陶瓷粉体表面改性及其树脂基复合材料的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷/树脂基复合材料综合了有机材料的优点(质轻、耐冲击、韧性好、易加工等)和无机材料的特性(高强高硬度、热稳定性好、抗腐蚀等)。因此,陶瓷/树脂基复合材料受到了科学家的广泛关注,应用于许多领域。
     在本课题中,详细地研究了三种复合材料体系:纳米Si02/拼混树脂复合材料、纳米Al_2O_3/拼混树脂复合材料和TiB_2-Al_2O_3/拼混树脂复合材料的制备方法、固化工艺和复合材料的力学及热性能;同时,还研究了三种粒子的表面改性对复合材料结构和性能的影响。
     首先,采用偶联剂γ-氨丙基三乙基硅烷(KH550)、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH560)和γ-甲基丙烯酰氧丙基三甲基硅烷(KH570)对纳米SiO_2表面改性,采用透射电子显微镜(TEM)、热失重分析仪(TGA)和冲蚀试验机考察了不同偶联剂的改性效果,包括对复合材料的形貌、耐冲蚀性和热稳定性的影响。结果发现,选择KH560对纳米SiO_2表面改性可获得最好的基体分散性和热稳定性。并采用KH550和KH560对TiB_2-Al_2O_3表面改性,利用扫描电子显微镜(SEM)和粒度分析仪比较了两种偶联剂的改性效果,选择KH560作为TiB_2-Al_2O_3的表面处理剂。
     其后,通过对凝胶时间的考察,研究了加入纳米粒子(SiO_2和Al_2O_3)后对固化工艺的影响。发现,第一,纳米粒子的加入可以减少固化剂用量,降低固化温度。第二,少量纳米粒子的加入会延缓固化反应速度,导致复合材料凝胶时间较纯树脂变长;而随着纳米粒子的含量增大,羟基增多,复合材料凝胶时间较纯树脂缩短,固化速度加快。第三,与纳米Al_2O_3相比,纳米SiO_2的反应活性更高,制备得到的复合材料凝胶时间更短。第四,探讨了偶联剂改性的反应机理。
     之后,采用粒径分析仪和TEM,观察了改性前后三种陶瓷粉体的水合粒子和两种纳米粒子在拼混树脂基体中的分散性。结果表明,改性后粒子的水合粒径较小,即表面改性改善了粒子在溶剂中的分散性。从改性前后的纳米Al_2O_3/拼混树脂复合材料TEM照片中可以看出,改性改善了粒子在树脂基体中的分散性。
     最后,研究了复合材料的各种力学性能和耐热性。从测试结果可知,改性后粒子对复合材料的弯曲性能起到增强作用。其中在相同粒子含量(3%)条件下,TiB_2-Al_2O_3粉体对于复合材料的弯曲性能增强效果最为明显。从正冲(90度)和斜角冲击(45度)考察了复合材料的耐冲蚀性能,发现纳米粒子的加入改善了复合材料的冲蚀性能,且纳米Al_2O_3在增强材料耐冲蚀性能方面胜过纳米SiO_2。TGA试验的结果也表明,改性纳米粒子的加入也改善了复合材料的热稳定性。
Organic-inorganic hybrid composites combine both the advantages of organic polymer(lightweight,good impact resistance,flexibility and good process ability,etc.) and inorganic materials(high mechanical strength,good chemical resistance,thermal stability,etc.).Thus,this kind of composites attracts more and more interests of scientists,and has been widely applied in various fields.
     In this study,three kinds of organic-inorganic hybrid composites were prepared, which included curing technology,nanosilica/resin composites,nanoalumina/resin composites and TiB_2-Al_2O_3/resin composites.They were studied in detail,including the preparation methods,mechanical and thermal properties.Meanwhile,the effects of surface modification on the structure and properties were studied.
     Firstly,Three kinds of coupling agents were used to modify the surface of the silica, and they were(γ-aminopropyl) triethoxysilane(KH550),(γ-glycidoxypropyl) trimethoxysilane(KH560),(γ-Methacryloxypropyl)trimethoxysilane(KH570), respectively.Some characterization and analysis of the nanosilica treated by different kinds of coupling agents and the microstructure and heat resistant property of composites were performed by FTIR,Transmission electron micrograph(TEM),TGA and erosion testing machine.The results showed that the nanosilica treated by KH560 got the best dispersion in the matrix and thermal stability.
     Secondly,influences of inorganic nano-fillers(silica and alumina) on curing process were studied by gel times.The results displayed that the fill of nano-particles reduced the amount of curing agent and curing temperature.Nano-particles can be reduced by adding the amount of curing agent,lower curing temperature.
