注塑微结构复制性能及形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微注塑技术可用于生产微小或含微细结构的塑料制品,具有制造成本低、生产周期短和易实现批量化生产等优点。目前,微注塑制品已被广泛用于微流控装置、生物医疗、光电通讯和微机电系统等领域,具有非常广阔的应用前景。然而,当前关于微注塑的研究主要集中于工艺参数和几何参数对制品复制性能的影响。鉴于此,本文循序渐进地从聚合物材料的流变特性、不同纵横比微结构的复制性能、微结构的表面形态以及微注塑制品的结晶形态等方面,对微注塑过程的若干问题进行研究。
     本文首先设计了小纵横比微结构,通过改变成型材料、工艺参数以及几何参数,研究了微结构的复制性能。研究表明:不同材料微结构的高度复制率有明显的差别,PMMA成型微结构的高度复制率在4.4~99.5%范围内,而PP成型微结构的高度复制率均大于92.3%;对于PMMA,熔体温度、模具温度和注射速度对微结构高度复制率有较大的影响,而保压压力和保压时间的影响很小;对于PP,熔体温度和注射速度对微结构宽度复制率的影响最为明显,而模具温度、保压压力和保压时间的影响较小;几何参数中,微结构的纵横比和位置对复制性能均有不同程度的影响。
     在上述基础上,通过改变微结构的布置形式、截面形状、表面粗糙度以及工艺参数,进一步研究了大纵横比微结构的复制性能。研究发现:在相同的工艺参数下,垂直布置微结构的填充长度要大于平行布置微结构的填充长度;按照三角形、矩形和半圆形截面的顺序,微结构的填充长度逐渐增大,并且这种现象在平行布置形式中更为明显;当微型腔表面粗糙度增大时,微结构的填充长度相应减小;此外,由于熔体填充阶段残余气体的阻力不同,两种布置形式中工艺参数对微结构填充长度的影响有所不同。
     为了研究微结构的表面形态,对各种条件下成型的微结构表面进行了扫描电子显微镜(SEM)观察,发现如下现象:平行布置微结构的表面非常清晰与光滑,没有出现任何明显的表面缺陷;垂直布置微结构的表面出现了不同程度的表面缺陷,并且表面缺陷程度与工艺参数、熔体在主型腔内的流动方向等因素有关,提高熔体温度与(或)注射速度能改善甚至完全消除此类表面缺陷;短射实验表明:成型微结构表面缺陷的产生主要与微流道入口位置的熔体温度和熔体压力以及微流道内熔体的冷却速率有关,而与微结构本身的截面形状关系不大。
     借助SEM和差示扫描量热仪,研究了不同尺寸注塑制品内部的结晶形态。对于普通注塑制品,整个厚度上晶片都呈无规则排列;当制品厚度逐渐减小时,从制品的表层开始逐渐出现取向晶片结构,并且取向晶片的密度随制品厚度的减小而增大;对于厚度仅为175μm的微注塑制品,在整个厚度上均出现了“类串晶”微晶结构。
     最后,本文结合实际研究了微流体混合器和精密光学透镜的成型过程。研究表明,掌握微结构的复制性能及形态的影响因素和影响规律对微注塑实际生产具有很大的指导意义。
The micro-injection molding technology is capable of producing plastic micro-parts or parts with micro-features. The advantages of this technology include low cost, short cycle time and easiness for volume production and so forth. Nowadays, the micro-injection molded parts have been widely used in many applications such as the micro-fluidic devices, biomedicine, photoelectric communication, and micro-mechanical-electronic-systems and so on, with a huge application potential in the future. However, the current study on the micro-injection molding is mainly focused on the effects of the processing condition and geometric factors on the replication capability of the molded parts. In this regard, in order to resolve certain issues encountered in micro-injection molding process, the present work aims to gradually investigate the rheological properties of the polymer, replication capability of the micro-features with various aspect ratios, surface morphology of the molded micro-features, and the crystal morphology of the micro-injection molded parts.
