离子液体对非水相脂肪酶催化合成辛酸戊酯的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非水相酶催化酸和醇合成酯已被广泛用于食品、化妆品及医药等行业,其中溶剂工程的调控是一个重要的手段。离子液体具有良好的热稳定性、溶解范围广、可以忽略的蒸汽压和物性可调控等优良的性质,特别是其较强的极性,可溶解高极性底物,使其更有望成为酶催化反应溶剂工程的调控工具。本文以辛酸和戊醇的酯化反应为研究对象,选择脂肪酶RM IM和Novozym 435为催化剂,研究了离子液体及微波辐射下离子液体对该反应的影响,具体研究内容和结果如下:
     1.用脂肪酶RM IM在不同溶剂系统中催化合成辛酸戊酯,考察了[BMIM][PF6]对该反应初速度及反应进程的影响。在含1%(占辛酸质量)[BMIM][PF6]的有机溶剂体系中,反应初速度随溶剂log P(2.0~5.1)的变化趋势与有机溶剂中的变化趋势一致。[BMIM][PF6](占辛酸质量1%)的加入即可改变该酯化反应溶剂体系的溶剂行为,但其对该反应的影响与反应溶剂无关,只与离子液体的加入有关。荧光光谱分析表明,酶活性的表现与酶分子的构象变化有一定的相关性。当[BMIM][PF6]加入量为辛酸质量1%~3%时,以壬烷为溶剂的反应初速度随[BMIM][PF6]加入量的增加而降低。进一步研究表明在[BMIM][PF6]加入量为辛酸质量1%~5%范围内,[BMIM][PF6]对脂肪酶RM IM的抑制作用是不可逆抑制。
     2.考察了[BMIM][PF6]对脂肪酶RM IM最适反应温度和操作稳定性的影响。结果显示,在40 oC~70 oC范围内,当[BMIM][PF6]加入量为辛酸质量2%时,以壬烷为溶剂酶催化反应的最适温度为60 oC,此温度高于不加离子液体的最适反应温度(50 oC)。同时,离子液体(占辛酸质量1%)的存在可以提高固定化脂肪酶RM IM的操作稳定性。
     3.考察了离子液体加入量为辛酸质量1%时离子液体的结构对酶RM IM催化合成辛酸戊酯的影响。当阳离子均为[BMIM]+时,酶促酯化反应在阴离子为PF6–的离子液体-壬烷中辛酸转化率明显高于其阴离子为BF4–、Cl–中的;而阴离子均为PF6–时,辛酸转化率随离子液体咪唑环上烷基链的增长而降低。在含不同结构离子液体的壬烷中,微波辐射都表现出提高酶催化反应初速度的特点,且这种效应随着离子液体阴、阳离子的不同而有所变化。
     4.研究了微波辐射下[BMIM][PF6]对脂肪酶Novozym 435催化合成辛酸戊酯的影响,考察了具有不同log P的有机溶剂以及[BMIM][PF6]的加入对该反应的影响。结果表明,微波辐射下反应初速度随溶剂log P(2.0~5.1)的变化趋势与常规加热下的变化趋势基本一致;在极性大的芳烃溶剂中微波能更明显地提高酶的活性。[BMIM][PF6] (占辛酸质量1%)的加入不会改变该反应的最适加水量(占辛酸质量2%)。微波辐射下,以壬烷为溶剂,当[BMIM][PF6]为辛酸质量1%~3%时,反应初速度与其加入量负相关,而当其加入量为辛酸质量3%~8%(占辛酸质量)时,反应初速度与其加入量正相关。采用ChemPower微波合成仪进行在壬烷或含[BMIM][PF6](占辛酸质量1%)壬烷中的酯化反应,微波辐射均提高了辛酸转化率。
Enzymatic esterification in nonaqueous media has been widely used in foods, medicine and cosmetic industry. Regulation of solvent engineering is one of important tools in nonaqueous enzymatic catalysis. Ionic liquids, as one of new solvents for their unique properties, such as good thermal stability, special solubility, negligible vapor pressure and variable physical properties, especially its strong polarity hold the promise of regulating instrument in solvent engineering. In this paper, the role of ionic liquids in the synthesis of amyl caprylate catalyzed by lipase from R. miehi (RM IM) or from Candida Antarctica (Novozym 435) was investigated, assisted by microwave irradiation and conventional heating respectively. The main contents and results are as follows:
     1. The effect of [BMIM][PF6] on the initial reaction rate and reaction profile in the synthesis of amyl caprylate catalyzed by lipase RM IM in different organic solvents were studied. The trend of initial reaction rate with log P (2.0-5.1) in organic solvent in the presence of 1% [BMIM][PF6] was similar as that in organic solvent. The effect of [BMIM][PF6] on the reaction was only related to its addition rather than the solvent mixed with it.The fluorescence spectral analysis indicated that the conformational change coordinated to the change of enzyme activity. The initial reaction rate was decreased with the increase of the dosage of [BMIM][PF6] (1%-3% of caprylic acid, w/w) employed in the reaction in nonane. Further more, inhibition of different amount of [BMIM][PF6] on lipase RM IM was irreversible.
