Mn/Ni/Cr基催化剂活性对低温等离子体催化氧化甲苯性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体催化技术可在常温常压下氧化挥发性有机污染物,具有非常广阔的应用前景。该技术目前还存在能耗过高,系统性能易受水蒸气影响等关键问题,研究开发高效的、耐水蒸气影响的催化剂对于提升等离子体催化系统的性能具有重要的研究价值和实际意义。本文主要研究了锰基、镍基、铬基金属有机骨架材料(MIL-101)等催化剂在干湿空气条件下在等离子体催化系统中催化氧化甲苯的性能。
     本文首先研究了氧化锰催化剂制备条件对其在等离子体催化系统中氧化甲苯活性的影响。研究结果表明,当活性组分Mn负载量为1wt%,焙烧温度为500℃制备的MnOx/γ-Al2O3催化剂具有很高比表面积,1wt%的负载量最接近MnOx在载体γ-Al2O3上的单层负载量。此催化剂应用于等离子体催化反应系统时,其对甲苯的转化率接近100%(能量密度为21J/l),并具有良好的稳定性。
     本文研究了系列过渡金属氧化物催化剂协同等离子体催化氧化甲苯的性能,实验结果表明,这些催化剂性能的高低顺序如下:NiO/γ-Al2O3> MnO2/γ-Al2O3> CeO2/γ-Al2O3>Fe2O3/γ-Al2O3> CuO/γ-Al2O3。其中的NiO/γ-Al2O3展示出最高的活性,原因是其在等离子体空间分解臭氧,促进活性氧原子生成的性能最强。当Ni负载量为5wt%时,其值接近NiO在载体γ-Al2O3上的单层分散量,使得此氧化镍催化剂在等离子体催化系统中对甲苯转化率最高。
     本文研究了气体的相对湿度对不同载体(γ-Al2O3、SBA-15、TiO2)制备的镍基催化剂协同等离子体催化氧化甲苯的性能。结果表明,在干气流条件下,镍基催化剂协同等离子体催化氧化甲苯的活性大小顺序为:NiO/γ-Al2O3> NiO/SBA-15> NiO/TiO2,催化剂活性取决于NiO在三种载体上的分散程度,分散程度越高,催化剂的活性越强。在湿气流条件下,水蒸汽浓度对镍基催化剂的活性有明显的负面影响,水蒸汽浓度越高,催化剂活性下降幅度越大,其主要原因是水分子的存在会湮灭等离子体区的高能电子,减少活性物种数量,从而减少甲苯分子和活性物种之间的反应几率;此外,水分子会在催化剂表面上与甲苯、臭氧等物种形成竞争吸附,由于水分子占据了相当部分的反应活性中心位,导致了催化剂活性的下降。三种催化剂受水蒸气负面影响的大小顺序为:NiO/γ-Al2O3> NiO/SBA-15> NiO/TiO2。H2O-TPD表征结果显示,水蒸气在三种催化剂上的脱附活化能顺序是:NiO/γ-Al2O3> NiO/SBA-15> NiO/TiO2,这与三种催化剂受水蒸气负面影响的大小顺序一致。这揭示了催化剂表面与水蒸气的相互作用越强,催化剂活性受水蒸气的负面影响也就越大。
     本文自行设计了集成DBD等离子体反应器的红外原位池,研究低温等离子体环境下,水蒸气和甲苯在催化剂表面的吸附以及催化剂种类对甲苯降解途径的影响。结果表明:在等离子体催化反应过程中,催化剂表面吸附的水来自于气相中的水蒸气以及甲苯氧化生成的水。甲苯在单独的等离子体场和等离子体催化氧化甲苯反应过程中,都会产生苯甲醛等多种中间产物。有催化剂MnOx/γ-Al2O3或NiO/γ-Al2O3存在,有助于减少等离子体催化反应体系中催化剂表面中间产物产生与累积,其中装载了MnOx/γ-Al2O3,明显减少了反应中间产物的种类,而装载了NiO/γ-Al2O3,明显减少了中间产物的浓度。
     本文研究了MIL-101在等离子体催化系统中分解甲苯的性能。该材料展现了比CrOx/γ-Al2O3更高的氧化甲苯活性,碳平衡和CO2选择性,其原因是MIL-101具有更强的分解臭氧生成活性氧物种的能力。微波辐射合成法制备的MIL-101对甲苯的氧化性能高于溶剂热合成法制备的MIL-101,其原因可能是前者具有更大的比表面积和孔容,有利于等离子体场内活性物种的扩散和反应。在MIL-101上负载MnOx可进一步提高其催化氧化甲苯和分解臭氧性能。在反应器后部增加Ag/γ-Al2O3催化剂,可完全消除反应尾气中残留的臭氧。
Non-thermal plasma technique has unique advantage of rapid oxidation of VOCs at roomtemperature and atmospheric pressure. It is a promising solution to treat VOCs pollution.Nowadays, its two challenges are as follows: one is its low energy efficiency, and the other isthat the performance of the plasma catalysis system would be decreased in the presence ofwater vapor in the gas stream. The key to solve these problems is to develop catalysts withhigh activity and durability to water vapor. In this work, a series of manganese, nickel andchromium-based catalysts were prepared, characterized, and evaluated in plasma under bothdry and moist conditions.
     The effects of preparation conditions for the MnOx/γ-Al2O3catalysts for toluene oxidationwere investigated in a plasma catalysis system (PCS). Results showed that the catalystMnOx/γ-Al2O3with1wt%Mn loading and calcined at500oC had the higher surface area andthe pore volueme compared to the other MnOx/γ-Al2O3catalysts prepared under differentconditions, and the1wt%Mn loading was close to the monolayer dispersion threshold ofMnOx on γ-Al2O3. The toluene conversion of the PCS reached100%at an input energy of21J/l when the MnOx/γ-Al2O3catalyst with1wt%Mn loading and calcined at500oC wasuesed.
     The performance of the PCSs with a series of transition metal oxides supported on γ-Al2O3was further investigated. The activities of the catalysts decreased in the following order:NiO/γ-Al2O3> MnO2/γ-Al2O3> CeO2/γ-Al2O3> Fe2O3/γ-Al2O3> CuO/γ-Al2O3. The NiOcatalyst exhibited better performance than the other catalysts, which can be attributed to itsgenerating more toluene-destroying oxygen species by decomposing ozone. When the nickelloading of the NiO/γ-Al2O3catalyst was5wt%, which was close to the monolayer dispersionthreshold of NiO on γ-Al2O3, it improved the performance of the PCSs for toluene conversiondue to its high activity.
