小时使白藜芦醇苷完全转化为白藜芦醇,白藜芦醇的提取百分率提高到1.36%,是微波辅助提取的3.6倍。商品纤维素酶水解粗药材12小时后达到了同样高的提取百分率,但是酶的昂贵价格限制了其工业应用。酸水解粗药材20分钟可以将79.0%的白藜芦醇苷水解为白藜芦醇,但同时46.7%的白藜芦醇在此过程中被破坏,因此酸水解不是一种可行的策略。相比较而言,微生物转化法条件温和,操作简单,产物收率高,具有很大的工业化潜力。
     因此,在摇瓶发酵的基础上对菌种进行驯化,并用5L发酵罐进行发酵工艺的放大与优化。结果表明,在温度为37℃,通气量为1.5vvm下发酵20小时后,将温度升高到50℃继续反应2小时,白藜芦醇苷的转化率达105%,白藜芦醇的浓度提高到原来的3.4倍,达到了文献报道的自然发酵72小时的水平。转化机理研究表明,白藜芦醇和白藜芦醇苷以游离状态存在于药材细胞中,发酵过程中白藜芦醇苷被转化为白藜芦醇,同时药材细胞壁上的纤维素被部分水解,从而有利于产物的提取。
     其次,以乙醇/硫酸铵双水相体系为溶剂,利用微波辅助双水相提取分别从虎杖粗药材和虎杖发酵液中提取了白藜芦醇苷、白藜芦醇和大黄素,并对其分相行为进行了研究。选择25%(w/w)的乙醇和21%(w/w)的硫酸铵为提取剂从虎杖粗药材中提取所得的白藜芦醇苷和加热回流与微波辅助提取的提取率相等,而白藜芦醇和大黄素的提取率分别为微波辅助提取和加热回流提取的1.1倍和1.9倍。选择此双水相体系对虎杖发酵液进行提取,所得的白藜芦醇和大黄素的提取率分别是微波辅助提取的1.2倍和3.3倍,分别是常温搅拌提取的1.6倍和4.2倍。发酵液提取物中白藜芦醇和大黄素的含量分别为微波辅助提取的1.3倍和2.3倍,分别为常温搅拌提取的1.4倍和2.6倍,而葡萄糖和多糖的含量分别为后两者的27%和79%。微波辅助双水相提取同时具备微波辅助提取和双水相萃取的优点,并把两个操作步骤合为一步,提高了收率,降低了成本。因此,是一种很有前景的提取和分离目标产物的方法。
     最后,利用大孔树脂结合聚酰胺柱层析从发酵液提取物中纯化白藜芦醇,并测定了大孔树脂和聚酰胺对白藜芦醇的吸附动力学参数。结果表明,大孔树脂和聚酰胺对白藜芦醇的表观静态吸附量分别为11.70mg/g和57.90mg/g,表观动态吸附量分别为12.47mg/g和58.98mg/g,吸附均符合Langmuir吸附特征。利用大孔树脂结合聚酰胺柱层析两步纯化发酵液中的白藜芦醇,使其纯度达到95.8%,总收率达69.8%。同时,提取液中的大黄素得到回收,其纯度为18.6%,收率为84.2%。此方法操作简单,成本低廉,白藜芦醇的纯度和收率高,有良好的工业化应用前景。
Dry caudex of Polygonum cuspidatum Sieb.et Zucc.(Huzhang in Chinese) is a Chinese traditional herbal medicine,which has been used for dispelling wind and dampness, eliminating stasis to activate blood circulation,relieving cough and reducing sputum. Resveratrol,the most valuable component in Huzhang,is widely used in food additive,health products and cosmetic industries due to its various pharmaceutical properties such as antimicrobial,anti-inflammatory,anti-virus,antioxidant and anticancer activities.However, its content is very low,which increases its production cost.Piceid,the glucoside of resveratrol, has similar pharmaceutical functions,and its content is much higher,however,its bioavailability is much lower than resveratrol.In general,aglycone is acquired by hydrolysis of its glucoside,and acid or alkaline is often used as the hydrolytic reagent.However,the hydrolytic reaction is always carried out under extreme conditions such as high temperature and high pressure,which not only requires high equipment characteristic but also causes pollution.In contrast,biotransformation only requires mild conditions,simple procedures, lower cost and results in less pollution.In this paper,biotransformation of piceid in P. cuspidatum to resveratrol was performed by Aspergillus oryzae and its separation and purification was studied.