     First of all, the micro-features with small aspect ratio were designed in order to investigate the replication capability with different molding materials, processing conditions, and geometric factors. The results showed that various materials had different effects on the replicated height of the micro-features. The replicated height of the molded PMMA micro-features fell into a large range of 4.4~99.5%, while that for molded PP micro-features was higher than 92.3%. Moreover, for PMMA micro-features, the melt temperature, mold temperature and injection velocity were found to be important factors influencing the replication height, while the packing pressure and packing time had no obvious effect; for PP micro-features, the melt temperature and injection veloctiy were the most important factors, followed by the mold temperature, packing pressure and packing time. As for the geometric factors, the aspect ratio and the distance from the micro-feature to the injection gate had different effect on the replication capability of the molded micro-features.
     Based on the aforementioned study, effects of the layout, cross sectional shape, surface roughness, and the processing condition on replication capability of the micro-features with large aspect ratio were futher investigated. It was found that with the same processing conditon, the micro-feature molded with transverse layout had larger filled length than that with parallel layout. The filled length of the micro-features increased with the cross section in the order of triangle, rectangle, and semicircle, and this is especially the case in the parallel layout. In addition, the filled length decreased with increasing surface roughness of the micro-channels. Furthermore, the effect of the processing condition on the filled length of the micro-features in parallel and transverse layouts was different due to the various resistance of the trapped air inside micro-channels during the injection process.
     In additon, the surface morphology of the micro-features molded under different conditions was investigated using scanning electron microscope (SEM). It was found that the surfaces of micro-features molded in parallel layout were very smooth and clear. As comparison, there were defects on the surface of the micro-features molded in transverse layout, and the appearance of defects strongly depended on the processing condition and flow direction in the main cavity. Increase in melt temperature and/or injection velocity could improve or even eliminate the surface defects. The short shot experiment indicated that the formation of the surface defect was mainly influenced by the melt temperature and melt pressure at the entrance, and the cooling rate of the melt inside the micro-channel, however, independent of the cross sectional shape of the micro-features.
     Using the SEM and differential scanning calorimetry, the crystal morphology of the injection molded parts with different dimensions was investigated. For conventional injection molded parts, there were only lamellae disorderly arranged throughout the entire thickness. With the dimension decreasing, the oriented lamellae started to appear from the skin layer of the parts, and the density of the lamellae increased. For the micro-injection molded part with a thickness of only 175μm, there were many shish-kebab-like structures in the tickness direction.