     The effect of water vapor on the performance of a PCS with nickel oxide catalysts loadedon different supports (γ-Al2O3、SBA-15、TiO2) was investigated. The activities of catalysts forthe toluene conversion in dry air decreased in the following order: NiO/γ-Al2O3>NiO/SBA-15> NiO/TiO2, which was dependent on the NiO dispersion on the support. Thehigher NiO dispersion led to the higher activity. The presence of water vapor in the feedstream had a significant negative impact on the performance of the PCS. This reduction inperformance was primarily due to the quenching by water vapor of active species in theplasma and the competitive adsorption of water on the catalyst surfaces. The impact of water vapor on the performance of the catalyst decreased in the following order: NiO/γ-Al2O3>NiO/SBA-15> NiO/TiO2. H2O-TPD results indicated that the desorption activation energiesof water vapor on the catalysts decreased in the following order: NiO/γ-Al2O3>NiO/SBA-15> NiO/TiO2. The catalyst with lower water vapor desorption activation energyhad higher resistance to water vapor.
     A novel in situ FTIR system was constructed and used to obtain in situ FTIR spectra of thereactive surfaces of the catalysts during the plasma catalysis reaction. It revealed that watermolecules adsorbed on the catalyst surfaces came from both water vapor present in the gasstream and from water vapor formed during the oxidation of toluene. The intermediateproducts such as benzaldehyde were formed during the oxidation of toluene in both cases ofthe plasma system and the PCSs. The presence of catalysts MnOx/γ-Al2O3or NiO/γ-Al2O3reduced the formation of these intermediate products. Interestingly, for the PCSs, the loadingof the catalyst MnOx/γ-Al2O3greatly reduced the species of the intermediate products formed,and the loading of the catalyst NiO/γ-Al2O3greatly decreased the amounts of the intermediateproducts formed during the oxidation of toluene.
     Catalytic performance of MIL-101in the PCS for toluene removal was finally studied.Results showed that MIL-101catalyst had higher performance for toluene decomposition thanγ-Al2O3and CrOx/γ-Al2O3. It was attributed to the higher dispersion of CrOx on the MIL-101than on the γ-Al2O3support, leading to a better performance of decomposing ozone toproduce atom oxygen species. The MIL-101prepared by microwave heating method showedbetter performance compared to hydrothermal synthesis method. The loading of MnOx onMIL-101further promoted its performance. When Ag/γ-Al2O3was placed behind the plasmacatalyst reactor, outlet ozone was nearly eliminated and then the toluene oxidation was furtherimproved.
引文
[1]环境保护部,2013年上半年全国环境质量状况[R].北京:环境保护部,2013
    [2]环境保护部,重点区域大气污染防治―十二五‖规划[R].北京:环境保护部,2012
    [3]张新民,薛志钢,孙新章,等,中国大气挥发性有机物控制现状及对策研究[J].环境科学与管理,2004,39(1):16-19
    [4] De Nevers N. Air Pollution Control Engineering[M].2nd Revised edition. New York:McGraw Hill Higher Education.2000:336
    [5]王海林,聂磊,李靖,等,重点行业挥发性有机物排放特征与评估分析[J].科学通报,2012,57:1739-1746
    [6]吴祖良,谢德援,陆豪,等,挥发性有机物处理新技术的研究[J].2012,30(6):76-80
    [7]魏巍,中国人为源挥发性有机化合物的排放现状及未来趋势[D].北京:清华大学,2009
    [8] Zhao P.S., Dong F., Yang Y.D., et al., Characteristics of carbonaceous aerosol in theregion of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Environment,2013,71(7):389-398
    [9] Sun G.J., Yao L., Jiao L., et al., Characterizing PM2.5Pollution of a SubtropicalMetropolitan Area in China [J]. Atmospheric and Climate Sciences,2013,3(1):100-110
    [10]王健礼.催化燃烧去除挥发性有机气体的整体式催化剂[D].四川:四川大学博士学位论文.2007
    [11]栾志强,郝郑平,王喜芹,工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):2476-3486
    [12] Diban N., Urtiaga A., Ortiz I., Recovery of key components of bilberry aroma using acommercial pervaporation membrane [J]. Desalination,2008,224(1-3):34-39
    [13]立本英机,活性炭的应用技术[M].高尚愚译.南京:东南大学出版社,2002
    [14] Peng M., Vane L.M., Liu S.X., Recent advances in VOCs removal from water bypervaporation [J]. Journal of Hazardous Materials,2003,98(1-3):69-90
    [15] Yahaya, G.O., Separation of volatile organic compounds (BTEX) from aqueoussolutions by a composite organophilic hollow fiber membrane-based pervaporation process[J]. Journal of Membrane Science,2008,319(1-2):82-90
    [16] Xiao G.C., Wang X.C., Li D.Z., et al., InVO4-sensitized TiO2photocatalysts for efficientair purification with visible light [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,193(2-3):213-221
    [17]赵化侨.等离子体化学及其应用[J].大学化学,1994,9(4):1-5,8
    [18] Vandenbroucke A.M., Morent R., De Geyter N., et al., Non-thermal plasmas fornon-catalytic and catalytic VOC abatement [J]. Journal of Hazardous Materials,2011,195:30-54
    [19]胡征.等离子体化学基础[J].化工时刊,2000,6:36-40
    [20] Cal M. P., Schluep M., Destruction of Benzene with NonThermal Plasma in DielectricBarrier Discharge Reactors [J]. Environmental Progress,2001,20(3):151-156
    [21] Kim H.H., Nonthermal plasma processing for air-pollution control: a historical review,current issues, and future prospects [J]. Plasma Processes and Polymers,2004,1(2):91-110
    [22] Lee B.Y., Park S.H., Lee S.C., et al., Decomposition of benzeneby using a dischargeplasma-photocatalyst hybrid system [J]. Catalysis Today,2004,93-95:769-776
    [23] Ye Z.L., Zhang Y.N., Li P., et al., Feasibility of destruction of gaseous benzene withdielectric barrier discharge [J]. Journal of Hazardous Materials,2008,156(1-3):356-364
    [24] Kim H.H., Ogata A., Futamura S., Oxygen partial pressure-dependent behavior ofvarious catalysts for the total oxidation of VOCs using cycled system of adsorption andoxygen plasma [J]. Applied Catalysis B: Environmental,2008,79(4):356-367
