里氏木霉纤维素酶的液态深层发酵生产及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的加剧,天然纤维质原料酶解生产燃料酒精成为当前研究的热点,然而,纤维素酶的使用成本是束缚此项研究的瓶颈所在。本实验旨在通过优化里氏木霉突变株WX-112液态发酵产纤维素酶的培养条件,寻求能更好降低纤维素酶使用成本的有效途径。用经过预处理的蔗渣代替微晶纤维素作为主要碳源用于纤维素酶的生产,既解决了环境污染问题,又可有效降低生产成本。
     通过机械粉碎、酸水解、碱水解、微波与碱联合处理、活性乳酸菌处理等方法预处理蔗渣后用于里氏木霉液态发酵生产纤维素酶。单因素试验结果显示:浓度为1%(w/v)的NaOH溶液水解蔗渣效果较好。在此基础上,结合微波辐射处理,由正交试验得出了最佳的预处理工艺为:用0.30mol/L的NaOH溶液浸泡蔗渣,在微波功率为160W下处理5min,在此条件下单位能耗的酶活净增值最大,后续发酵结束后,酶活较未经处理的蔗渣发酵后所得酶活有显著提高。其中,滤纸酶活和CMC酶活分别由原来的1.73IU/mL和60.2IU/mL提高到3.54IU/mL和134.8 IU/mL,提高了104.6%和123.4%。
     利用葡萄糖阻遏效应筛选抗阻遏的高产菌株。在平板上添加4%的葡萄糖筛选得到的菌株产酶最高,滤纸酶活和CMC酶活分别可达4.3IU/mL和165.0IU/mL左右,比原始菌株的产酶量分别提高了33.5%和31.0%。在此基础上,通过单因素试验和L16(45)的正交试验得到了该菌株摇瓶液态发酵的最佳培养基组成为(g/L):蔗渣30,麸皮25,豆饼粉40,乳清粉10,KH2PO4 2.0,胰蛋白胨3.0,硫酸铵2.0,CaCl2 0.5,MgSO4 0.5;对该菌株摇瓶液态发酵的条件进行了优化,得到的最佳培养条件为:种龄48h,培养基的起始pH5.0~5.5,培养温度26~28℃,接种量10%,装液量25ml/250ml,摇床转速180r/min,培养144h。在此条件下最有利于菌体产酶,β-葡萄糖苷酶活、滤纸酶活和CMC酶活最高可分别达到4.5IU/mL、10.1IU/mL、294.6IU/mL。
     对酶学性质进行了研究。β-葡萄糖苷酶活、滤纸酶活及CMC酶活的最适pH值均在5.0左右,滤纸酶活和CMC酶活的最适反应温度为55℃,β-葡萄糖苷酶的最适反应温度为50℃。当酶液在低于50℃,环境pH在5.0左右时保存可以较好的保持酶活力。Zn2+、Mg2+、Na+、Ca2+、Mn2+等对酶活有一定的激活作用,不同浓度的酒精可以不同程度的抑制酶活,且抑制程度随酒精浓度的升高而增加,随温度的升高而加强。
     蔗渣经碱与微波联合处理后纤维素的相对含量提高了11.0%,并且比未处理的蔗渣更易被纤维素酶水解糖化。研究了经过预处理的蔗渣酶解的最佳条件为:纤维素酶用量8-10FPU/mL,底物浓度2%,反应温度55℃,反应体系pH4.8,并适当添加一定浓度的表面活性剂Tween-80,在此条件下,得到的最终糖化率为35%左右。酒精对酶解糖化反应的抑制作用表现为:一方面,随着酒精浓度的升高,抑制作用逐步加强;另一方面,温度越高,酒精的抑制作用也越显著。
Currently, the research of using the natural fiber raw material to produce fuel alcohol has been paid more and more attention because of the aggravating of energy crisis. At the same time, the key point of this research is how to reduce the cost of cellulase. The optimal culture conditions of the submerged fermentation of the mutant strain Trichoderma reesei WX-112 were studied. The pretreated bagasse was used to produce cellulase as main materials replacing pure cellulose so as to alleviate the pollution of enviroment and reduce the cost of cellulase effectively.
     The bagasse pretreated with the metheds such as smash, acids hydrolysis, alkalis hydrolysis, microwave and EM were used to produce cellulase by the mutant strain Trichoderma reesei WX-112 submerged fermentation. The result of single factor test showed: bagasse pretreated with NaOH(1%w/v) was better for producing cellulase. Based on this, the optimal conditions of pretreatement of bagasse gained by orthogonal experiment were as follows: alkali with 0.30 mol/L NaOH, the microwave radiation with power 160W, 5 minutes. Under these conditions, the cellulase yield can get the highest increase per unit in the view of energy consumption. The results showed that the maximum cellulase yield using pretreated bagasses as raw material was higher than that of using non-pretreated bagasses. The highest yield of FPA and CMCase reached 3.54IU/mL and 134.8 IU/mL from1.73IU/mL and 60.2IU/mL after 5 days’culturing, which increased by 104.6% and 123.4% respectively.