     At last, from a practical viewpoint, the micro-injection molding of the micro-mixer and precision optical lens was investigated. It was found that it is fairly important to master the influencing factors and the corresponding rule of the replication capability and morphology of the micro-features for practical production.
引文
[1] Giboz J., Copponnex T., MéléP. Microinjection molding of thermoplastic polymers: A review [J]. J Micromech Microeng, 2007, 17(6): R96-R109
    [2] NEXUS Market Analysis for MEMS and Microsystems III 2005-2009 NEXUS [R]. WTC, 2005
    [3] Heckele M., Schomburg W.K. Review on micro molding of thermoplastic polymers [J]. J Micromech Microeng, 2004, 14(3): R1-R14
    [4] Becker H., G?rtner C. Polymer microfabrication technologies for microfluidic systems [J]. Anal Bioanal Chem, 2008, 390(1): 89-111
    [5] Attia U.M., Marson S., Alcock J.R. Micro-injection moulding of polymer microfluidic devices [J]. Microfluid Nanofluid, 2009, 7(1): 1-28
    [6]庄俭.微注塑成型充模流动理论与工艺试验研究[D].大连理工大学, 2007
    [7] Kukla C., Loibl H., Detter H., et al. Micro-injection moulding-the aims of a project partnership [J]. Kunsts Plast Eur, 1998, 88(9):6-7
    [8] Whiteside B., Martyn M., Coates P., et al. Micromoulding: process characteristics and product properties [J]. Plast Rubber Compos, 2003, 32(6):231-239
    [9] Martyn M., Whiteside B., Coates P., et al. Aspects of micromoulding polymers for medical applications [C]. ANTEC, 2004, 3:3698-3702
    [10] Tom A., Layser G., Coulter J. Mechanical property determination of micro injection molded tensile test specimens [C]. ANTEC, 2006, 5:2541-2545
    [11] Weber L., Ehrfeld W. Molding of microstructures for high-tech applications [C]. ANTEC, 1998, 3: 3088-3093
    [12] Niggemann M., Ehrfeld W., Weber L. Fabrication of miniaturized biotechnical devices [C]. SPIE, 1998, 3511: 204-213
    [13] Angelov A., Coulter J. Micromolding product manufacture-a progress report [C]. ANTEC, 2004, 1: 748-751
    [14] Ruprecht R., Hanemann T., Piotter V., et al. Polymer materials for microsystem technologies [J]. Microsyst Technol, 1998, 5(1):44-48
    [15] Kim H., Colton J.S. Fabrication and analysis of plastic hypodermic needles [C]. ANTEC, 2004, 3: 3727-3731
    [16] Weber L., Ehrfeld W., Freimuth H., et al. Micromolding: a powerful tool for large-scale production of precise microstructures [C]. SPIE, 1996, 2879: 156-167
    [17] Becker H., Locascio L. Polymer microfluidic devices [J]. Talanta, 2002, 56(2):267-287
    [18] Piotter V., Mueller K., Plewa K., et al. Performance and simulation of thermoplastic micro injection molding [J]. Microsyst Technol, 2002, 8(6):387-390
    [19] Emam M., Abashiya Y., Chareunsack B., et al. A novel microdevice for the treatment of hydrocephalus: Design and fabrication of an array of microvalves and microneedles [J]. Microsyst Technol, 2008, 14(3): 371-378
    [20] Kim D.S., Lee S.H., Ahn C.H., et al. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding [J]. Lab Chip, 2006, 6: 794-802
    [21] Pan C.T., Shiea J., Shen S.C. Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis [J]. J Micromech Microeng, 2007, 17(3): 659-669
    [22] Zhao, J., Mayes, R.H., Chen, G., et al. Effects of Process Parameters on the Micro Molding Process [J]. Polym Eng Sci, 43(9):1542-1554
    [23] Chandekar A., Alabran M., Sengupta S.K., et al. Fabrication of stamps for microcontact printing by injection molding [J]. Microelectron Eng, 2008, 85(1): 187-194
    [24]杨卫民.微注塑技术国际最新发展与应用[J].塑料制造, 2009, 8:49-56
    [25]庄俭,张建国,高世权,吴大鸣,张亚军.微注塑成型机的研究现状与进展[J].塑料科技, 2009, 37(5):92-95
    [26] Chu J., Hrymak A., Kamal M.R. Microstructural characteristics of micro-injection molded thermoplastics [C]. ANTEC, 2007, 4: 1973-1977