     A food-grade microorganism A.oryzae with highβ-glucosidase activity was firstly selected.Properties of the enzyme were studied and biotransformation of piceid in raw herb of P.cuspidatum by the crude enzyme was investigated.The results indicated that the optimum pH of theβ-glucosidase is 4.8 and the optimum temperature is 50℃.Concentration of resveratrol increased to 2.9 times higher after 12h transformation of raw herb by the crudeβ-glucosidase,with the percent conversion of piceid 100%.
     Based on the above results,biotransformation of piceid in raw herb of P.cuspidatum to resveratrol by A.oryzae was investigated,and mechanism of the bioprocess was discussed. Percent extraction of resveratrol reached 1.36%after 46h shake flask cultivation,3.6 times higher than that by microwave-assisted extraction of raw herb.The same results were obtained by enzymatic hydrolysis of raw herb for 12h with commercial cellulase,but the high cost of the enzyme limits its industrial application.Seventy nine percent of piceid was hydrolyzed to resveratrol after acid hydrolysis of raw herb for 20min,while 46.7%of resveratrol was destroyed during the process,so acid hydrolysis is not a feasible strategy. Compared with enzymatic and acid hydrolysis,biotransformation only requires mild conditions as well as simple procedures and results in high yield,so it has great potential for industrial application.
     Therefore,fermentation in a 5L bioreactor was carried out by the acclimated strain based on the shake flask cultivation,and the operation conditions were optimized.After 20h fermentation at 37℃and air flow rate of 1.5vvm,temperature was increased to 50℃and maintained for 2h.The concentration of resveratrol was 3.4 times higher,reaching the level of the reported spontaneously fermentation for 72h,with the percent conversion of piceid 105%. The investigation about the mechanism of transformation and release of resveratrol and piceid indicates that they exist in herb cells in a free state.Biotransformation of piceid to resveratrol and hydrolysis of cellulose in the cell walls to release the two effective constituents are simultaneously conducted during fermentation.
     Microwave-assisted aqueous two-phase extraction(MAATPE) was then investigated with ethanol/ammonium sulphate to obtain effective constituents,including piceid,resveratrol and emodin from both raw herb and fermentation broths,and the partition behavior of the products was studied.The aqueous two-phase system consisting of 25%(w/w) ethanol and 21%(w/w) ammonium sulphate was selected to obtain equal yield of piceid,and 1.1 and 1.9 times higher yields of resveratrol and emodin,respectively,from raw herb of P.cuspidatum than that by microwave-assisted extraction(MAE) and heat reflux extraction.Yields of resveratrol and emodin from fermentation broths were 1.2 and 3.3 times higher,respectively, than that by MAE,and 1.6 and 4.2 times higher,respectively,than that by stirring extraction at room temperature.Contents of resveratrol and emodin in the extract of fermentation broths were 1.3 and 2.3 times higher,respectively,than that by MAE,and 1.4 and 2.6 times higher, respectively,than that by stirring extraction at room temperature,while contents of glucose and polysaccharides in the extract were 27%and 79%,respectively,of that by MAE and stirring extraction at room temperature.MAATPE possesses advantages over both MAE and aqueous two-phase extraction,and integrates the two processes into a single step to get higher yields at lower cost.Therefore,it is a potential method for the extraction and purification of target products.