     Based on the theory of glucose repression, the anti-repression strains were obtained by using agar plate screening techniques, which can synthenize cellulase when high concentation glucose exists. The strain can produce more cellulase than others by submerged fermentation , which was screened from the plate containing 4% glucose. The yield of FPA and CMCase reached 4.3IU/mL and 165.0IU/mL, which increased by 33.5% and 31.0% respectively. Then, the optimal culture conditions of this screening strain were studied by single factor test and L16(45) orthogonal experiment. The optimal fermentation medium was determined (g/L): bagasse 30, wheat bran 25, bean cake flour 40, whey powder 10, KH2PO4 2.0, tryptone 3.0, (NH4)2SO4 2.0, CaCl2 0.5, MgSO4 0.5. The sutiable fermentation conditions: plants age was 48h, the initial pH of culture medium was 5.0-5.5, the culture temperature was 26-28℃, the inoculum size was 10%, volume of medium was 25ml/250ml and the speed of shaker was 180r/min, culturing 144h. Under these conditions, the highest yield ofβ-glucosidase, FPA and CMCase reached 4.5IU/mL, 10.1IU/mL and 294.6IU/mL respectively.
     The crude enzyme properties were investigated preliminarily. The optimum pH ofβ-glucosidase, FPA and CMCase were all 5.0 and the temperature were 50-55℃. The stable pH ranger, the thermal stability were obtained at the same time. Influences on enzymatic activity of many kinds of ions were studied. Zn2+, Mg2+, Na+, Ca2+, Mn2+ and so on could promoted its catalytic activity significantly. At last, the effects of alcohol on cellulase production were investigated. The results showed: alcohol with different concentration could all restrained the activity of cellulase, and this kind of effect would be strengthened with the increasing of tempreature and the concentration of alcohol.
     The cellulose content of bagasse pretreated by alkali and microwave increased by 11.0%, which could be hydrolysised easier than non-pretreated bagasse. The optimal enzymatic hydrolysis conditions were determined: 8-10FPU cellulase/mL, the substrate concentration 2%, the reaction temperature 55℃, pH4.8. Then, the final hydrolysis efficiency could reach to 35%. Alcohol could restrained the enzymatic hydrolysis of bagasse: the influence would be strengthened with the increasing of tempreature and the concentration of alcohol.
引文
1. Anatole A. Trends in biochemistry and enzymology of cellulose degradation[J]. J Biochem, 1990, 52(47): 10577- 10585
    2.高洁,汤烈贵主编.纤维素科学[M].北京:科学出版社, 1996.24-31
    3.章克昌主编.乙醇与蒸馏酒工艺学[M].北京:中国轻工业出版社, 1995.293-295
    4. Sun Y. Enzymatic hydrolysis of ryc straw and bermudagrass for ethanol production[D]. North Carolina University, 2002
    5. Cadoche L, Lopez G D. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes[J]. J Biol Wastes, 1989(30): 153-157
    6.熊健,叶君,梁文芷,等.微波对纤维素Ⅰ超分子结构的影响[J].华南理工大学学报(自然科学版), 2000, 28(3): 84-89
    7. Kitchaiya P, Intanakul P, Krairish M. Ehancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure[J]. Wood Chem Technol, 2003, 23(2): 217-225
    8. Laser M. Hydrothermal pretreatment of cellulosic biomass for bioconversion to ethanol[D]. Thayer School of Engineering, Dartmouth College, 2001
    9. Ballesteros M, Oliva J M, Negro M J, etc. Ethanol from lignocellosic materials by a simultaneous saccharification and fermentation process (SSF)with Kluyveromyces marxianus CECT 10875[J]. Process Biochem, 2004(39): 1843-1848
    10. Holtzapple M T, Davison R R, Stuart E D. Biomass refining process[P]. US patent, 5171592, 1992
    11. Holtzapple M T, Jun J H, Ashok G, etc. Ammonia fiber explosion (AFEX) pretreatment of lignocellulosic wastes[C]. American Institute of Chemical Engineers National Meeting, Chicago, 1990.121-130
    12. Zheng Y, Lin H M, Tsao G T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion[J]. J Biotechnol Prong, 1998(14): 890-896
    13. Zheng Y, Lin H M, Wen J, etc. Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis[J]. Biotechnol Lett, 1995(17): 845-850
    14.夏黎明.植物纤维素原料酶法水解研究.林产化学工业[J], 1998, 18(4): 23-26
    15. Esteghlalian A, Hashimoto A G, Fenske J J, etc. Modeling and optimization of the dilute surlfuric acid pretreatment of corn stover, poplar and switchgrass[J]. Bioressour Technol, 1997(59): 129-136
    16.李稳宏,吴大雄,李宝璋.麦秸在纤维素酶解法制糖研究[J].化学工程, 1998, 26(1): 54-61
    17. Bjerre A B, Olesen A B, Fernqvist T. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose[J]. Biotechnol Bioeng, 1996(49): 568-577
    18. Iyer P V, Wu Z W, Kim S B, etc. Ammonia recycled percolation process for pretreatment of herbaceous biomass[J]. Appl Biochem Biotechnol, 1996(57): 121-132
    19. Vidal P F, Molinier J. Ozonolysis of ligin improvement of in vitro digestibility of polor sawdust[J]. Biomass, 1998(16): 1-17
    20.沈金龙,毛爱军,王远亮,等.纤维素酶在木质纤维素生物质转化中的应用研究[J].微生物学报, 2004, 44(4): 507-51021.