    [27] Lee B.-K., Kwon T. H. Fabrication method of two-level polymeric microstructure with the help of deep X-ray lithography [J]. Microsyst Technol, 2008, 14(9-11):1739-1744
    [28] Dai W., Oropeza C., Lian K., et al. Experiment design and UV-LIGA microfabrication technology to study the fracture toughness of Ni microstructures [J]. Microsyst Technol, 2006, 12(4): 306-314
    [29] Yang R., Jiang J., Meng W.J., et al. Numerical simulation and fabrication of microscale, multilevel, tapered mold inserts using UV-lithographie, galvanoformung, abformung (LIGA) technology [J]. Microsyst Technol, 2006, 12(6): 545-553
    [30] Mekaru H., Yamada T., Yan S., et al. Microfabrication by hot embossing and injection molding at LASTI [J]. Microsyst Technol, 2004, 10(10): 682-688
    [31] Tseng S.C., Chen Y.C., Kuo C.L., et al. A study of integration of LIGA and m-EDM technology on the microinjection molding of ink-jet printers’nozzle plates [J]. Microsyst Technol, 2005, 12(1-2): 116-119
    [32] Malek C.K., Saile V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review [J]. Microelectron J, 2004, 35(2): 131-143
    [33] Despa M.S., Kelly K.W., Collier J.R. Injection molding of polymeric LIGA HARMS [J]. Microsyst Technol, 1999, 6(2): 60-66
    [34] Yu L., Koh C.G., Lee L.J., Koelling K.W., Madou M.J. Experimental investigation and numerical simulation of injection molding with micro-features [J]. Polym Eng Sci, 2002, 42(5): 871-888
    [35] Kim D.S., Lee H.S., Lee B.K., et al. Replications and analysis of microlens array fabricated by a modified LIGA process [J]. Polym Eng Sci, 2006, 46(4): 416-425
    [36] Dunkel K., Bauer H.D., Ehrfeld W., et al. Injection-moulded fibre ribbon connectors for parallel optical links fabricated by the LiGA technique [J]. J Micromech Microeng, 1998, 8(4): 301-306
    [37] Macintyre D., Thoms S. The fabrication of high resolution features by mould injection [J]. Microelectron Eng, 1998, 41-42: 211-214
    [38] Worgull M., Heckele M., Schomburg W.K. Large scale hot embossing [J]. Microsyst Technol, 2005, 12(1-2): 110-115
    [39] Su Y.C., Shah J., Lin L.W. Implementation and analysis of polymeric microstructure replication by micro injection molding [J]. J Micromech Microeng, 2004, 14(3):415-422
    [40] Ong N.S., Koh Y. H. Experimental investigation into micro injection molding of plastic parts [J]. Mater Manuf Process, 2005, 20(2): 245-253
    [41] Lee B.-K., Hwang C.J., Kim D.S., et al. Replication quality of flow-through microfilters in microfluidic lab-on-a-chip for blood typing by microinjection molding [J]. ASME, 2008, 130(2): 02101
    [42] Theilade U.A., Hansen H.N. Surface microstructure replication in injection molding [J]. Int J Adv Manuf Technol, 2007, 33(1-2): 157-166
    [43] Kim D.S., Kim, J.S., Ko Y.B., et al. Experimental characterization of transcription properties of microchannel geometry fabricated by injection molding based on taguchi method [J]. Microsyst Technol, 2008, 14(9-11): 1581-1588
    [44] Jung W.-C., Heo Y.-M., Shin K.-H., et al. An experimatal study on micro injection paramaters [C]. ANTEC, 2007, 2: 638-642
    [45] Pirskanen J., Immonen J., Kalima V., et al. Replication of sub-micrometre features using microsystems technology [J]. Plast Rubber Compos, 2005, 34(5-6): 222-226
    [46] Yoon S.-H., Srirojpinyo C., Lee J., et al. The effects of tooling surfaces on injection molded nanofeatures [C]. ANTEC, 2004, 1: 738-742
    [47] Yoon S.-H., Srirojpinyo C., Lee J.S., et al. Evaluation of novel tooling for nanoscale injection molding [C]. ANTEC, 2005, 5763: 107-116