     Macroporous resin and polyamide column chromatography were finally combined to purify resveratrol from the fermentation broths,and the adsorption dynamics of resveratrol was evaluated.The results show that apparent static adsorptive capacities of resveratrol on macroporous resin and polyamide are 11.70mg/g and 57.9mg/g,respectively,and apparent dynamic adsorptive capacities are 12.47mg/g and 58.98mg/g,respectively.Both of the adsorption isotherms correlate well with the Langmuir type.After macroporous resin and polyamide two-step column chromatography,the purity of resveratrol reached 95.8%,with the yield of 69.8%.Emodin in the culture was also recovered,with the purity of 18.6%and the yield of 84.2%.This method is proved potential for industrial application due to its simple procedure,lower cost as well as high purity and yield of resveratrol.
引文
[1]吴少杰,杨志娟,朱丽华等.甘草皂苷生物转化的研究.中草药,2003,34(6):516-518.
    [2]谢明杰,石姗姗,卢明春等.酶法水解大豆异黄酮.食品与发酵工业,2004,30:21-24.
    [3]Kim D-S,Cue Y-S,YU H-S et al.Ginsenoside Rh2 prepared from enzyme reaction.大连轻工业学院学报,2001,20(2):99-104.
    [4]金凤燮,鱼红闪,张春枝等.酶法水解黄芩甙葡萄糖醛酸基制备黄芩素的方法.中国,CN1584039A.2004.
    [5]金凤燮,鱼红闪,叶文才.酶法水解白头翁皂甙糖基制备低糖基白头翁皂甙的方法.中国,CN1483832A.2003.
    [6]Ning LL,Guo HZ,Guo DA et al.Biotransformation of triptonide by cell suspension cultures of Platycodon grandiflorum.Pure and Applied Chemistry,2003,75(2-3):389-392.
    [7]Moyano E,Palaz(?)n J,Bonfill M et al.Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures.Journal of Plant Physiology,2007,164(4):521-524.
    [8]Shimoda K,Kondo Y,Nishida T et al.Biotransformation of thymol,carvacrol and eugenol by cultured cells of Eucalyptus perriniana.Phytochemistry,2006,67:2256-2261.
    [9]叶敏,戴均贵,果德安.桔梗细胞悬浮培养体系对斑蝥素的生物转化研究.中草药,2003,34(10):869-871.
    [10]Bastos D Z.L.,Pimentel I C.,Jesus D A et al.Biotransformation of betulinic and betulonic acids by fungi.Phytochemistry,2007,68:834-839.
    [11]Ning LL,Zhan JX,Guo DA et al.Biotransformation of triptolide by Cuninnghamella blakesleana.Tetrahedron,2003,59(23):4209-4213.
    [12]Ning LL,Qu GQ,Guo DA.Cytotoxic biotransformed products from triptonide by Aspergillus niger.Planta Med,2003,69(9):804-808.
    [13]Li D,Park SH,Shim JH et al.In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase.Carbohydrate Research,2004,339(17):2789-2797.
    [14]朱关平.用生物转化生产10-羟基喜树碱的方法.中国,CN85100520,1986.
    [15]He XJ,Tang JS,Qiao AM et al.Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus Niger.Steroids,2006,71:392-402.
    [16]Ma X-C,Ye M,Wu L-J et al.Microbial transformation of curdione by Mucor spinosus.Enzyme and Microbial Technology,2006,38:367-371.
    [17]Zhan J-X,Zhang Y-X,Guo H-Z et al.Microbial Metabolism of Artemisinin by Mucor polymorphosporus and Aspergillus niger.Journal of Natural Products,2002,65:1693-1695.
    [18]占纪勋,张元兴,宁黎丽等.铜绿假单孢菌AS1.860对紫杉醇的微生物转化.应用与环境生物学报,2003,9(4):429-432.
    [19]占纪勋,钟建江,戴均贵等.红豆杉愈伤组织中紫杉烷类成分sinenxan A的微生物转化研究.药学学报,2003,38(7):555-558.
    [20]戴万生,赵荣华.发酵法对大黄蒽醌类成分含量的影响.云南中医中药杂志,2005,26(1):38-39.
    [21]Kim DH,Lee SW,Han MJ.Biotransformation of glycyrrhizin to 18-BETA-glycyrrhetinic acid-3-0-BETA-D-glucuronide by Streptococcus LJ-22,a human intestinal bacterium.Biological & Pharmaceutical Bulletin,1999,22(3):320-322.