     2. The effects of [BMIM][PF6] on the optimum reaction temperature and operation stability of immobilized lipase RM IM were investigated. It was found that the optimum reaction temperature in nonane in the presence of 2% [BMIM][PF6] (60 oC ) was higher than that in nonane (50 oC ). Further more, the amount of 1% ionic liquid could improve operation stability of lipase RM IM.
     3. For ionic liquids with same cationic motie, the conversion of caprylic acid in nonane with 1% ionic liquid of PF6–was obviously higher than that in nonane with 1% ionic liquids of BF4–、Cl–. While for ionic liquids with same anionic motie, PF6–, the conversion of caprylic acid was decreased with the increasing of alkyl chain of imidazole ring. Microwave irradiation also improved the initial reaction rate in the presence of different ionic liquids.
     4. The effect of [BMIM][PF6] on the synthesis of amyl caprylate catalyzed by lipase Novozym 435 under microwave irradiation was studied. The effects of organic solvents with different log P and the addition of small amount of [BMIM][PF6] on reaction were investigated. The trend of initial reaction rate with log P (2.0-5.1) under microwave irradiation was similar as that under conventional heating in organic solvent. Microwave improved the lipase activity more obviously in polarer solvent. Addition of 2% [BMIM][PF6] didn’t change the optimum water dosage (2% of caprylic acid, w/w). The initial reaction rate decreased first and then increased with the increase of the dosage of [BMIM][PF6](1%-8% of caprylic acid, w/w) in nonane under microwave irradiation. Applying the esterification in a ChemPower microwave reactor, microwave irradiation enhanced the reaction either in nonane or in nonane with [BMIM][PF6] (1% of caprylic acid, w/w).
引文
1. Gillies B, Yamazaki H, Armstrong D. Production of flavor esters by immobilized lipase. Biotechnol Lett,1987,9:709—714
    2. Perraud R, Laboret F. Optimization of methyl propionate production catalysed by Mucor miehei lipase. Appl Microbiol Biotechnol,1995,44:321—326
    3. Gatfield I L. The enzymatic synthesis of esters in non-aqueous systems. Lebensm Wiss Technol,1986, 19:87—88
    4. Seddon K R. Ionic Liquids for Clean Technology. J Chem Technol Biotechnol,1997,68:351—356.
    5.李汝雄,王建基.绿色溶剂——离子液体的制备与应用[J].化工进展,2002,21 (1):43—48
    6. Adams C J, Earle M J, Roberts R G. Friedel-Crafts reactions in room temperature ionic liquids. Chem Commun,1998,19:2097—2098