    [48] Sha B., Dimov S., Griffiths C., et al. Investigation of micro-injection moulding: Factors affecting the replication quality [J]. J Mater Process Tech, 2007, 183(2-3): 284-296
    [49] Sha B., Dimov S., Griffiths C., et al. Micro-injection moulding: Factors affecting the achievable aspect ratios [J]. Int J Adv Manuf Tech, 2007, 33(1-2): 147-156
    [50] Zhang H.L., Ong N.S., Lam Y.C. Experimental investigation of key parameters on the effects of cavity surface roughness in microinjection molding [J]. Polym Eng Sci, 2008, 48(3): 490-495
    [51] Zhang H.L., Ong N.S., Lam Y.C. Mold surface roughness effects on cavity filling of polymer melt in micro injection molding [J]. Int J Adv Manuf Technol, 2008, 37(11-12): 1105-1112
    [52] Zhang H.L., Ong N.S., Lam Y.C. Effects of surface roughness on microinjection molding [J]. Polym Eng Sci, 2007, 47(12): 2012-2019
    [53] Griffiths C.A., Dimov S.S., Brousseau E.B., et al. The effects of tool surface quality in micro-injection moulding [J]. J Mater Process Tech, 2007, 189(1-3): 418-427
    [54] Katoh T., Tokuno R., Zhang Y., et al. Micro injection molding for mass production using LIGA mold inserts [J]. Microsyst Technol, 2008, 14(9-11): 1507-1514
    [55] Alabran M.W., Mead J.L., Barry Carol M. F., et al. Effects of tooling and injection molding conditions on nanoscale replication of thermoplastic elastomers [C]. ANTEC, 2007, 4: 1978-1982
    [56] Yoon S.-H., Alabran M.W., Lee J.S., et al. Micro-injection molding of high aspect ratio features with thermoplastic polyurethanes [C]. ANTEC, 2007, 4: 1983-1987
    [57] Lee B.-K., Kim D.S., Kwon, T.H. Replication of microlens arrays by injection molding [J]. Microsyst Technol, 2004, 10(6-7): 531-535
    [58] Sammoura F., Kang J., Heo Y.-M., et al. Polymeric microneedle fabrication using a microinjection molding technique [J]. Microsyst Technol, 2007, 13(5-6): 517-522
    [59] Yoshii M., Kuramoto H., Ochiai Y. Experimental study of the transcription of minute width grooves by injection molding (II) [J]. Polym Eng Sci, 1998, 38(9): 1587-1593
    [60] Pun A., Wong C.-C., Chan N. Louie D., et al. Unique cost-effective approach for multi-surfaced microaspheric lens prototyping and fabrication by single point diamond turning & micro-injection molding technology [J]. SPIE, 2004, 5252: 217-224
    [61] Kitagawa S., Suzuki T., Iizuka Y., et al. Design and fabrication of injection molded plastic optics with nano-CADCAM [C]. SPIE, 1997, 3131: 280-289
    [62] Murakami O., Yamada K., Kotaki M. Replication and optical properties of injection moldings with microstructures [C]. ANTEC, 2007, 4: 2028-2032
    [63] Appasamy S., Li W., Lee S.H., et al. High-throughput plastic microlenses fabricated using microinjection molding techniques [J]. Opt Eng, 2005, 44(12): 123401
    [64] Kalima V., Pietarinen J., Siitonen S., et al. Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding [J]. Opt Mater, 2007, 30(2): 285-291
    [65] Chen S.C., Chang J.A., Chang Y.J., et al. Micro Injection Molding of Micro Fluidic Platform [C]. ANTEC, 2005, 2: 136-140
    [66] Lin Z.-G. Tseng S.-C., Peng, A., et al. A Study of Micro Injection Molding Optical Fiber Ferrules [C]. ANTEC, 2005, 2: 393-397
    [67] Wu C.-H., Hsu W.-C. Fabrication of injection molded diffuser micropumps [C]. SPIE, 2005, 5650: 313-323
    [68] Wu C.-H., Chen W.-S. Injection molding of grating optical elements with microfeatures [C]. SPIE, 2005, 5650: 293-304
    [69] Liou A.-C., Chen R.-H. Injection molding of polymer micro- and sub-micron structures with high-aspect ratios [J]. Int J Adv Manuf Tech, 2006, 28(11-12): 1097-1103