    [22]Bae EA,Park SY,Kim DH.Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1and Rb2 from human intestinal bacteria.Biological & Pharmaceutical Bulletin,2000,23(12):1481-1485.
    [23]Rich J O,Michels P C,Khmelnitsky Y L.Combinatorial biocatalysis.Current Opinion in Chemical Biology,2002,6(2):161-167.
    [24]韩丽.实用中药制剂新技术.北京:化学工业出版社,2002.
    [25]张代佳,刘传斌,修志龙等.微波技术在植物胞内有效成分提取中的应用.中草药,2000,31(9):附5-附6.
    [26]Pare,Jocelyn J R,Sigouin et al.Microwave-assisted natural products extraction.US,5002784A,1991.
    [27]Chen S S,Spiro M.Kinetics of microwave extraction of rosemary leaves in hexane,ethanol and hexane+ethanol mixture.Flavour and Fragrance Journal,1995(10):101-112.
    [28]郝金玉,韩伟,邓修.新鲜银杏叶经微波辅助提取后微观结构的变化.中草药,2002,33(8):739-741.
    [29]刘川生,王平,王立飞等.微波萃取技术在天然药物提取中的研究进展.中国天然药物,2003(3):187-192.
    [30]Pare J R J,Belanger J M R,Staffords S.Microwave-assisted Process(MAP-TM)-a:A New Tool for the Analysis.Trends in Analytical Chemistry,1994,13(4):176.
    [31]孔臻,刘钟栋.微波法从苹果渣中提取果胶的研究.郑州粮食学院学报,2000,21(2):11.
    [32]王平艳,黄若华,郝金玉.微波诱导萃取西番莲籽油.云南化工,1999(4):19-21.
    [33]郝金玉,黄若华,邓修等.微波萃取西番莲籽的研究.华东理工大学学报,2001,27(2):117-120.
    [34]黄若华,郝金玉,王平艳.微波萃取鸢尾的研究.精细化工,2000,17(11):640-642.
    [35]沈岚,冯年平,韩朝阳等.微波萃取对不同形态结构中药及含不同极性成分中药的选择性研究.中草药,2002,33(7):604-607.
    [36]陈斌,南庆贤,吕玲等.微波萃取葛根总异黄酮的工艺研究.农业工程学报,2001,17(6):123-126.
    [37]Carro N.Microwave assisted extraction of monoterpenols in must samples.Analyst,1997,122:325.
    [38]李嵘,金美芳.微波法提取银杏黄酮苷的新工艺.食品科学,2000,21(2):39.
    [39]Pan XJ,Niu GG,Liu HZ.Microwave assisted extraction of tanshinones from Salvia miltiorrhiza Bunge with analysis by high-performance liquid chromatography.Journal of Chromatography A,2001,922:71-77.
    [40]张宏康.双水相萃取技术及其在食品与发酵工业中的应用.粮油食品科技,2001,9(2):17-19.
    [41]杨善升,陆文聪,包伯荣.双水相萃取技术及其应用.化学工程师,2004,103(4):37-38.
    [42]李伟,朱自强,梅乐和.双水相萃取技术在药物分离提纯中的应用.化工进展,1998,1:26-29.
    [43]赵晓莉,岳红,张颖等.柿叶黄酮在双水相体系中的分配行为.林产化学与工业,2006,26(1):83-86.
    [44]Tan TW,Huo Q,Ling Q.Purification of glycyrrhizin from Glycyrrhizs uralensis Fisch with ethanol/phosphate aqueous two phase system.Biotechnology Letters,2002,24:1417-1420.
    [45]林强,霍清.双水相体系萃取甘草酸盐的研究.中草药,2002,33(8):702-704.
    [46]霍清.葛根素在双水相体系中分配特性的研究.北京中医药大学学报,2004,27(4):51.
    [47]林金清,董军芳,李夏兰.乙醇/硫酸铵双水相体系萃取甘草酸钾的研究.精细化工,2004,21(3):165-168.
    [48]霍清,林强.利用双水相体系的温度诱导效应萃取甘草酸.化学通报,2002(5):349-352.