     The gel times of resins containing few nano-fillers were longer than those of corresponding unfilled resin.With the increase of content of the nano-fillers,the hydroxy functional groups increase,and the gel times of composites were shorter than those of corresponding unfilled resin.Compared with nano-alumina,nanosilica has the higher reactivity and a shorter gel times.The mechanisms by which the inorganic fillers make the gel times of resin longer were studied.
     Thirdly,particle size analyzer and TEM were used to investigate the particle size dispersions of three inorganic particles(nanosilica,nano-alumina and TiB_2-Al_2O_3) and the dispersions of two nano-fillers in the resin matrix.The results displayed that after surface modification,hydration sizes of particles were smaller,that is,surface modification improved the dispersion of particles in the solvent.Seen from the TEM photographs of nano-alumina/resin composites and surface treated nano-alumina/resin composites,surface modification also improved the dispersion of particles in the resin matrix.
     At last,the mechanical properties and thermal properties were inspected.The bending test showed that after modification,nano-fillers played a strengthened role to composites.When the particle content was three percent,the enhancing effect of borides was best in the three fillers.The erosion resistance properties were tested,and the impact angles were 90 or 45 degrees.The result displayed that nano-fillers improved the erosion properties of resin,and nano-alumina showed erosion resistant properties better than nano-silica.TGA results showed that nano-fillers improved thermal stability of resin.
引文
[1]Nocun M,Leja E,Bugajsli W.Microstructure and optical properties of methylmethacrylate-modified silica hybrid glasses and thin film[J].Materials Science,2003,21:471-479.
    [2]Ni Y,Zheng S,Nic K.Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes[J].Polymer,2004,45:5557-5568.
    [3]Bauer F,Glasel H,Hartmann E,et al.Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and scalants[J].International Journal of Adhesion &Adhesives,2004,24:519-522.
    [4]Klukowska A,Posset U,Schottner G,et al.Photochromic hybrid sol gel coatings:Preparation,pproperties,and applications[J].Materials Science,2002,20:95-104.
    [5]倪克钒,单国荣,翁志学.制备有机-无机杂化纳米材料的研究进展[J].高分子通报,2006,(11):58-62.
    [6]Yang-Yen Yu,Ching-Yi Chen,Wen-Chang Chen.Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica[J].Polymer,2003,44(3):593-601.
    [7]董秀芳.制备有机-无机纳米复合材料方法研讨[J].华北工学院学报,2004,25(4):293-296.
    [8]Novak B M,Auerbach D,Verrier C.Low-density,mutually interpenetrating organicinorganic composite materials via supercritical drying techniques[J].Chemistry of Materials,1994,6(3):282-286.
    [9]Liu Y J,DeGroot D C,Schindler J L,et al.Intercalation of poly(ethylene oxide) in vanadium pentoxide(V_2O_5) xerogel[J].Chemistry of Materials,1991,3:992-994.
    [10]刘秀华,邓义,傅依备.聚合物基纳米复合材料研究的进展[J].化学工程师,2004,(9):22-25.
    [11]Luca Valentini,V Navastrello,I Armentano,et al.Synthesis and electrical properties of CdS langmuir-blodgett multilayers nanoparticles on self-assembled carbon nanotubes[J].Chemical Physics Letters,2004,392(1-3):214-219.
    [12]X Mo,C Y Wang,M You,et al.A novel ultraviolet-irradistion route to CdS nanocrystallites with different morphologies[J].Materials Research Bulletin,2001,36:2277-2282.
    [13]Xin chen,Zhen-Tao Yu,Jie-Sheng Chen,et al.In situ hydrothermal preparation of CdS/polymer composite particles with cadmium containing polymer latexes[J].Materials Letters,2004,58(3-4):384-386.
    [14]Paul V Braun,Samuel I Stupp.CdS Mineralizatin of hexagonal,lamellar and cubic lyotropic liquid crystals[J].Materials Research Bulletin,1999,34(3):463-469.
    [15]R S Singh,V K Rangari,S Sanagapalli,et al.Nanostructured CdTe,CdS and TiO_2 for thin film solar cell applications[J].Solar Energy Materials and Solar Cells,2004,82(1-2):315-330.
    [16]张勇,韩永军.微波辐射一步合成纳米硫化镉/共聚物复合材料化学研究[J].2002,13(4):10-12.
    [17]郭军,雷坚志,有机无机杂化材料研究新进展,湖南科技学院学报[J].2005,26(11):89-93.
    [18]柯昌美,汪厚植,赵惠忠,等.聚合物基有机无机杂化材料的制备研究[J].武汉科技大学学报(自然科学版),2008,28(3):231-234.
    [19]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社12001:140-144.