    7. Welton T. Room-temperature ionic liquids solvents for synthesis and catalysis. Chem Rev,1999,99: 2071—2088.
    8. Nara S J, Harjani J R, Salunkbe M M. Friedel-Crafis sulfonylation in 1-butyl-3- methylimidazolium chloroaluminate ionic liquids. J Org Chem,2001,66:8616—8619
    9. Hardacre C, Katdare S P, Milroy D, et al. A catalytic and mechanistic study of the Friedel-Crafts benzoylation of anisole using zeolites in ionic liquids. Journal of Catalysis,2004,227 (1):44—52
    10. Elaiwi A, Hitchcock P B, Seddon K R, et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate ionic liquids. J Chem Soc Dalton Trans, 1995:3467—3472
    11. Hirao M, Sugimoto H, Ohno H. Preparation of Novel Room Temperature Molten Salts by Neutralization of Amines. J Electro Chem Soc, 2000,147:4168—4172
    12. Suarez P A Z, Dullius J E L, Einloft S, et a1. The use of new ionic liquids in two-phase catalytie hydrogenation reaction by Rhodium complexes. J Polyhedron,1996,15:1217—1219
    13. Bonhote P, Dias A, Papageorgiou N, et al. Gr?tztelM hydrophobic, highly conductive ambient- temperature molten salts. J Inorg Chem,1996,35:1168—1178
    14. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem. Commun,1992,(3):965—967
    15. Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3- methylimidazolium tetrafluoroborate: electrochemical couplesand physical properies. J Electrochem Soc,1997,144:3881—3885
    16. Holbrey J D, Seddon K R. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans,1999:2133—2139
    17. Katayama Y, Dan S, Miura T, et al. X-ray diffraction study on structural change in liquid selenium under high pressure. Electrochem Soc,2001,148:102—105
    18. Fuller J, Carlin R T, Haworth H C. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate; model for room temperature molten salts. Chem Commun,1994:299—230
    19. Dzyuba S V, Bartsch R A. Efficient synthesis of 1-atkyt(aralky1)-3-methyl(ethy1) imidazolium halides: Precursors for room temperature ionic liquids. J Heterocy1 Chem,2001,38:265—268
    20. Huddleston J G, Visser A E, Reichert W M et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem,2001, 3:156—164
    21. Xu D-Q, Liu B-Y, Luo S-P, et al. A novel and eco-friendly method for the preparation of ionic liquids. Synthesis,2003, (17):2626—2628
    22. Heintz A, Lehmann J K, Wertz C J. Thermodynamic properties of mixtures containing ionic liquids.3 liquid-liquid equilibria of binary mixtures of 1-ethyl-3-methylimidazolium bisltrifluoromethy(sulfony)imide with propan-1-ol, butan-1-ol, and pentan-1-ol. Chem Eng Data,2003,48 (3):472—474
    23. Hasan M, Ozhevnikov I V, Siddiqui M R H, et a1. Synthesis, structure and thermal properties of N, N‘- dialkylimidazolium tetrachloroaurate salts. Inor Chem,1999,38:5637—5641
    24. Lall I S, Mancheno D, Castro S, et a1. Polycations part X. L IPs, a new category of room tempera ture ionic liquid based on polyammonium salts Chem Commun,2000, 0 (4):2413—2414
    25. Varma R S, Namboodiri V V. Solvent-free preparation of ionic liquids using a household microwave oven. Pure Appl Chem,2001,73 (8):1309—1313.
    26. Namboodiri V V, Varma R S. An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Letters,2002,43:5381—5383
    27. Freyland W, Zell C A, Abedin S Z E, et al. Electrodeposition of metals and semiconductors from ionic liquids. Electrochimica Acta,2003,48:3053—3061
    28. Wasserscheid P, Keim W. Ionic liquids—new‘‘solution”for transition metal catalysis. Angewandte Chemie International Edition,2000,29:3722—3789
    29. Hirao M, Ito K, Nishina N, Ohno H. Preparation and polymerization of new organic molten salts: N-alkylimidazolium salt derivatives. Electrochim Acta,2000,45:1291—1294
    30.任强,武进,张军,等. 1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报,2003, (3):488—451
    31. Brown R J C, Dyson P J, Ellis D J, Welton T. 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO4)]: a catalytically active organometallic ionic liquid. Chem Commun,2001: 1862—1863
    32. Pernak J, Czepukowicz A, Pozniak R. New ionic liquids and their antielectrostatic properties. Ind. Eng Chem Res,2001,40:2379—2383
    33. Hagiwara R, Ito Y. Preparation of fluorinated alkenes in ionic liquids. J Fluorine Chem,2000,105:
    221—227
    34. Visser A E, Swatloski R P, Reichert W M, et al. Task-speific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization and extraction studies. Environ Sci Technol,2002,36:2523—2529.