    21.王宏勋,杜甫佑.白腐菌选择性降解秸秆木质纤维素研究[J].华中科技大学学报, 2006, 34(3): 97-100
    22. Rahayu C, Nazly H, Erizal E T B, etc. Radiation and chemical pretreatment of cellulosic waste[J]. Radizt Phys Chem, 1993(42): 695-698
    23. Nicoletta C, Mario A, Brunella P, etc. Complete and efficient enzymatic hydrolysis of preated wheat straw[J]. Process Biochem, 2002(37): 937-941
    24.肖春玲.微生物纤维素酶的应用[J].微生物学杂志, 2002, 22 (2):33-35
    25.陈燕勤,毛培宏,金湘,等.纤维素酶及其分子生物学研究[J].化学与生物工程, 2004(2): 1-3
    26.戴四发.纤维素酶研究现状及其在畜牧业中的应用[J].安徽技术师范学院学报, 2001, 15(3):32-38
    27. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins[J]. J Mol Biol, 1987(3):318-326
    28. Nisizawa J, Suzuki H, Nakayama, etc. Inductive Formation of Cellulase by sophorose in Trichoderma viride[J]. Biochem, 1971, 70(3): 375-381
    29. Parde A B, Prestidge L S. The initial kinetics of enzyme induction[J]. Biochem Biophys Acta, 1981(6): 49-77
    30. Mandels M, Parrish F W, Reese E T. Sophorose as an inducer of cellulase in Trichoderma viride[J]. J Bacterial, 1972(83): 400-403
    31. Reese E T, Masuire. Increase in cellulose yields by addition of surfactants to cellobiose cultures of Trichoderma viride[J]. Devel Indust Microbiol, 1971(12): 212-218
    32.谭蓓英.一个嗜热分解纤维素的梭菌新种分离和鉴定[J].微生物学报, 1992, 32 (3): 155-160
    33.王冬,曲音波. L-山梨糖提高木霉纤维素酶合成速率机制的研究[J].真菌学报, 1995, 14 (2):143-144
    34. Reese E T, Parrish F W. Modified substrates and modified products as inducers of carbohydrases[J]. Bacterial, 1969(100):1151-1159
    35.张苓花,王运吉.固态混合发酵生产纤维素酶的研究[J].中国饲料, 1998(2): 14-17
    36.张礼星,石贵阳,徐柔,等.里氏木霉利用麦糟生产纤维素酶[J].食品与发酵工业, 1999, 25(3): 23-25
    37.段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较[J].粮食与饲料工业, 2000(3): 24-26
    38.丁重阳,王玉红,章克昌.箱式固态发酵生产纤维素酶的研究[J].酿酒, 2003, 30(2): 33-35
    39.李宏强,陈洪章.固态发酵的参数周期变化及对微生物发酵的影响[J].生物工程学报, 2005, 21(3): 440-445
    40.曾莹,杨明,王伟平.固态发酵油菜籽壳生产饲用纤维素酶研究[J].粮食与油脂, 2006(9): 21-23
    41. Sun Tao, Liu Beihui, Li Zuohu, etc. Efects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter[J]. Process Biochem, 1999(34): 25-29
    42. Gutierrez C M, Portal L, Moreno P, etc. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar can bagasse[J]. Bioresource Technol, 1999, 68(2):173-178
    43.王振宇,樊梓鸾.混菌固态发酵生产纤维素酶的研究[J].中国林副特产, 2007(87): 1-3
    44.崔凌飞,王遂.纤维素酶二、三级液体深层发酵条件的研究[J].中国粮油学报, 2002, 17(4): 38-41
    45.邓毛程,王瑶,阳元娥.一株绿色木霉液体深层发酵产纤维素酶工艺研究[J].食品与机械, 2004, 20(3): 6-8
    46.余晓斌,郝学财.纤维素酶液体发酵最佳培养基的确定[J].工业微生物, 2005, 35(3):1-5
    47. Domingues F C, Queiroz J A, Cabral M S, etc. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30[J]. Enzyme and Microbial Technol, 2000(26): 394-401
    48.王亚林.产纤维素酶细胞固定化技术研究[J].武汉工业学院学报, 1999(4):1-5
    49.夏黎明.固体发酵生产高活力纤维二糖酶[J].食品与发酵工业, 1999, 25 (2): 1-5
    50. Haapala R, Parkkinen E. Production of emdo-1,4-β-glucanase and xylanase with nylon-web immobilized and free Trichoderma reesei[J]. Enzyme and Microbial Technol, 1996(18): 495-501