    [25] Dey G.R., Sharma A., Pushpa K.K., et al., Variable products in dielectric-barrierdischarge assisted benzene oxidation [J]. Journal of Hazardous Materials,2010,178(1-3):693-698
    [26] Lu B., Zhang X., Yu X., et al., Catalytic oxidation of benzene using DBD coronadischarges [J]. Journal of Hazardous Materials,2006,137(1):633-637
    [27] Futamura S., Einaga H., Kabashima H., et al., Synergistic effect of silent dischargeplasma and catalysts on benzene decomposition [J]. Catalysis Today,2004,89(1-2):89-95
    [28] Park D.W., Yoon S.H., Kim G.J., et al., The effect of catalyst on the decomposition ofdilute benzene using dielectric barrier discharge [J]. Journal of Industrial and EngineeringChemistry,2002,8(4):393-398
    [29] Kim H.H., Ogata A., Futamura S., et al., Decomposition of gas-phase benzene usinghybrid systems of a non-thermal plasma and catalysts [J]. Journal of the Korean PhysicalSociety,2004,44(5):1163-1167
    [30] Zhu T., Li J., Jin Y., et al., Decomposition of benzene by non-thermal plasma processing:photocatalyst and ozone effect [J]. International Journal of Environmental Science andTechnology,2008,5(3):375-384
    [31] Ye Z.L., Shen Y., Zhang R.X., et al., Destruction of benzene in an air stream by the outercombined plasma photolysis method [J]. Journal of Physics D: Applied Physics,2008,41(2):025201(7pp)
    [32] Malik M.A., Minamitani Y., Schoenbach K.H., Comparison of catalytic activity ofaluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in aplasmacatalytic reactor [J]. IEEE Transactions on Plasma Science,2005,33(1):50-56
    [33] Satoh K., Matsuzawa T., Itoh H., Decomposition of benzene in a corona discharge atatmospheric pressure [J]. Thin Solid Films,2008,516(13):4423-4429
    [34] Ognier S., Cavadias S., Amouroux J., Aromatic VOC removal by formation ofmicroparticles in pure nitrogen discharge [J]. Plasma Processes and Polymers,2007,4(5):528-536
    [35] Guo Y.F., Ye D.Q., Chen K.F., et al., Humidity effect on toluene decomposition in awire-plate dielectric barrier discharge reactor [J]. Plasma Chemistry and Plasma Processing,2006,26(3):237-249
    [36] Byeon J.H., Park J.H., Jo Y.S., et al., Removal of gaseous toluene and submicron aerosolparticles using a dielectric barrier discharge reactor [J]. Journal of Hazardous Materials,2010,175(1-3):417-422
    [37] Chang C.L, Lin T.S., Decomposition of toluene and acetone in packed dielectric barrierdischarge reactors [J]. Plasma Chemistry and Plasma Processing,2005,25(3):227-243
    [38] Lin C.H., Bai H., Energy effectiveness of nonthermal plasma reactors for toluene vapordestruction [J]. Journal of Environmental Engineering,2001,127(7):648-654
    [39] Delagrange S., Pinard L., Tatibouet J.M., Combination of a non-thermal plasma and acatalyst for toluene removal from air: manganese based oxide catalysts [J]. Applied CatalysisB: Environmental,2006,68(3-4):92-98
    [40] Harling A.M., Glover D.J., Whitehead J.C., et al., Novel method for enhancing thedestruction of environmental pollutants by the combination of multiple plasma discharges [J].Environmental Science&Technology,2008,42(12):4546-4550
    [41] Mista W., Kacprzyk R., Decomposition of toluene using non-thermal plasma reactor atroom temperature [J]. Catalysis Today,2008,137(2-4):345-349
    [42] Schiorlin M., Marotta E., Rea M., et al., Comparison of toluene removal in air atatmospheric conditions by different corona discharges [J]. Environmental Science&Technology,2009,43(24):9386-9392
    [43] Van Durme J., Dewulf J., Sysmans W., et al., Abatement and degradation pathways oftoluene in indoor air by positive coronadischarge [J]. Chemosphere,2007,68(10):1821-1829
    [44] Subrahmanyam Ch., Magureanu M., Laub D., et al., Nonthermal plasma abatement oftrichloroethylene enhanced by photocatalysis [J]. Journal of Physical Chemistry C,2007,111(11):4315-4318
    [45] Magureanu M., Mandache N.B., Parvulescu V.I., et al., Improved performance ofnon-thermal plasma reactor during decomposition of trichloroethylene: optimization of thereactor geometry and introduction of catalytic electrode [J]. Applied Catalysis B:Environmental,2007,74(3-4):270-277
    [46] Magureanu M., Mandache N.B., Hu J.C., et al., Plasma-assisted catalysis total oxidationof trichloroethylene over gold nanoparticles embedded in SBA-15catalysts [J]. AppliedCatalysis B: Environmental,2007,76(3-4):275-281
    [47] Magureanu M., Mandache N.B., Parvulescu V.I., Chlorinated organic compoundsdecomposition in a dielectric barrier discharge [J]. Plasma Chemistry and Plasma Processing,2007,27(6):679-690
    [48] Wang H.C., Li D., Wu Y., et al., Removal of four kinds of volatile organic compoundsmixture in air using silent discharge reactor driven by bipolarpulsed power [J]. Journal ofElectrostatics,2009,67(4):547-553
    [49] Lyulyukin M.N., BesovA.S., VorontsovA.V., The infuence of corona electrodesthickness on the effciency of plasmachemical oxidation of acetone [J]. Plasma Chemistry andPlasma Processing,2011,31(1):23-39
    [50] Zhang X.M., Zhu J.B., Li X.Y., et al., Characteristics of styrene removal with an AC/DCstreamer corona plasma system [J]. IEEE transaction on plasma science,2011,39(6):1482-1488
    [51] Chen H.L., Lee H.M., Chen S.H., et al., Removal of volatile organic compounds bysingle-stage and two-stage plasma catalysis systems: A review of the performanceenhancement mechanisms, current status, and suitable applications [J]. EnvironmentalScience&Technology,2009,43(7):2216-2227