    35. Bates E D, Mayton R D, Ntai L, et al. CO2 capture by a task-specific ionic liquid. J A C S,2002,24: 926—927
    36. Huddleston J G, Willauer H D, Rogers R D, et al. Room temperatureionic liquids as novel media for‘clean’liquid-liquid extraction.Chem Commun,1998,16:1765—1766.
    37. Ronald A C, Lowell A K, Richard E L, et al. Density, electric conductivity and viscosity of several n-alkylpyridinium halides and their Mixtures with aluminum chloride. .J Am Ehem Soc,1979,126 (10): 1644—1650
    38. Khadilkar B M, Rebeiro G. Microwave-assisted synthesis of room-temperature ionic liquid precursor in closedvessel. Org Pro Res Dev,2002,6: 826—828
    39. Park S, Kazlauskas, R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem,2001,66:8395—8401
    40. Abbott A P, Davies D L. Preparation of novel moisture-stable, lewis-acidic ionic liquids containing quaternary alumunium salt with functional side chains. Chem Commun,2001,19:2010—2011
    41. Sherif F G, Shyu L J, Lacroix P M, et a1. Linear alxylbenzene formation using low temperature ionic liquid[P]. United states patent,5824832.1998—10—20
    42. Knifton J F. Syngas reactions: Part XI. The ruthenium‘melt’catalyzed oxonation of internal olefins. J Mo1 Cata1,1987,43 (1):65—77
    43. Wasserscheid P, Bosmann A, Bolm C. Synthesis and properties of ionic liquids derived from the‘Chiral pool’. Chem Commun,2002:200—201
    44. Levillain J, Dubant G, Abrunhosa I, et a1. Synthesis and properties of thiazoline based ionic liquids derived from the chiral Poo1. Chem Commun,2003:2914—2915
    45.石顺存,易平贵,曹晨忠,等.新型离子液体的合成及其阳离子基团缓蚀性能[J].化工学报, 2005, (6):1112—1119
    46.张青山,刘爱霞,郭炳南,等.新型N-甲基-N-烯丙基吗啡啉季铵盐类离子液体的合成[J].高等学校化学学报,2005, (2):340—342
    47.段海峰,张所波,林英杰,等.新型室温离子液体六烷基胍盐的制备及性质[J].高等学校化学学报,2003, (11):2024—2026
    48. Lozano P, Diego T, Gmouh S, Vaultier M. Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide systems. Biotechnol Prog,2004,20:661—669
    49. Jain N, Kumar A, Chauhan S, Chauhan S M S. Chemical and biochemical transformations in ionic liquids. Tetrahedron,2005,61:1015—1060
    50. Kaar J, Jesionwski A M, Berberich J A, et al. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc,2003,125 (14):4125—4131
    51. Laane C, Boeren S, Vos K. Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioengl,1987,30:81—87
    52. Yang Z, Russell A J. Koskinen A M P, et al. Enzymatic reactions in organic media. Blackie Academic, London,1996:43—69
    53. Park S, Viklund F, Hult K, et al. Ionic liquids as green solvents: Progress & Prospects, ACS symposium Series, 2003,856:225—238
    54. Yang Z, Pan W B. Ionic liquids: green solvent for nonaqueous biocatalysis. Enzyme and Microbial Technol,2005,37:19—28
    55. Rantwijk F V, Lau R M, Sheldon R A., Biocatalytic transformations in ionic liquids.Trends in Biotechnol,2003, 21:131—138
    56. Park S, Kazlauskas R. Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol,2003,14:432—437
    57. Heintz A, Klasen D, Lehmann J K. Excess molar volumes and viscosities of binary mixtures of methanol and the ionic liquid 4-methyl-N-butypyridinium tetrafluoroborate at 25, 40, and 50oC. J Soc Chem,2002,31:467—476
    58. Lozano P, de Diego T, Guegan J P, et al. Stabilization ofα-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng,2001,75:563—569