    [49]何琦,及元乔,丁立生.D140大孔吸附树脂银杏黄酮提取纯化性能研究.天然产物研究与开发,2002,13(1):56.
    [50]高红宁,金石勤,郭立玮.陶瓷微滤膜与大孔吸附树脂联用精制苦参水提液中总黄酮.中成药,2001,34(9):629-632.
    [51]曾宪明,李教社,祝忠民.绞股蓝总皂苷提取工艺的研究.西安医科大学学报,1993,14(3):277-278.
    [52]陈勇,张晴.AB-8大孔吸附树脂吸附和分离紫甘薯色素的研究.中国食品添加剂,2001(3):6-9.
    [53]张晴.X-5大孔吸附树脂吸附和分离萝卜色素.青岛大学学报,2000,15(3):15-17.
    [54]侯世祥,朱浩,孙毅等.影响大孔吸附树脂吸附纯化黄连提取液因素的初步考察.中国中药杂志,2000,25(11):666-668.
    [55]曾宪明.无机盐对大孔吸附树脂吸附人参总皂甙的影响.中国医药工业杂志,1992,23(8):339-342.
    [56]张晴NaCl对紫苏色素的吸收光谱及其在大孔吸附树脂上吸附的影响,中国食品添加剂,2000(3):15-18.
    [57]汤志刚,周荣琪,段占庭.牛磺酸在大孔吸附树脂上的吸附-解吸行为研究.离子交换与吸附,2000,16(3):207-212.
    [58]侯世祥,朱浩,孙毅毅等.影响大孔吸附树脂吸附纯化黄连提取液因素的初步考察.中国中药杂志,2000,25(11):666-668.
    [59]李增标,董善年.液固萃取及其在样品处理中的应用.大孔吸附树脂用于液固萃取及其与十八烷基键合硅胶的比较.药物分析杂志,1991,11(6):339-341.
    [60]刘映,李志忠.大孔吸附树脂预分离后测定黄连及左金丸含量.中国药师,2001,4(2)113-114.
    [61]罗集鹏,马红文,许敏青等.大孔吸附树脂用于小檗碱的富集与定量分析.中药材,2000,23(7):413-415.
    [62]邓少伟.用大孔吸附树脂分离川芎总提取物.中草药,1999,1(30):23-24.
    [63]杨建萍,何福江,李洪刚.糙叶败酱多糖的含量测定.中草药,1996,27(11):660.
    [64]皮文霞,蔡宝昌,潘扬.大孔树脂与活性炭富集山茱萸总苷的实验研究.中国中药杂志,2002,27(8):583.
    [65]周萍,廖庆文,刘绍贵等.大孔树脂富集枸骨叶中总皂甙的研究.湖南中医杂志,2002,18(1):51_
    [66]杜江,丁宁,贾宪生.大孔吸附法在黄褐毛忍冬总皂苷提取中的应用研究.中国中药杂志,2001,26(10):686.
    [67]向天勇,张驰,谢达平.箬竹叶抑菌成分的分离纯化及结构分析.湖北民族学院学报(自然科学版),2002,20(3):70-75.
    [68]吴瑞宁,黄慰生,蔡建秀等.蕨类植物中总黄酮的提取.福州大学学报(自然科学版),2003,31(6):738-741.
    [69]杨爱萍,王清吉,锁守丽等.茶多酚提取分离工艺研究.莱阳农学院学报,2002,19(2):106-107.
    [70]徐涛,潘见.金银花中绿原酸的分离纯化.阜阳师范学院学报,2006,22(1):8-10.
    [71]刘楠,于新宇,赵红等.益智仁总甾醇(苷)的纯化工艺研究.中国现代中药,2007,9(5):18-20.
    [72]Kuo P-L,Chiang L-C,Lin C-C et al.Resveratrol-induced apoptosis is mediated by p53-dependent pathway in Hep 62 cells.Life Sciences,2002,72:23-34.