    [52] Van Durme J., Dewulf J., Leys C., et al., Combining non-thermal plasma withheterogeneous catalysis in waste gas treatment: A review [J]. Applied Catalysis B:Environmental,2008,78(3-4):324-333
    [53] Yamamoto T., Mizuno K., Tamori I., et al., Catalysis-assisted plasma technology forcarbon tetrachloride destruction [J]. IEEE Transaction on industry applications,1996,32(1):100-105
    [54] Ogata A., Einaga H., Kabashima H., et al., Effective combination of nonthermal plasmaand catalysts for decomposition of benzene in air [J]. Applied Catalysis B: Environmental,2003,46(1):87-95
    [55] Chen, H. L., Lee, H. M., Chen, S. H., et al., Review of packed-bed plasma reactor forozone generation and air pollution control [J]. Industrial&Engineering Chemistry Research,2008,47(7):2122-2130
    [56] Liu C.J., Wang J.X., Yu K.L., et al., Floating double probe characteristics of non-thermalplasmas in the presence of zeolite [J]. Journal of Electrostatics2002,54(2):149-158
    [57] Kim H.H., Kim J.H., Ogata A., Microscopic observation of discharge plasma on thesurface of zeolites supported metal nanoparticles [J]. Journal of Physics D-Applied Physics,2009,42(13):135210(10pp)
    [58] Holzer F., Roland U., Kopinke F.D., Combination of non-thermal plasma andheterogeneous catalysis for oxidation of volatile organic compounds Part1. Accessibility ofthe intra-particle volume [J]. Applied Catalysis B: Environmental,2002,38(3):163-181
    [59] Chavadej S., Kiatubolpaiboon W., Rangsunvigit P., et al., A combined multistage coronadischarge and catalytic system for gaseous benzene removal [J]. Journal of MolecularCatalysis A: Chemical,2007,263(1-2):128-136
    [60] Roland U., Holzer F., Kopinke F.D., Combination of non-thermal plasma andheterogeneous catalysis for oxidation of volatile organic compounds Part2. Ozonedecomposition and deactivation of γ-Al2O3[J]. Applied Catalysis B: Environmental,2005,58(3-4):217-226
    [61] Yamamoto T., Yang C.L., Plasma desorption and decomposition [A]. IEEE IndustryApplications Conference, Thirty-Third IAS Annual Meeting.1998:1877-1883
    [62] Song Y.H., Kim S.J., Choi K.I, et al., Effects of adsorption and temperature on anonthermal plasma process for removing VOCs [J]. Journal of Electrostatics,2002,55(2):189-201
    [63] Oh, S.M., Kim, H.H., Einaga, H., et al., Zeolite-combined plasma reactor fordecomposition of toluene [J]. Thin Solid Films,2006,506-507:418-422
    [64] Foest R., Kindel E., Ohl A., et al., Non-thermal atmospheric pressure discharges forsurface modification [J]. Plasma Physics and Controlled Fusion,2005,47:525-536
    [65] Guo Y.F., Ye D.Q., Chen K.F., et al., Toluene decomposition using a wire-plate dielectricbarrier discharge reactor with manganese oxide catalyst in situ [J]. Journal of MolecularCatalysis A: Chemical,2006,245(1-2):93-100
    [66] Wallis A.E., Christopher Whitehead J., Zhang K., Plasma-assisted catalysis for thedestruction of CFC-12in atmospheric pressure gas streams using TiO2[J]. Catalysis Letters,2007,113(1-2):29-33
    [67] Wallis A.E., Christopher Whitehead J., Zhang K., The removal of dichloromethane fromatmospheric pressure nitrogen gas streams using plasma-assisted catalysis [J]. AppliedCatalysis B: Environmental,2007,74(1-2):111-116
    [68] Demidyuk V., Christopher Whitehead J., Influence of Temperature on Gas-PhaseToluene Decomposition in Plasma-Catalytic System [J]. Plasma Chemistry and PlasmaProcess,2007,27(1):85-94
    [69] Chang M.B., Lee H.M., Abatement of perfluorocarbons with combined plasma catalysisin atmospheric-pressure environment [J]. Catalysis Today,2004,89(1-2):109-115
    [70] Hammer T., Kappes T., Baldauf M., Plasma catalytic hybrid processes: gas dischargeinitiation and plasma activation of catalytic processes [J]. Catalysis Today,2004,89(1-2):5-14
    [71] Kim H.H., Ogata A., Futamura S., Effect of Different Catalysts on the Decomposition ofVOCs Using Flow-Type Plasma-Driven Catalysis [J]. IEEE transaction on plasma science,2006,34(3):984-995
    [72] Wu X., Ding X., Qin W., et al., Enhanced photo-catalytic activity of TiO2films withdoped La prepared by micro-plasma oxidation method [J]. Journal of Hazardous Materials,2006,137(1):192-197
    [73] Kang M., Ko Y.R., Jeon M.K., et al., Characterization of Bi/TiO2nanometer sizedparticle synthesized by solvothermal method and CH3CHO decomposition in aplasma-photocatalytic system [J]. Journal of Photochemistry and Photobiology A: Chemistry,2005,173(2):128-136
    [74] Demeestere K., Dewulf J., Ohno T., et al., Visible light mediated photocatalyticdegradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide[J]. Applied Catalysis B: Environmental,2005,61(1-2):140-149
    [75] Sun R.B., Xi Z.G., Chao F.H., et al., Decomposition of low-concentration gas-phasetoluene using plasma-driven photocatalyst reactor [J].Atmospheric Environment,2007,41(32):6853-6859
    [76] Sano T., Negishi N., Sakai E., et al., Contributions of photocatalytic/catalytic activitiesof TiO2and γ-Al2O3in nonthermal plasma on oxidation of acetaldehyde and CO [J]. Journalof Molecular Catalysis A: Chemical,2006,245(1-2):235-241
    [77] Kim H.H., Oh S.M., Ogata A., et al., Decomposition of gas-phase benzene usingplasma-driven catalyst (PDC) reactor packed with Ag/TiO2catalyst [J]. Applied catalysis B:Environmental,2005,56(3):213-220