    59. Seddon K R, Stark A S, Torres M J. Influence of Chloride, Water and organic solcents on the physical properties of ionic liquids. Pure Appl Chem,2000,72 (12):2375—2287
    60. Mori M, Garcia G, Belleville M P, et al . A new way to conduct enzymatic synthesis in an anctive membrane using ionic liquids as catalyst support. Catalysis Taday,2005,104:313—317
    61. Maruyama T, Nagasawa S, Goto M. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Let,2002,24:1341—1345
    62. Turner M B, Spear S K, Huddleston J G, et al. Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei.Green Chem,2003,5:443—447
    63. Turner M B, Spear S K, Holbrey J D, et al. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules,2004,5:1379—1384
    64. Eckstein M, Sesing M, Kragl U, Adlercreutz P, At low water activityα-chymotrys in is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol Lett, 2002, 24:867—872
    65. Kaftzik N, Wasserscheid P, Kragl U. Use of ionic liquids to increase the yield and enzyme stability in theβ-galactosidase catalysed synthesis of N-acetyllactosamine. Organ Proc Res Dev,2002,6: 553—557
    66. Erbeldiner M, Mesian A J, Russell A J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog,2000,16: 1129—1131
    67. Sheldon R A, Lau R M, Sorgedrager M J, et al. Catalytic reactions in ionic liquids. Green Chem,2002, 4:147—151
    68. Magnuson D K. The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Solution Chem,1984,13:583—587
    69. Sanfilippo C, Antona N D, Nicolosi G. Chloroperoxidase from caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett, 2004,26:1815—1819
    70. Schofer S H, Kaftzik N, Wasserscheid P, et al. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun,2001: 425—426
    71. Eckstein M, Wasserscheid P, Kragl U. Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett, 2002, 24:763—767.
    72. Kielbasinski P, Albrycht M, Luczak J, et al. Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron: Asymmetry,2002,13:735—738
    73. Ulbert O, Frater T, Belafi-bako K, et al. Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Catal B: Enzym, 2004, 31:39—45
    74. Kim M J, Choi M Y, Lee J K, Ahn Y. Enzymatic selectiveacylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B: Enzym,2003,26:115—118
    75.周晓露,宗敏华,姚汝华.促进非水相酶反应的研究进展[J].分子催化,2000,14 (6):452—460
    76. Klibanov A M. Enzymes that work in organic solvents. Chem Tech,1986,6:354—359
    77. Krishna S H. Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Advances,2002,20 (3):239—267
    78. Hari K S, Prapulla S G, Divakar S, et a1. Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor michel. J Biotechnol,2001,87 (3):193—201
    79. Kiran K R, Divakar S. Lipase catalyzed synthesis of organic acid esters of lactic Acid in non-aqueous media. J Biotechnol, 2001,87 (2):109—121
    80.蔡汉成,高惠,方银军,等.微波辐射—酶耦合催化(MIECC)戊醇同分异构体与n-辛酸的酯化反应[J].化学学报,2004,62 (9):923—928
    81. Weber N, Klein E, MukerjeeK D. Long chain acylthioesters prepared by solvent free thioesterification and transesterification catalyzed by microbial lipases. Appl Microbiol Biotechnol,1999,51 (3): 401—404
    82. Dossat V, Combes D, Marty A. Lipase-catalyzed transesterification of high oleic sunflower oil. Enzyme Microb Technol,2002,30: 90—94.