    [73]Hsieh T-C,Wu J M.Differential Effects on growth,cell cycle arrest,and induction of apoptosis by resveratrol in human prostate cancer cell lines.Experimental Cell Research,1999,249:109-115.
    [74]Hung L-M,Chen J-K,Huang S-S et al.Cardioprotective effect of resveratrol,a natural antioxidant derived from grapes.Cardiovascular Research,2000,47:549-555.
    [75]Docherty J J,Fu M M,Stiffler B S et al.Resveratrol inhibition of herpes simplex virus replication.Antiviral Research,1999,43:135-145.
    [76]Docherty J J,Sweet T J,Bailey E et al.Resveratrol inhibition of varicella-zoster virus replication in vitro.Antiviral Research,2006,72:171-177.
    [77]Chan M M-Y.Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin.Biochemical Pharmacology,2002,63:99-104.
    [78]Csaki C,Keshishzadeh N,Fischer K et al.Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro.Biochemical pharmacology,2008,75:677-687.
    [79]周国海,于华忠,李国章等.TLC法测定虎杖中自藜芦醇的含量.湖南林业科技,2005,32(3):11-13.
    [80]陈敏,舒友琴,何计国等.薄层荧光扫描法测定葡萄酒中的白藜芦醇及其糖苷异构体.分析化学,2005,5(5):635-638.
    [81]张寒俊,吴波.同步荧光法检测桑椹提取液中微量白藜芦醇含量.分析仪器,2007(1):24-26.
    [82]Gu XL,Chu QY,Dwyer M et al.Analysis of resveratrol in wine by capillary electrophoresis.Journal of Chromatography A,2000,881:471-481.
    [83]袁海龙,贺承山,肖小河等.高效毛细管电泳法测定何首乌中二苯乙烯甙的含量.解放军药学学报,2000,16(3):151-154.
    [84]朱立贤,金征宇,陶冠军.HPLC测定虎杖中白藜芦醇和白藜芦醇苷的含量.中成药,2005,27(8):944-946.
    [85]杨红美,陈波,曾建国等.HPLC同时测定虎杖及其提取物中4种有效成分的含量.中国中药杂志,2006,31(3):202-205.
    [86]周建军,张宏杰,杨培君.不同地区虎杖中白藜芦醇苷及苷元的含量比较.中药材,2005,28(1):31-33.
    [87]耿艳辉,李梦青,刘桂敏等.从虎杖中提取白藜芦醇的工艺研究.应用化工,2005,34(11):708-710.
    [88]刘丹,汤海峰,张三奇等.虎杖中有效成分提取方法的研究.中成药,2007,29(4):516-521.
    [89]曾里,连春霞,夏之宁.超声提取虎杖白藜芦醇及其液质联用分析.重庆大学学报,2002,25(7):53-56.
    [90]刘树兴,程丽英,杨大庆.虎杖中白藜芦醇与大黄素的综合提取.天然产物研究与开发,2005,17(5):632-635.
    [91]周军,黄琼,李志光等.虎杖中白藜芦醇的提取方法比较和优化研究.云南化工,2007,34(5):34-37.
    [92]康彦芳,李梦青,侯建功等.超声波法从葡萄穗轴废渣中提取白藜芦醇.化工进展,2006,25(11):1362-1365.
    [93]李胜华,伍贤进.超声波提取虎杖中白藜芦醇的优化工艺研究.食品工业科技,2008,29(7):161-164.
    [94]苏文强,杨磊,李艳杰等.碱提取法从虎杖中分离白藜芦醇的研究.林产品化工通讯,2004,38(1):17-20.
    [95]向海艳,周春山,陈龙胜等.酶法提取虎杖中白藜芦醇新工艺研究.林产化学与工业,2004,24(4):77-80.
    [96]周锦珂,李金华,葛发欢.超临界CO_2萃取虎杖中白藜芦醇的工艺研究.中药材,2004,27(9):675-676.
    [97]曹庸,于华忠,杜亚填等.虎杖白藜芦醇超临界CO_2萃取研究.湖南农业大学学报(自然科学版),2003,29(4):353-355.