    51. Tilbeurgh H, Omme P, Claeyssens M, etc. Limited proteolysis of the cellobiohydrolaseⅠfrom T. reesei [J]. FEBS Lett, 1986, 204(2): 223-227
    52.吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向[J].生物工程进展, 1994, 14(4): 25-27
    53. Divne C, Stahlberg J, Reinikainen T, etc.The three-dimensional crystal structure of the catalytic core of cellobiohydrolaseⅠfrom T. reesei [J]. Science, 1994, 265(5171): 524-528
    54. Meinke A, Damude H G, Tomme P, etc. Enhancement of the endo-bate-1,4-glucanase acticity ofan exocellobiohydrolase by deletion of a surface loop [J]. J Bio Chem, 1995, 270(9): 4383-4386
    55. Sinnott M L. Catalytic mechanism of enzymatic glycosyl transfers[J]. Chem Rev, 1990, 90(12): 1171-1192
    56. Tomme P. Cellulose hydrolysis by bacteria and fungi[J]. Adv Microb Physiol, 1995, 37(1): 1-81
    57. Kraulis P J, Jones T A. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structure s [J]. Protein, 1989, 2(1): 188-201
    58. Xu G Y, Ong E. Solution structure of a cellulose-binding domain from cellulomonas fimi by nuclear magnetic resonance spectroscopy[J]. J Biochem, 1995, 34(21): 6993-7009
    59. Tormo J, Lamed R, Chirino A J, etc. Crystal structure of a bacterial family-Ⅲcellulose-binding domain: a general mechanism for attachment to cellulose[J]. EMBO J, 1996, 15(21): 5739-5751
    60. Linder M, Lindeberg G. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution[J]. FEBS Lett, 1995, 372(1): 96-98
    61. Linder M, Mattine M L, Kontteli M, etc. Identification of functionally important amino acids in the cellulose-binding domains of Trichoderma reesei cellobiohydrolaseⅠ[J]. Protein Sci, 1995, 4(6):1056-1064
    62. Smith, Mads, Peter, etc. Production of cellulose[P]. US patent, 026110, 2006
    63.王兰芬.纤维素酶的作用机理及开发应用[J].酿酒技术, 1997(6 ):16-17
    64.张瑞萍.毛巾织物的生物酶整理[J].印染, 1999(10): 12-15
    65.陈益人,张一鸣.纤维素酶对纤维素纤维织物的后整理[J].印染助剂, 1999, 16(3): 24-26
    66.韦小英,杨崎峰.纤维素酶水解蔗渣浆的影响因素研究[J].广西轻工业, 2001(2): 44-46
    67.黄祖新,陈由强,陈如凯.甘蔗渣的酶降解研究进展[J].甘蔗, 2004, 11(4): 52-56
    68.管斌,丁友昉.还原糖测定方法的规范[J].无锡轻工大学学报, 1998, 18(3): 74-78
    69.曾昭钧,李香文.微波有机化学进展[J].沈阳药科大学学报, 1999, 16(7): 304-309
    70. Xianjun L, Biguang Z, Wenjun L, etc. Research on the effect of microwave pretreatment on moisture diffusion coefficient of wood[J]. Wood Sci and Technol, 2005, 39(7): 521-528
    71.宋小炎,宋桂经,孙彩云,等.抗高浓度葡萄糖阻遏的纤维素酶高产菌的选育[J].山东大学学报(自然科学版), 1999, 34(4) : 487-491
    72.张树政主编,酶制剂工业[M].北京:科学出版社, 1989. 56-58
    73.夏纪鼎,倪永全主编,表面活性剂和洗涤剂化学与工艺学北京[M].北京:中国轻工业出版社, 1997.56-59
    74. Arja M O, Marja P, Raija L. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparationsin biofinishing of cotton[J]. J Biotech, 2005(116): 305–317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700