    [78] Kang M., Kim B.J., Cho1S.M., et al., Decomposition of toluene using an atmosphericpressure plasma/TiO2catalytic system [J]. Journal of Molecular Catalysis A: Chemical,2002,180(1-2):125-132
    [79] Nie Y., Wang J.Y., K. Zhong, et al., Role of nitrogen-containing organic compound inplasma exhaust treatment [J]. Catalysis Communications,2007,8(12):2153-2158
    [80] Futamura, S., Zhang, A., Einaga, H., et al., Involvement of catalystmaterials innonthermal plasma chemical processing of hazardous air pollutants [J]. Catalysis Today,2002,72(3-4):259-265
    [81] Einaga, H., Ibusuki, T., Futamura, S., Performance evaluation of a hybrid systemcomprising silent discharge plasma and manganese oxide catalysts for benzene decomposition[J]. IEEE Transactions on Industry Applications,2001,37(5):1476-1482
    [82] Magureanu, M., Mandache, N. B., Gaigneaux, E., et al., Toluene oxidation in aplasma-catalytic system [J]. Journal of Applied Physics,2006,99(12):123301
    [83] Chae J.O., Demidiouk V., Yeulash M., et al., Experimental study for indoor air controlby plasma–catalyst hybrid system [J]. IEEE Transactions on Plasma Science,2004,32(2):493-497
    [84] Kim H.H., Ogata A., Futamura S., Atmospheric plasma-driven catalysis for the lowtemperature decomposition of dilute aromatic compounds [J]. Journal of Physics D: AppliedPhysics,2005,38(8):1292-1300
    [85] Jiang C.Q., Mohamed A.A.H., Stark R.H., et al., Removal of volatile organiccompounds in atmospheric pressure air by means of direct current glow discharges [J]. IEEETransactions on Plasma Science,2005,33(4):1416-1425
    [86] Subrahmanyam Ch., Renken A., Kiwi-Minsker L., Novel catalytic non-thermal plasmareactor for the abatement of VOCs [J]. Chemical Engineering Journal,2007,134(1-3):78-83
    [87] Subrahmanyam Ch., Renken A., Kiwi-Minsker L., Catalytic non-thermal plasma reactorfor abatement of toluene [J]. Chemical Engineering Journal,2010,160(2):677-682
    [88] Huang H.B., Ye D.Q., Fu M.L., et al., Contribution of UV light to the decomposition oftoluene in dielectric barrier discharge plasma/photocatalysis system [J]. Plasma Chemistryand Plasma Processing,2007,27(5):577-588
    [89] Zhu T., Li J., Liang W.J., Jin Y.Q., Synergistic effect of catalyst for oxidation removal oftoluene [J]. Journal of Hazardous Materials,2008,165(1-3):1258-1260
    [90] Kirkpatrick M.J., Finney W.C., Locke B.R., Plasma–catalyst interactions in thetreatment of volatile organic compounds and NOx with pulsed corona discharge andreticulated vitreous carbon Pt/Rh-coated electrodes [J]. Catalysis Today,2004,89(1-2):117-126
    [91] Malik M.A., Jiang X.Z., Catalyst assisted destruction of trichloroethylene and toluene incorona discharges [J]. Journal of Environmental Sciences,2000,12:7-11
    [92] Li D.A., Yakushiji D., Kanazawa S., et al., Decomposition of toluene by streamer coronadischarge with catalyst [J]. Journal of Electrostatics,2002,55(3-4):311-319
    [93] Van Durme J., Dewulf J., Sysmans W., et al., Effcient toluene abatement in indoor airby a plasma catalytic hybrid system [J]. Applied Catalysis B: Environmental,2007,74(1-2):161-169
    [94] Oda T., Yamaji K., Takahashi T., Decomposition of dilute trichloroethylene bynonthermal plasma processing—gas fow rate, catalyst, and ozone effect [J]. IEEETransactions on Industry Applications,2004,40(2):430-436
    [95] Oda T., Takahahshi T., Yamaji K., Nonthermal plasma processing for dilute VOCsdecomposition [J]. IEEE Transactions on Industry Applications,2002,38(3):873-878
    [96] Oda T., Takahashi T., Yamaji K., TCE decomposition by the non-thermal plasma processconcerning ozone effect [J]. IEEE Transaction on Industry Applications,2004,40(5):1249-1256
    [97] Kim H.H., Kobara H., Ogata A., et al., Comparative assessment of different nonthermalplasma reactors on energy efficiency and aerosol formation from the decomposition ofgas-phase benzene [J]. IEEE Transactions on Industry Applications,2005,41(1):206-214
    [98] Than Quoc An H., Pham Huu T., Le Van T., et al., Application of atmospheric nonthermal plasma-catalysis hybrid system for air pollution control: Toluene removal [J].Catalysis Today,2011,176(1):474-477
    [99] Hayashi K., Yasui H., Tanaka M., et al., Temperature dependence of toluenedecomposition behavior in the discharge-catalyst hybrid reactor [J]. IEEE Transactions onIndustry Applications,2009,45(5):1553-1558
    [100] Li J., Bai S.P., Shi X.C., et al., Effects of temperature on benzene oxidation indielectric barrier discharges [J]. Plasma Chemistry and Plasma Processing,2008,28(1):39-48
    [101] Aubry O., Cormier J.M., Improvement of the diluted propane efficiency treatmentusing a non-thermal plasma [J]. Plasma Chemistry and Plasma Processing,2009,29(1):13-25
    [102] Blin-Simiand N., Pasquiers S., Jorand F., et al., Removal of formaldehyde in nitrogenand in dry air by a DBD: importance of temperature and role of nitrogen metastable states [J].Journal of Physics D: Applied Physics,2009,42(12):122003(5pp)
    [103] Yu Q.W., Zhao M., Liu Z.M., et al., Catalytic Decomposition of Ozone in Ground Airby Manganese-Based Monolith Catalysts [J]. Chinese Journal of Catalysis,2009,30(1):1-3
    [104] Maciuca A., Batiot-Dupeyrat C., Tatibou t J.M., Synergetic effect by couplingphotocatalysis with plasma for low VOCs concentration removal from air [J]. AppliedCatalysis B: Environmental,2012,125:432-438
    [105] Karuppiah J., Karvembu R., Subrahmanyam Ch., The catalytic effect of MnOx andCoOx on the decomposition of nitrobenzene in a non-thermal plasma reactor [J]. ChemicalEngineering Journal,2012,180:39-45