    [98]Hao JY,Han W,Huang SD et al.Microwave-assisted extraction of artemisinin from Artemisia annua L.Separation and Purification Technology,2002,28:191-196.
    [99]范华均,林广欣,肖小华等.微波辅助提取石蒜和虎杖中有效成分的热力学机理研究.高等学校化学学报,2006,27(12):2271-2276.
    [100]Du F-Y,Xiao X-H,Li G-K.Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati.Journal of Chromatography A,2007,1140:56-62.
    [101]李核,李攻科,张展霞.影响微波辅助萃取虎杖中白藜芦醇产率的一些重要操作参数.分析化学,2003,31(11):1341-1344.
    [102]公衍玲,王宏波,金宏等.虎杖主要提取物半仿生提取条件的优选.青岛科技大学学报(自然科学版),2007,28(3):202-204.
    [103]李梦青,耿艳辉,刘桂敏等.双水相萃取技术在白藜芦醇提纯工艺中的应用.天然产物研究与开发,2006,18:647-649.
    [104]朱立贤,金征宇.大孔吸附树脂对虎杖中白藜芦醇吸附性能的研究.食品科学,2005,26(3):75-78.
    [105]向海艳,周春山,杜邵龙.大孔吸附树脂法分离纯化虎杖中白藜芦醇的研究.中草药,2005,36(2):207-210.
    [106]瞿卫林,陈晓祥,赵伯涛.大孔吸附树脂分离虎杖中白藜芦醇的研究.中国野生植物资源,2005,24(6):60-64.
    [107]赵金华,康晖,姚光辉等.虎杖苷和白藜芦醇的新制备方法.中国,CN 1546503A.2002.
    [108]苏文强,杨磊,朱明华等.中压柱层析法分离白藜芦醇的研究.林产化学与工业,2004,24(1):39-42.
    [109]Chen L,Han YS,Yang FQ et al.High-speed counter-current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum.Journal of Chromatography A,2001,907:343-346.
    [110]Yang FQ,Zhang TY,Ito Y.Large-scale separation of resveratrol,anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb.et Zucc by high-speed counter-current chromatography.Journal of Chromatography A,2001,919:443-448.
    [111]Gu M,Su Z-G,Janson J-C.One-Step Purification of Resveratrol and Polydatin from Polygonum cuspidatum(Sieb.& Zucc.) by isocratic hydrogen bond adsorption chromatography on cross-Linked 12%agarose.Chromatographia,2006,64:701-704.
    [112]向海艳,周春山,钟世安等.白藜芦醇分子印记聚合物合成及其中药虎杖提取液活性成分的分离.应用化学,2005,22(7):740-744.
    [113]Zhang CZ,Li D,Yu HS et al.Purification and characterization of piceid-β-D-glucosidase from Asperglllus oryzae.Process Biochemistry,2007,42:83-88.
    [114]罗何生,童文英.一种从虎杖中制备白藜芦醇的方法,中国,CN1566349A.2005.
    [115]蒋洪武.一种从中药虎杖中提取白藜芦醇的工艺,中国,CN1251361A.2000.
    [116]邹贤德,舒鑫.提高中药虎杖中白藜芦醇含量的方法,中国,CN1385535A.2002.
    [117]曹庸.虎杖提取高纯白藜芦醇工艺,中国,CN1513822A.2002.
    [118]Andrus MB,Liu J,Meredith EL et al.Synthesis of resveratrol using a direct decarbonylative Heck approach from resorcylic acid.Tetrahedron Letters,2003,44:4819-4822.
    [119]Becket JW,Armstrong GO,Merwe MJ et al.Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.FEMS Yeast Research,2003,4:79-85.
    [120]Meng X-F,Maliakal P,Lu H et al.Urinary and plasma levels of resveratrol and quercetin in humans,mice,and rats after ingestion of pure compounds and grape juice.Journal of Agricultural and Food Chemistry,2004,52:935-942.
    [121]Wendy AL.Biotransformations in organic synthesis.Bioresource Technology,2000,74:49-62.
    [122]Chi H,Ji GE.Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms.Biotechnology Letters,2005,27:765-771.