    [70] Chen S.-C., Hu C.-H., Chang M., et al. Study on the optical performance of light guide plate with double-side micro feature design [C]. ANTEC, 2007, 2: 693-697
    [71] Shen Y.K., Wu W.Y., Yang S.Y., et al. Study on numerical simulation and experiment of lightguide plate in injection molding [J]. J Reinf Plast Comp, 2004, 23(11): 1187-1206
    [72] Wu C.-H., Chen W.-S. Injection molding and injection compression molding of three-beam grating of DVD pickup lens [J]. Sensor Actuat A-Phys, 2006, 125(2): 367-375
    [73] Shen Y.K. Comparison of height replication properties of micro-injection moulding and micro-injection-compression moulding for production of microstructures on lightguiding plates [J]. Plast Rubber Compos, 2007, 36(2): 77-84
    [74]蒋炳炎,申瑞霞,沈龙江,胡建良.注射成型工艺参数对微结构零件复制度的影响[J].光学精密工程, 2008, 16(2):248-256
    [75] Kim D.S., Lee K.-C., Kwon T.H., et al. Micro-channel filling flow considering surface tension effect [J]. J Micromech Microeng, 2002, 12(3): 236-246
    [76] Xu G., Kim D.-H., Koelling K.W., et al. Flow dynamics in injection molding with microfeatures [C]. ANTEC, 2005, 2: 113-115
    [77] Hu X., Liu C., Xu G., et al. Viscoelastic flow in micro-injection molding [C]. ANTEC, 2007, 3: 1603-1607
    [78] Chen Y.-F., Tseng F.-G., ChangChien S.-Y., et al. Surface tension driven flow for open microchannels with different turning angles [J]. Microfluid Nanofluid, 2008, 5(2): 193-203
    [79] Chien R.-D., Jong W.-R., Chen S.-C. Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect [J]. J Micromech Microeng, 2005, 15(8): 1389-1396
    [80] Ito Hiroshi, Yagisawa Y., Saito T., et al. Fundamental study on structure development of thin-wall injection molded products [J]. Theor Appl Mech Japan, 2005, 54: 263-268
    [81] Whiteside B.R., Martyn M.T., Coates P.D., et al. Micromoulding: Process measurements, product morphology and properties [J]. Plast Rubber Compos, 2004, 33(1): 11-17
    [82] Frick A., Stern C., Michler G., Henning S., Ruff M. Study on flow induced nano structures in iPP with different molecular weight and resulting strength behavior [J]. Macromol Symp, 2010, 294(1):91-101
    [83] Giboz J., Copponnex T., MéléP. Microinjection molding of thermoplastic polymers: Morphological comparison with conventional injection molding [J]. J Micromech Microeng, 2009, 19(2): 025023
    [84] Zhang K.F., Lu Z. Analysis of morphology and performance of PP microstructures manufactured by micro injection molding [J]. Microsyst Technol, 2008, 14(2): 209-214
    [85] Lu Z., Zhang K.F. Crystal Distribution and Molecule Orientation of Micro Injection Molded Polypropylene Microstructured Parts [J]. Polym Eng Sci, 2009, 49(8): 1661-1665
    [86]蒋炳炎,尹湘林,翁灿,王进. HDPE微注射成型条件下非等温静态结晶[J].中南大学学报(自然科学版), 2007, 38(5): 912-916
    [87] Huang C.K., Chen S.W., Yang C.T. Accuracy and mechanical properties of multiparts produced in one mold in microinjection molding [J]. Polym Eng Sci, 45(11):1471-1478
    [88] Huang C.K., Chiu S.W. Formability and accuracy of micropolymer compound with added nanomaterials in microinjection molding [J]. J Appl Polym Sci, 2005, 98(5):1865-1874
    [89] Huang C.K., Chen S.W., Wei W.C.J. Processing and property improvement of polymeric composites with added ZnO nanoparticles through microinjection molding [J]. J Appl Polym Sci, 2006, 102(6): 6009-6016
    [90] Asthana A., Ghumman B.S., Karania R., et al. Effect of process parameters on viscoelastic properties and hoop stress in micro injection molded parts [C]. ANTEC, 2005, 2: 176-180