    [20]严冬生,纳米材料的合成与制备[J].无机材料学报,1995,1:1-6.
    [21]张喜梅,李琳,郭祀远,陈玲.用溶胶凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):33-37.
    [22]张鑫.纳米TiO_2复合涂料的制备及性能研究[D].南京:南京工业大学,2002.
    [23]刘竞超,李小兵,张华林,等.纳米二氧化硅增强增韧环氧树脂的研究[J].胶体与聚合物,2000,18(4):15-17.
    [24]戚栋明,包永忠,黄志明,等.ACR/纳米SiO_2复合粒子的合成及其对PVC的增韧作用[J].聚氯乙烯,2006(4):6-9.
    [25]张洪杰,符连社,林君,等.稀土/高分子杂化发光材料的研究[J].发光学报,2002,23(2):228-232.
    [26]赵梓年,许昆鹏,文志红.PU/PVC共混超滤膜的制备及性能[J].塑料科技,2005(6):20-23.
    [27]李莉,郭伊荇,杨宇,等.多酸-有机胺-氧化硅杂化催化剂的制备、表征及光催化性能研究[J].分子科学学报,2003,19(1):33-39.
    [28]Jang S H,Han M G,Im S S.Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol-gel process[J].Synthetic Metals,2000,110:17-23.
    [29]Chio S S,Chu B Y,Hwang D S.Preparation and characterization of polyaniline nanofiber webs by template reaction with electrospun silica nanofibers[J].Thin Solid Films,2005,477:233-239.
    [30]C.J.Huang,S.Y.Fu,Y.H.Zhang,et al.Cryogenic properties of SiO_2/epoxy nanocomposites [J].Cryogenics,2005,45:450-454.
    [31]Ming-qiu Zhang,Min-zhi Rong,Shu-li Yu,et al.Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites[J].Wear,2002,253:1086-1093.
    [32]Smit R J M,Brekelmans W A M,Meijer H E H.Predictive modelling of the properties and toughness of polymeric materials Ⅱ:Effect of microstructural properties on the macroscopic response of rubber-modified polymers[J].Journal of Materials Science,2000,35:2869-2879.
    [33]AJJI A,CHAPLEAU N.Structure and properties of impact modified polyethylene terephthalate[J].Journal of Materials Science,2002,37:3893-3901.
    [34]Douce J,Boilot J P,BITEAU J,et al.Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings[J].Thin Solid Films,2004,466:114-122.
    [35]Elodie B L,Jacques L.Encapsulation of inorganic particles by dispersion polymerization in polar media 2:Effect of silica size and concentration on the morphology of silica-polystyrene composite particles[J].Journal of Colloid and Interface Science,1999,210(2):281-289.
    [36]容敏智,章明秋,郑永祥,等.纳米SiO_2增韧增强聚丙烯的界面效应与逾渗行为[J].复合材料学报,2002,19(1):1-4.
    [37]符韵林,赵广杰.木材/二氧化硅复合材料的微细构造[J].北京林业大学学报,2006,28(5):119-124.
    [38]刘长利,吴文健,满亚辉,等.纳米SiO_2改性紫外光固化有机硅杂化材料研究[J].材料工程,2006(增刊1):75-78.
    [39]XI Hong-xia,LI Zhong,LIANG Zhao-xi.Syhthesis and characterization of a new organic/inorganic hybrid nonlinear optical material[J].Journal of South China University of Technology:Natural Science,2000,28(12):35-41.
    [40]江楠,宋晓岚,徐大余.纳米SiO_2复合材料研究进展[J].粉末冶金材料科学与工程,2007,12(5):272-276.
    [41]卢德宏,韩豫刚,朱凌云,等.Al_2O_3增强改性环氧树脂复合材料耐磨性及应用的研究[J].云南化工,2002,29(3):7-12.
    [42]汤戈,王振家,马全友,等.纳米Al_2O_3粉末改善环氧树脂耐磨性的研究[J].热固性树脂,2002,17(1):4-8.
    [43]李红姬,张万喜,梁波,等.EVA/Al_2O_3纳米复合材料的制备方法与力学性能、结构研究[J].高分子材料科学与工程,2006,22(4):95-98.
    [44]Ibrahim I A,Mohamed F A,Laveria E J.Particulate reinforced metal matrix composites-a review[J].Journal of Materials Science,1991,26(5):1137-1156.
    [45]Nowacki,J.Polyphase sintering and properties of metal matrix composites[J].Journal of Materials Processing Technology,2006,175(1-3):316-323.
    [46]陈昌明,张立同,周万诚等.硼化物陶瓷及其应用[J].兵器材料科学与工程,1997, 20(2):68-71.