    83. Ducret A, Trani M, Lortie R. Lipase catalysed enantioselective esterification of ibuprofen in organic solvent under controlled water activity. Enzyme Microb Technol,1998,22 (4):212—216
    84. Zhang L Q, Zhang Y D, Xu L, et al. Lipase-catalyzed synthesis of RGD diamide in aqueous water-miscible organic solvents. Enzyme Microb Technol,2001, 29 (2):129—135
    85. Akkara J A, Senecal K J, Kaplan D L. Synthesis and characterization of polymers produced by horseradish peroxodase in dioxane .J Polym Sci, Part A: Polym Chem,1991, 29:1561—1574
    86. Knani D, Gutman A L, Kohn D H. Enzymatic polyesterification in organic media: Enzyme-catalyzed synthesis of linear polyesters. .J Polym Sci: Part A: Polym Chem,1993,31:1221—1232
    87. Therisod M, Klibanov A M. Regioselective acylation of secondary hydroxyl groups in sugars catalyzed by lipases in organic solvents. J Am Chem Soc,1987,109 (13):3977—3981
    88.彭立凤.有机相脂肪酶催化的有机物合成反应[J].合成化学,2000,8(4):294—300
    89. Brady L, Brzozowski A M, Derewenda Z S, et al. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature,1990, 24 (3):76—77
    90. Cleasby A, Garman E, Egmond M R, et al. Crystallization and preliminary X–ray study of a lipase from Pseudomonsglumae. J Mol Biol,1992,224 (3):281—282
    91. Kuhl P, Halling P J. Salt hydrates buffer water activity during chymotrypsin-catalyzed peptide synthesis. Biochim Biophys Acta,1991,1078:326—328.
    92. Yang Z, Robb Q A. Partition coefficients of substrates and products and solvent selection for biocatalysis under nearly anhydrous conditions. Biotechnol Bioeng,1994,43:365—370.
    93. Narayan V S, Klibanov A M. Are water-immiscibility and apolarity of the solvent relevant to enzyme efficiency. Biotechnol Bioeng,1993,41: 390—393.
    94. Butler L G. Enzymes in non-aqueous solvents. Enzyme Microb Technol,1979,1:253—259
    95.丘树毅,宗敏华.水含量对脂肪酶促有机硅烷醇酯化反应的影响[J].华南理工大学学报(自然科学版),1997,25 (10):15—18.
    96. Huang W, Xia Y M, Gao H, et al. Enzymatic esterification between n-alcohol homologs and n-caprylic acid in non-aqueous medium under microwave irradiation. J Mol Catal B-enzym, 2005, 35:113—116.
    97. Hoz A, Moreno A. Microwaves in organic synthesis: thermal and non-thermal microwave effects. Chemical Society Reviews, 2005,34 (2):164—178
    98. Lau R M, Rantwijk F V, Sheddon K R, et al. Lipase-catalyzed reaction in ionic liquids. Org Lett,2000, 2:4189—4191.
    99. Sheldon R A, Lau R M, Sorgedrager M J, et al. Catalytic reactions in ionic liquids. Green Chem,2002, 4:147—151
    100. Lau R M, Sorgedrager J M, Carrea G, et al. Dissolution of Candida Antarctica lipase B in ionic liquids:effects on structure and activity. Green Chem,2004,6: 483—487
    101. Kielbasinski P, Albrycht M, Luczak J, et al. Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron Asymmetry,2002,13:735—738
    102. Schofer S H, Kaftzik N, Wasserscheid P, et al. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun,2001: 425—426
    103. Xin J Y, Zhao Y J, Shi Y G, et al. Lipase-catalyzed naproxen methyl ester hydrolysis in water-saturated ionic liquid: significantly enhanced enantioselectivity and stability. World Journal of Microbiology & Biotechnol,2005,21:193—199
    104.赵永杰,辛嘉英,李臻,等.水-离子液和水-有机溶剂体系中萘普生酶法拆分的比较研究.分子催化, 2004,18 (1):6—9
    105.张玉芬,乔聪震,张金昌,等.离子液体合成长链烷基苯[J].石油化工,2003,32 (10):844—846.
    106.彭家建,邓友全.离子液体中催化环己酮肟重排制己内酰胺[J].石油化工,2001,30 (2):91—92.
    107. Lozano P, Diego T, Gmouh S, et al. Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide systems. Biotechnol Progr,2004,20:661—669.