    [91] Xie L., Ziegmann G. A visual mold with variotherm system for weld line study in micro injection molding [J]. Microsyst Technol, 2008, 14(6): 809-814
    [92] Chang P.-C., Hwang S.-J., Lee H.-H., et al. Development of an external-type microinjection molding module for thermoplastic polymer [J]. J Mater Process Technol, 2007, 184(1-3): 163-172
    [93] Griffiths C.A., Dimov S.S., Brousseau E.B. Microinjection moulding: The influence of runner systems on flow behaviour and melt fill of multiple microcavities [C]. P I Mech Eng B-J Eng, 2008, 222(9): 1119-1130
    [94] Chen S.-C., Jong W.-R., Chang Y.-J., et al. Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology [J]. J Micromech Microeng, 2006, 16(9): 1783-1791
    [95] Yu M.-C., Young W.-B., Hsu P.-M. Micro-injection molding with the infrared assisted mold heating system [J]. Mater Sci Eng A, 2007, 460-461: 288-295
    [96] Chen S.C., Chang J.A., Jong W.R., et al. Efficiencies of various mold surface temperature controls and their effects on the qualities of injection molded parts [C]. ANTEC, 2006, 3: 1280-1284
    [97] Chang P.-C., Hwang S.-J. Experimental investigation of infrared rapid surface heating for injection molding [J]. J Appl Polym Sci, 2006, 102(4): 3704-3713
    [98] Cha B.-S., Park H.-P., Rhee B.-O. Manufacturing of plastic lens mold conformal cooling channel using direct metal laser sintering and spray-formed tooling process [C]. ANTEC, 2007, 2: 666-670
    [99] Gornik C. Injection moulding of parts with microstructured surfaces for medical applications [J]. Macromol Symp, 2004, 217: 365-374
    [100] Nian S.C., Yang S.Y. Flow visualization of filling with aid of colored billets during impact micro-injection molding [J]. Intern Polym Process XIX, 2004, 4: 402-407
    [101] Han X., Yokoi H. Visualization analysis of the filling behavior of melt into microscale V-grooves during the filling stage of injection molding [J]. Polym Eng Sci, 2006, 46(11): 1590-1597
    [102] Fathi S., Behravesh A.H. Visualization analysis of flow behavior during weld-line formation in injection molding process [J]. Polym-Plast Technol, 2008, 47(7): 666-672
    [103] Whiteside B.R., Spares R., Coates P.D. In-process 3D assessment of micromoulding features [C]. SPIE, 2006, 6188: 61880Z1-61880Z10
    [104] Kuek S.-C., Angstadt D.C. In-situ cavity pressure monitoring in micro-injection molding [C]. ANTEC, 2007, 4: 2007-2012
    [105] Yao D., Kim B. Simulation of the filling process in micro channels for polymeric materials [J]. J Micromech Microeng, 2002, 12(5): 604-610
    [106] Shen, Y.K., Shie Y.J., Wu W.Y. Extension method and numerical simulation of micro-injection molding [J]. Int Commun Heat Mass, 2004, 31(6): 795-804
    [107] Shen, Y.K., Wu W.Y. An analysis of the three-dimensional micro-injection molding [J]. Int Commun Heat Mass, 2002, 29(3): 423-431
    [108] Shen Y.K., Yeh S.L., Chen S.H. Three-dimensional non-newtonian comutations of micro-injection molding with the finite element method [J]. Int Commun Heat Mass, 2002, 29(5): 643-652
    [109] Shen Y.K., Chien H.W. Optimization of the Micro-Injection Molding Process using Grey Relational Analysis and MoldFlow Analysis [J]. J Reinf Plast Compos, 2004, 23(17): 1799-1814
    [110] Kim S-W., Turng L.-S. Three-dimensional numerical simulation of injection molding filling of optical lens and multiscale geometry using finite element method [J]. Polym Eng Sci, 2006, 46(9): 1263-1274
    [111] Yu L., Lee L.J., Koelling K.W. Flow and heat transfer simulation of injection molding with microstructures [J]. Polym Eng Sci, 2004, 44(10): 1866-1876