    [47]杨振国,于志强,金忠告羽.自蔓延高温合成制备高性能TiB_2复合材料及应用[J].机械工程材料,2005,29(7):49-52.
    [48]邓建新,艾兴.TiB_2的含量对Al_2O_3/TiB_2陶瓷材料的高温氧化行为的影响[J].材料科学与工艺,1996,4(2):56-61.
    [49]Stadlbauer W,Kladnig W,Gritzner G.Al_2O_3-TiB_2 composite ceramics[J].Journal of Materials Science Letters.1989,8(10):1217-1220.
    [50]Keller A R,Zhou M.Effect of microstructure on dynamic failure resistance of titanium diboride/alumina ceramics[J].Journal of the American Ceramic Society,2003,86(3):449-457.
    [51]王兆文,邱竹贤.二硼化钛粉末的研制[J].轻金属,1997,(8):28-31.
    [52]刘希诚,孙阳.电弧炉碳热还原制取二硼化钛[J].广东有色金属学报,1999,9(1):30-34.
    [53]Koc R,et al.Production of TiB_2 from a precursor containing carbon coated TiO_2 and B_4C[J].Journal of Materials Science Letters,2000,19:667-669.
    [54]罗学涛,等.TiB_2粉料的合成与纯化研究[J].南昌航空工业学院学报,2001,15(1):6-9.
    [55]任宝江.回转窑焙烧钼精矿的生产实践[J].有色金属(冶炼部分),1999,(2):18-20.
    [56]任宝江.钼精矿回转窑隔层焙烧法[J].中国钼业,1999,23(3):40-42.
    [57]Mchugh N F,et al.Roasting of molybdenite concentrates containing flotation oils[P].US:4523948,1985-06-18.
    [58]王化章,汤啸.氯化物熔体中电化学合成硼化钛[J].中国有色金属学报,1997,7(2):34-37.
    [59]赵昆渝,朱心昆,苏云生,等.自蔓延高温合成制备TiB_2[J].粉末冶金技术,1997,15(1):26-28.
    [60]Mishrat S K,Das S K,Ramachandrarao P,et al.Self-propagating high-temperature synthesis of a zirconium diboride-alumina composite:a dynamic X-ray diffraction study[J].Philosophical Magazine Letters.2004,84(1):41-46.
    [61]Mwyers M A,Olevsky W A,Jamet M,et al.Combustion synthesis/densification of an Al_2O_3-TiB_2 composite[J].Materials science and engineering,2001,311(1-2):83-89.
    [62]Wang C C,Akbar S A,et al.Electrical properties of high temperature oxides,borides,carbides,and nitrides[J].Journal of Materials Science,1995,30(7):1627-1641.
    [63]刘利,傅正义.硼化钛系复合材料研究进展[J].粉末冶金技术,2000,18(3):217-220.
    [64]邓建新,张希华,李剑峰等.TiB_2增强Al_2O_3陶瓷刀具高速干切削摩擦磨损性能[J].摩 擦学学报,2004,24(3-7):197-201.
    [65]郑学家.(科学·创新·振兴)A卷中国科协[振兴东北地区等老工业基地]专家论坛论文集[C].沈阳:沈阳出版社,2005:543.
    [66]Leno M,Luca P,Barry H.Substantiating the role of phase bicontinuity and interfacial bonding in epoxy-silica nanocomposites[J].Journal of Materials Science,2006,41:1145-1155.
    [67]Ishida H,Koening J L.Fourier transform infrared spectroscopic study of the silane coupling agent/porous silica interface[J].Journal of Colloid and Interface Science,1978,64(3):555-564.
    [68]张之圣,樊攀峰,李海燕.纳米SiO_2/环氧树脂的制备与表征[J].材料工程,2004,(10):50-53.
    [69]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000.
    [70]Integrated Spectral Database System of Organic Compounds(Data are provided by the National Institute of Advanced Industrial Science and Technology(Japan))
    [71]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002:213.
    [72]笪有仙,胡卫华,孙慕瑾.环氧树脂固化反应研究[J].化学与粘合,1994,3:125-129.
    [73]慧雪梅,张炜,王晓洁等.纳米SiO_2/环氧树脂/空心微珠反应动力学研究[J].现代塑料加工应用,2005(17),6:4-7.
    [74]潘祖仁.高分子化学[M].北京:化学工业出版社,1997:214.
    [75]匡展邦,顾海没,李中华.材料的力学行为[M].北京:高等材育出版社:1998.
    [76]周润培,侯锐钢,王晓东,等.MFE乙烯基酯树脂及其在防腐蚀领域的应用研究[J].玻璃钢/复合材料,2002,7:35-38.
    [77]杨晓燕.玻璃钢表面的涂装[J].材料保护.1997,30:9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700