    [106] Karuppiaha J., Linga Reddya E., Manoj Kumar Reddya P., et al., Abatement ofmixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor [J].Journal of Hazardous Materials,2012,237-238:283-289
    [107] Ono R., Oda T., Measurement of hydroxyl radicals in pulsed corona discharge [J].Journal of Electrostatics,2002,55(3-4),333-342
    [108] Falkenstein Z., Coogan J.J., Microdischarge behaviour in the silent discharge ofnitrogen-oxygen and water-air mixtures [J]. Journal of Physics D: Applied Physics,1997,30(5):817-825
    [109] Sarani, A. Nikiforov A.Y., Leys C., Atmospheric pressure plasma jet in Ar andAr/H2O mixtures: Optical emission spectroscopy and temperature measurements [J]. Physicsof Plasma,2010,17(6):063504(8pp)
    [110] Fridman A., Plasma Chemistry [M]. New York: Cambridge University,2008
    [111] Vandenbroucke A.M., Vanderstricht A., Nguyen Dinh M.T.,et al., Non-thermalplasma abatement of trichloroethylene with DC corona discharges [J]. WIT Transactions onEcology and the Environment,2011,147:353-361
    [112] Oh S.M., Kim H.H., Ogata A., et al., Effect of zeolite in surface discharge plasma onthe decomposition of toluene [J]. Catalysis Letters,2005,99(1-2):101-104
    [113] Ogata A., Shintani N., Yamanouchi K., et al., Effect of Water Vapor on BenzeneDecomposition Using a Nonthermal-Discharge Plasma Reactor [J]. Plasma Chemistry andPlasma Processing,2000,20(4):453-467
    [114] Huang H.B., Ye D.Q., Leung D.Y.C., et al., Byproducts and pathways of toluenedestruction via plasma-catalysis [J]. Journal of Molecular Catalysis A: Chemical,2011,336(1-2):87-93
    [115] Demidiouk, V., Moon, S.I., Chae, J.O., Toluene and butyl acetate removal from air byplasma-catalytic system [J]. Catalysis Communications,2003,4(2):51-56
    [116] Nair S.A., Nozaki T., Okazaki K., In Situ Fourier Transform Infrared (FTIR) Study ofNonthermal-Plasma-Assisted Methane Oxidative Conversion [J]. Industrial&EngineeringChemistry Research2007,46(11):3486-3496
    [117] Rivallan M., FourréE., Aiello S., et al., Insights into the Mechanisms of IsopropanolConversion on γ-Al2O3by Dielectric Barrier Discharge [J]. Plasma Processes and Polymers,2012,9(9):850-854
    [118]梁文俊,李坚,李依丽,等,挥发性有机物低温等离子体降解的影响参数研究[J].环境工程学报,2009,3(6):1079-1083
    [119]金心宇,张昱,姜玄珍,等,电极材料对脉冲等离子体降解有机废气的影响分析[J].中国环境科学,1998,18(3):213-217
    [120] Kikuchi R., Maeda S., Sasaki K., et al., Low-temperature methane oxidation overoxide-supported Pd catalysts: Inhibitory effect of water vapor [J]. Applied Catalysis A:General,2002,232(1-2):23-28
    [121] Li X., Wang L.J., Xia Q.B., et al., Catalytic oxidation of toluene over copper andmanganese based catalysts: Effect of water vapor [J]. Catalysis Communications,2011,14(1):15-19
    [122] Subrahmanyam Ch., Magureanu M., Renken A., et al., Catalytic abatement ofvolatile organic compounds assisted by non-thermal plasma Part1. A novel dielectric barrierdischarge reactor containing catalytic electrode [J]. Applied Catalysis B: Environmental,2006,65(1-2):150-156
    [123] Barrett E.P., Joyner L.G., Halenda P.P., The determination of pore volume and areadistributions in porous substances. I. Computations from nitrogen isotherms [J]. Journal of theAmerican Chemical Society,1951,73(1):373-380
    [124] Storck S., Bretinger H., Maier W.F., Characterization of micro-and mesoporoussolids by physisorption methods and pore-size analysis [J]. Applied Catalysis A: General,1998,174(1-2):137-146
    [125]辛勤.固体催化剂研究方法-下[M].北京:科学出版社,2004:497-534
    [126]张婉静,固体催化剂的研究方法[M]-第十章多晶X射线衍射(上),石油化工.2001,30(7):571-736
    [127]黄仲涛,工业催化剂设计与开发[M].广州:华南理工大学出版社,1991
    [128] Jung C.R., Han J., Nam S.W., et al. Selective oxidation of CO over CuO-CeO2catalyst: effect of calcination temperature [J]. Catalysis Today,2004,93-95:183-190
    [129] Bordoloi A., Halligudi S.B., Studies in structural characterization and correlationwith the catalytic activity of an efficient and stable WOx/SBA-15nanocomposite catalyst [J].Journal of Catalysis,2008,257(2):283-290
    [130] Gennequin C., Lamallem M., Cousin R., Catalytic oxidation of VOCs on Au/Ce-Ti-O[J]. Catalysis Today,2007,122(3-4):301-306
    [131]潘晓民,谢有畅,X射线相定量法测单层分散阈值[J].大学化学,2001,16(3):36-39
    [132] Xie Y.C., Tang Y.Q., Spontaneous Monolayer Dispersion of Oxides and Salts ontoSurfaces of Supports: Applications to Heterogeneous Catalysis [J]. Advances in Catalysis,1990,37:1-47
    [133]潘红艳.水蒸气对负载型Cu基催化剂催化燃烧苯乙烯性能的研究[D].广东:华南理工大学博士学位论文.2009
    [134] Carroni R., Schmidt V., Griffin T., Catalytic combustion for power generation [J].Catalysis Today,2002,75(1-4):287-295
    [135] Sing K.S.W., Everett D.H., Haul R.A.W., et al., Reporting Physisorption Data forGas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity[J]. Pure&Applied Chemistry,1985,57(4):603-619
    [136] Ogata A., Ito D., Mizuno K., et al., Removal of Dilute Benzene Using aZeolite-Hybrid Plasma Reactor [J]. IEEE Transaction on Industry Applications,2001,37(4):959-964
    [137] Kapteijn F., van Langeveld A.D., Moulijn J.A., et al., Alumina-Supported ManganeseOxide Catalysts: I. Characterization: Effect of Precursor and Loading [J]. Journal of Catalysis,1994,150(1):94-104
    [138] Hu J.Y., Chu W., Shi L.M., Effects of carrier and Mn loading on supportedmanganese oxide catalysts for catalytic combustion of methane [J]. Journal of Natural GasChemistry,2008,17(2):159-164