    108. Reetz M, Wiesenhofer W, Francio G, et al. Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical. carbon dioxide as the mobile phase. Chem Commun,2002: 992—993
    109.夏咏梅,吴红平,张玥,等.离子液体的制备及其在酶催化反应中的应用[J].化学进展,2006,18 (12):1660—1667
    110. Gedye R, Smith F, Westawa K. The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters,1986,27 (3):279—283
    111. Leadbeater N E, Torenius H M. Microwave-assisted hetero-cyclic synthesis Katritzky. J Org Chem, 2002,67:3145—3148
    112. Lundell K, Kurki T, Lindroos M, et al. Room temperature ionic liquids in the kinetic resolution of adrenaline-type aminoethanols by Burkholderia cepacia lipase under normal and microwaveconditions. Advanced Synthesis & Catalysis,2005,347:1110—1118
    113. Toral A R, Rantwijk F V, Sheldon R A, et al. Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme and Microbial Technology, 2007,40 (5):1095—1099
    114. Wasserscheid P, Welton T(Eds). Ionic Liquids in Synthesis.Germany: J Schafer GmbH & Co KG Grünstadt, 2002.7—41
    115.赵风云,王建英,刘洪杰,等.系列室温离子液体1-烷基-3-甲基咪唑六氟磷酸盐的合成及性质研究[J].化学试剂,2007,29 (4):229—231
    116. Armstrong D W, He L F, Liu Y S. Examination of ionic liquids and their interaction with molecules, when used as stationary phase in gas chromatography. Anal Chem,1999,71:3873—3876
    117. Chun S, Dzyuba S V, Bartsch R A. Influence of structural variation in room-temperature ionic liquids on the selectivity and effficency of competitive alkali metal salt extraction by a crown erher. Anal Chem,2001,73:3737—3741
    118. Xia Y M, Fang Y, Zhang K C. Enzymatic synthesis of partial glycerol caprate in solvent-free media J Mol Catal B: Enzym,2003,23 (1):3—8
    119. Soumanou M M,Bornscheuer U T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology,2003,33:97—103
    120.周国伟,李干佐,黄锡荣,等.微乳液中脂肪酶和含明胶的微乳液凝胶中固定化脂肪酶的催化特性[J].高等学校化学学报,2001,22:1526—1529
    121.王守业,徐小龙,刘清亮,等.荧光光谱在蛋白质分子构象研究中的应用[J].化学进展,2001,13 (4):257—260
    122.闵瑞,方云,夏咏梅.低功率微波耦合溶剂相酶促酯化反应与其荧光光谱的变化[J].光谱学与光谱分析,2009
    123. Itoh T, Akasak K. K, Schirakami S. Lipase-catalyzed enantioselective acylation in the ionic liquids solvent system: reaction of enzyme anchored to the solvent. Chem Lett,2001:262—263
    124. Persson M., Bornscheuer U. T. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J Mol Catal B: Enzym,2003,22:21—27
    125. Wu S, Guo J S, Sih C J. Enhancing the enantio selectivity of candida lipase catayzed ester hydrilysis. J Am Chem Soc,1990,112:1990—1995
    126. Iizumi T, Nakamura K, Fukase T. Purification and characterization of a thermostable lipase from newly isolated pseudomonas sp. KWI-56. Agric Biol Chem,1990,545:1253—1258
    127. Lolis E, Petsko G. Transition state analogies in protein crystallography probes of the structural source of enzyme catalysisi. Annu Rev Biochem,1990,59:597—630
    128.夏咏梅.微水体系中酶促合成脂肪酸偏甘油酯的研究[D]:[博士学位论文].无锡:无锡轻工学院,2000
    129. Larhed M, Emilsson P, Vallin K S A, et al. High-Speed Heck Reactions in Ionic Liquid with Controlled Microwave Heating. J Org Chem,2002, 67 (17):6243—6246
    130.方云,夏咏梅,黄伟.一种微波辅助非水相酶催化反应装置[P].中国专利,200510038966.5. 2005—04—18
    131.孙诗雨.微波辐射-酶耦合催化中的溶剂系统及区域选择性[D]:[硕士学位论文].无锡:江南大学, 2007
    132. Réjasse B, Lamare S, Legoy M D. Stability improvement of immobilized Candida Antarctica Lipase B in an organic medium under microwave radiation. Org Biomol Chem, 2004, 2:1086—1089
    133.黄伟.微波辐射对反应机制、动力学和区域选择性的影响[D]:[硕士学位论文].无锡:江南大学,2005
    134. Carmichael A J, Seddon K R. Polarity study of some 1-alkyl-3-methylimidazolium ambient- temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem,2000,13:591—595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700