    [123]Parshikov IA,Miriyala B,Avery MA et al.Hydroxylation of 10-deoxoartemisinin to 15-hydroxy-10-deoxoartemisinin by Aspergillus niger.Biotechnology Letters,2004,26:607-610.
    [124]Henrissat B.A classification of glycosyl hydrolases based on amino acid sequence similarities.Biochemical Journal,1991,280:309-316.
    [125]Henrissat B,Davies G.Structural and sequence-based classification of glycoside hydrolases.Current Opinion in Structural Biology,1997,7(5):637-644.
    [126]Gueguen Y,Chemardin P,Arnaud A et al.Purification and characterization of the endocellular-glucosidase of a new strain of Candida entomophila isolated from fermenting agave(Agave sp.) juice.Biotechnology and Applied Biochemistry,1994,20:185-98.
    [127]Mamma D,Hatzinikolaou D G,Christakopoulos P.Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides.Journal of Molecular Catalysis B:Enzymatic,2004,27:183-190.
    [128]聂凌鸿,林淑英,宁正祥.薯蓣属植物中薯蓣皂苷元的研究进展.中国生化药物杂志,2004,25(5):318-320.
    [129]王晖,刘佳佳.银杏黄酮的酶法提取工艺研究.林产化工通讯,2004,38(1):14-16.
    [130]张明春,解军波,李婷等.复合酶法提取酸枣仁黄酮研究.食品科学,2008,29(9):174-177.
    [131]刘丹,汤海峰,张三奇等.虎杖中有效成分提取方法的研究.中成药,2007,29:516-521.
    [132]向海艳,周春山,雷启福等.大孔吸附树脂法分离纯化虎杖白藜芦醇苷的研究.中国药学杂志,2005,40(2):96-98.
    [133]Zhi WB,Deng QY.Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography.Journal of Chromatography A,2006,1116:149-152.
    [134]J.R.J.Pare,M.Sigomin,J.Lapointe.Microwave-assisted natural products extraction,US,5002784.1991.
    [135]Shu YY,kai TL,kin HS et al.Study of factors affecting on the extraction efficiency of polycyclic aromatic hydrocarbons from soils using open-vessel focused microwave-assisted extraction.Chemosphere,2003,52:1667-1676.
    [136]Balasubramaniam D,Wilkinson C,Cott KV et al.Tobacco protein separation by aqueous two-phase extraction.Journal of Chromatography A,2003,989:119-129.
    [137]Mokhtarani B,Karimzadeh R,Amini MH et al.Partitioning of Ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate.Biochemical Engineering Journal.2008,38:241-247.
    [138]Shibukawa M,Nakayama N,Hayashi T et el.Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions.Analytica Chimica Acta,2001,427:293-300.
    [139]Anirudhan T S,Senan P,Unnithan M R.Sorptive potential of a cationic exchange resin of carboxyl banana stem for mercury(Ⅱ) from aqueous solutions.Separation and Purification Technology,2007,52(3):512-519.
    [140]Chukwujekwu JC,Coombes PH,Mulholland DA,Staden J.Emodin,an antibacterial anthraquinone from the roots of Cassia occidentalis.South African Journal of Botany,2006,72:295-297.
    [141]Kuo YC,Meng HC,Tsai WJ.Regulation of cell proliferation,inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum Ohwi.Inflammatory Research,2001,50:73-82.
    [142]Srinivas G,Anto RJ,Srinivas P,Vidhyalakshmi S,Senan VP,Karunagaran D.Emodin induces apoptosis of human cervical cancer ceils through poly(ADP-ribose) polymerase cleavage and activation of caspase-9.European Journal of Pharmacology.2003,473:117-125.
    [143]Lin CC,Chang CH,Yang JJ,Namba T,Hattori M.Hepatoprotective effects of emodin from Ventilago leiocarpa.Journal of Ethnopharmacol,1996,52:107-111.
    [144]刘大川,刘强,吴波等.花生红衣提取物中白藜芦醇、原花色素分离工艺的研究.食品科学,2006,27(1):134-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700