    [139] álvarez-Galván M.C., Pawelec B., de la Pe a O’She V.A., et al.,Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxidecatalyst [J]. Applied Catalysis B: Environmental,2004,51(2):83-91
    [140]朱月香,杨俊英,严洪杰,锰氧化物在载体上状态的研究[J].天然气化工,1993,18(2):6-9
    [141] Tang X.F., Li J.H., Hao J.M., Significant enhancement of catalytic activities ofmanganese oxide octahedral molecular sieve by marginal amount of doping vanadium [J].Catalysis Communications,2010,11(10):871-875
    [142] Gao J., Guo J.Z., Liang D., et al., Production of syngas via autothermal reforming ofmethane in a fluidized-bed reactor over the combined CeO2–ZrO2/SiO2supported Ni catalysts[J]. International Journal of Hydrogen Energy,2008,33(20):5493-5500
    [143]李湘.二苯并呋喃在活性炭上吸附的相平衡和动力学[D].广东:华南理工大学博士学位论文.2004
    [144] Wang H.J., Li Z., Xi H.X., et al., Estimation of Activation energy of Desorption ofn-Hexane on Activated Carbons by TPD Technique [J]. Adsorption Science and Technology,2003,121(2):125-132
    [145] NIST, Chemical Kinetics Database on the Web Standard Reference Database17,Version7.0(Web Version), Release1.6.5,2012http://kinetics.nist.gov/kinetics/
    [146] Harling A.M., Glover D.J., Whitehead J.C., et al., The role of ozone in theplasma-catalytic destruction of environmental pollutants [J]. Applied Catalysis B:Environmental,2009,90(1-2):157-161
    [147] Magureanu M., Mandache N.B., Eloy P., et al., Plasma-assisted catalysis for volatileorganic compounds abatement [J]. Applied Catalysis B: Environmental,2005,61(1-2):12-20
    [148] Liang W.J., Li J., Li J.X., et al., Formaldehyde removal from gas streams by meansof NaNO2dielectric barrier discharge plasma [J]. Journal of Hazardous Materials,2010,175(1-3):1090-1095
    [149] Huang H.B., Ye D.Q., Leung Dennis Y.C., Plasma-Driven Catalysis Process forToluene Abatement: Effect of Water Vapor [J]. IEEE Transactions on Plasma Science,2011,39(1):576-580
    [150] Fan X., Zhu T.L., WanY.J., et al., Effects of humidity on the plasma-catalytic removalof low-concentration BTX in air [J]. Journal of Hazardous Materials,2010,180(1-3),616-621
    [151] Molina R., Poncelet G.,-Alumina-supported nickel catalystsr pepared from rnickelacetylacetonate: A TPR study [J]. Journal of Catalysis,1998,173(2):257-267
    [152] Akande A.J., Idem R.O., Dalai A.K., Synthesis, characterization and performanceevaluation of Ni/Al2O3catalysts for reforming of crude ethanol for hydrogen production[J].Applied Catalysis A: General,2005,287(2):159-175
    [153] Yu X.F., Wu N.Z., Xie Y.C., et al., A monolayer dispersion study of titania-supportedcopper oxide, Journal of Materials Chemistry,2000,10(7):1629-1634
    [154] van Steen E., Viljoen E.L., van de Loosdrecht J., et al., Evaluation ofmolybdenum-modified alumina support materials for Co-based Fischer-Tropsch catalysts,Applied Catalysis A: General,2008,335(1):56-63
    [155] Kim K.J., Kim J.H., Son Y.S., et al., Advanced oxidation of aromatic VOCs using apilot system with electron beam-catalyst coupling [J]. Radiation Physics and Chemistry,2012,85(5):561-565
    [156] Li C.P., Chen Y.W., Temperature-programmed-reduction studies of nickeloxide/alumina catalysts: effects of the preparation method [J]. Thermochimica Acta,1995,256(2):457-465
    [157] Wang N., Chu W., Zhang T., et al., Synthesis, characterization and catalyticperformances of Ce-SBA-15supported nickel catalysts for methane dry reforming tohydrogen and syngas [J]. International Journal of Hydrogen Energy,2012,37(1):19-30
    [158] Liu D.P., Quek X.Y., Adeline Wah H.H., et al., Carbon dioxide reforming of methaneover nickel-grafted SBA-15and MCM-41catalysts [J]. Catalysis Today,2009,148(3-4):243-250
    [159] Xu Y., Ma J.Q., Xu Y.F., et al., Nickel nanoparticles embedded in the framework ofmesoporous TiO2: Efficient and highly stable catalysts for hydrodechlorination ofchlorobenzene [J]. Applied Catalysis A: General,2012,413-414:350-357
    [160] Tanksale A., Beltramini J.N., Dumesic J.A., et al., Effect of Pt and Pd promoter on Nisupported catalysts—A TPR/TPO/TPD and microcalorimetry study [J]. Journal of Catalysis,2008,258(2):366-377
    [161] Guo Y.F., Liao X.B., He J.H., et al., Effect of manganese oxide catalyst on thedielectric barrier discharge decomposition of toluene [J]. Catalysis Today,2010,153(3-4):176-183
    [162] Chen J.H., Wang P.X., Effect of Relative Humidity on Electron Distribution andOzone Production by DC Coronas in Air [J]. IEEE Transactions on Plasma Science.2005,33(2),808-812
    [163] NASA Panel for Data Evaluation, Chemical Kinetics and Photochemical Data forUse in Atmospheric Studies, Evaluation Number17,2010, http://jpldataeval.jpl.nasa.gov/
    [164] L X.Y.i, Zou X.J., Qu Z.P., et al., Photocatalytic degradation of gaseous toluene overAg-doping TiO2nanotube powder prepared by anodization coupled with impregnationmethod, Chemosphere,2011,83(5):674-679
    [165] Mekhamer W.K., Energy storage through adsorption and desorption of water vapourin raw Saudi bentonite [J]. Arabian Journal of Chemistry. In Press
    [166] Aristizábal B.H, de Correa C.M., Serykh A.I., et al., In situ FTIR study of theadsorption and reaction of ortho-dichlorobenzene over Pd-promoted Co-HMOR [J].Microporous and Mesoporous Materials,2008,112(1-3):432-440
    [167] Al-Abadle H.A.h, Grassian V.H., FT-IR Study of Water Adsorption on AluminumOxide Surfaces [J]. Langmuir,2003,19(2):341-347
    [168] Hauchecornea B., Terrens D., Verbruggen S., et al., Elucidating the photocatalyticdegradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions [J].Applied Catalysis B: Environmental,2011,106(3-4):630-638
    [169] Nagao M., Suda Y., Adsorption of benzene, toluene, and chlorobenzene on titaniumdioxide [J]. Langmuir,1989,5(1):42-47
    [170] Gammard A., Babaot O., Jousseaucne B., et al., Conductive F-doped tin dioxidesol–gel materials from fuorinated diketonate tin (IV) complexes. Characterization andthermolytic behavior [J]. Chemistry of Materials,2000,12(11):3419-3426
    [171]翁诗甫,傅里叶变换红外光谱分析[M],第二版,北京:化学工业出版社.2010
    [172] Nozak T.i, Muto N., Kado S., et al., Dissociation of vibrationally excited methane onNi catalyst part1Application to methane steam reforming [J]. Catalysis Today,2004,89(1-2):57-65
    [173] Kumar G., Nisha N., Mageswari S., et al., Synthesis, characterization of poly(4-benzyloxy phenylmethacrylate) and its copolymer with butyl methacrylate and determina-tion of monomer reactivity ratios [J].Journal of Polymer Research.2011,18(2):241-250
    [174] Xu J.Z, Chen T., Yang C.L. et al., Isothermal Crystallization of Poly(l-lactide)Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study[J].Macromolecules,2010,43(11):5000-5008
    [175] Andrews L., Robert C., Spiker J., Argon matrix Raman and infrared spectra andvibrational analysis of ozone and the oxygen-18substituted ozone molecules [J].The Journalof Physical Chemistry,1972,76(22):3208-3213
    [176] Medda S.K., Kundu D., De G., Inorganic–organic hybrid coatings on polycarbonate.:Spectroscopic studies on the simultaneous polymerizations of methacrylate and silicanetworks [J]. Journal of Non-Crystalline Solids,2003,318(1-2):149-156
    [177] Lehmann J., Kinyang J., Solomon D., Organic matter stabilization in soil microag-gregates: implications from spatial heterogeneity of organic carbon contents and carbon forms[J].Biogeochemistry,2007,85(1):45-57
    [178] Popova G.Y., Andrushkevich T.V., Chesalov Y.A., et al., Transient response study ofthe formaldehyde oxidation to formic acid on V–Ti–O catalyst: FTIR and pulse study [J].Journal of Molecular Catalysis A: Chemical,2007,268(1-2):251-256
    [179] Mihaylov M., Lagunov O., Ivanova E., et al., Determination of Polycarbonyl Specieson Nickel-Containing Catalysts by Adsorption of CO Isotopic Mixtures [J].Topics in Catalysis,2011,54(5-7):308-317
    [180] Dozov I., Kirov N., Fontana M.P., Determination of reorientational correlationfunctions in ordered fluids: IR absorption spectroscopy [J]. Journal of Chemical Physics,1984,81(6):2585-2591
    [181] Budevska B.O., Minimization of optical non-linearities in Fourier transform-infraredmicrospectroscopic imaging [J].Vibrational Spectroscopy,2000,24(1):37-45
    [182] Qi C.X., Akita T., Okumura M., et al., Epoxidation of propylene over gold catalystssupported on non-porous silica [J]. Applied Catalysis A: General,2001,218(1-2):81-89
    [183] Choi J., Rubner M.F., Influence of the Degree of Ionization on Weak PolyelectrolyteMultilayer Assembly [J]. Macromolecules,2005,38(1):116-124
    [184] Zenon S., FT-IR studies on coke formation over low loaded Mo catalyst supported onAl2O3[J]. Reaction Kinetics and Catalysis Letters,2005,84(2):263-270
    [185] Tuazon E.C., Graham R.A., Winer A.M., et al., A kilometer pathlength fourier-transform infrared system for the study of trace pollutants in ambient and syntheticatmospheres [J]. Atmospheric Environment,1978,12(4):865-875
    [186] Zafeiropoulos N.E., Vickers P.E., Baillie C.A., et al., An experimental investigationof modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR [J]. Journal ofMaterials Science,2003,38(19):3903-3914
    [187] Herron J. T., Modeling Studies of the Formation and Destruction of NO in PulsedBarrier Discharges in Nitrogen and Air [J]. Plasma Chemistry and Plasma Processing,2001,21(4):581
    [188] Ferey G., Mellot-Draznieks C., Serre C., et al., A Chromium Terephthalate-BasedSolid Unusually Large Pore Volumes and Surface Area [J]. Science,2005,309(5743):2040-2042
    [189] Küsgens, P., Rose, M., Senkovska, I., et al., Characterization of metal-organicframeworks bywater adsorption [J]. Microporous and Mesoporous Materials,2009,120(3):325-330
    [190] Zhao, Z.X., Li, X.M., Huang, S.S., et al., Adsorption and Diffusion of Benzene onChromium-Based Metal Organic Framework MIL-101Synthesized by Microwave Irradiation[J]. Industrial&Engineering Chemistry Research,2011,50(4):2254-2261
    [191] Henschel A., Gedrich K., Kraehnert R., et al., Catalytic properties of MIL-101[J].Chemical Communications,2008,35:4192-4194
    [192] Maksimchuk N.V., Timofeeva M.N., Melgunov M.S., et al., Heterogeneous selectiveoxidation catalysts based on coordination polymer MIL-101and transition metal-substitutedpolyoxometalates [J]. Journal of Catalysis,2008,257(2):315-323
    [193] Holzer F., Kopinke F.D., Roland U., Infuence of ferroelectric materials and catalystson the performance of non-thermal plasma (NTP) for the removal of air pollutants [J]. PlasmaChemistry and Plasma Processing,2005,25(6):595-611
    [194] Dhandapani B., Oyama S.T., Gas phase ozone decomposition catalysts [J]. AppliedCatalysis B: Environmental,1997,11(2):129-166
    [195] Jhung S.H., Lee J.H., Yoon J.W., et al., Microwave Synthesis of ChromiumTerephthalate MIL-101and Its Benzene Sorption Abilit [J]. advanced materials,2007,19(1):121-124
    [196] Kumar N., Konova P., Naydenov A., et al., Ag-modifed H-Beta, H-MCM-41and SiO2:Infuence of support, acidity and Ag content in ozone decomposition at ambient temperature,Catalysis Today,2007,119(1-4):34-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700