    [112] Young W.-B. Analysis of filling distance in cylindrical microfeatures for microinjection molding [J]. Appl Math Model, 2007, 31(9): 1798-1806
    [113] Young W.-B. Simulation of the filling process in molding components with micro channels [J]. Microsy Technol, 2005, 11(6): 410-415
    [114] Shen Y.-K., Chang C.-Y., Shen Y.-S., et al. Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation [J]. Int Commun Heat Mass, 2008, 35(6): 723-727
    [115] Tsai M.-H., Ou K.-L., Huang C.-F., et al. Study on micro-injection molding of light guiding plate by numerical simulation [J]. Int Commun Heat Mass, 2008, 35(9): 1097-1100
    [116] Yang W., Chang D., Yang V., et al. True 3D numerical simulation for micro injection molding [C]. ANTEC, 2006, 3: 1270-1274
    [117] Ilinca F., Hétu J.-F., Derdouri A. Numerical simulation of the filling stage in the micro-injection molding process [C]. ANTEC, 2004, 1: 636-640
    [118]吴其晔,巫静安.高分子材料流变学.高等教育出版社, 2002
    [119] Eringen A.C., Okada K. A lubrication theory for fluids with microstructure [J]. Int J Eng Sci, 1995, 33: 2297-2308
    [120] Xu B., Ooi K.T., Wong T.N., et al. Study on the viscosity of the liquid flowing in microgeometry [J]. J Micromech Microeng, 1999, 9(4): 377-384
    [121] Hatzikiriakos S.G., Dealy J.M. Wall slip of molten high density polyethylene: I. Sliding plate rheometer studies [J]. J Rheol, 1991, 35:497-523
    [122] Rosenbaum E.E., Hatzikiriakos S.G. Wall slip in the capillary flow of molten polymers subject to viscous heating [J]. AIChE J, 1997, 43(3): 598-608
    [123] Henson D.J., Mackay M.E. Effect of gap on the viscosity of monodisperse polystyrenemelts: slip effects [J]. J Rheol, 1995, 39: 359-373
    [124] Awati K.M., Park Y., Weisser E., et al. Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effects [J]. J Non-Newton Fluid Mech, 2000, 89(1-2): 117-131
    [125] Hu Y.D., Werner C., Li D.Q. Influence of three-dimensional roughness on pressure-driven flow through microchannels [J]. J Fluids Eng, 2003, 125(5): 871-879
    [126] Kleinstreuer C., Koo J. Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits [J]. J Fluids Eng, 2004, 126(1):1-9
    [127] Koo J., Kleinstreuer C. Liquid flow in microchannels: Experimental observations and computational analyses of microfluidics effects [J] J Micromech Microeng, 2003, 13(5): 568-579
    [128] Koo J., Kleinstreuer C. Analysis of surface roughness effects on heat transfer in micro-conduits [J]. Int J Heat Mass Transfer, 2005, 48(13):2625-2634
    [129] Qu W.L., Mala G.H., Li D.Q. Heat transfer for water flow in trapezoidal silicon microchannels [J].Int J Heat Mass Transfer, 2000, 43(21):3925-3936
    [130] Mala G.M., Li D. Flow characteristics of water in microtubes [J]. Int J Heat Fluid Flow, 1999, 20(2):142-148
    [131] Cabrera D.E. Evaluation of the capabilities of microinjection molding to produce deformable membrance mirrors. Master thesis, The Ohio State University, 2010
    [132] Huang C.-N. Investigation of Injection Molding Process for High Precision Polymer Lens Manufacturing, Ph.D. thesis, The Ohio State University, 2008
    [133] Huang C.-N., Li L., Yi, A.Y. Design and fabrication of a micro alvarez lens array with a variable focal length [J]. Microsyst Technol, 2009, 15(4):559-563
    [134] Li L., Yi A.Y., Huang C.-N., et al. Fabrication of diffractive optics by use of slow tool servo diamond turning process [J]. Opt Eng, 2006, 45(11): 113401
    [135] Kim J., Kim D. H., Son Y. Rheological properties of long chain branched polyethylene melts at high shear rate [J]. Polymer, 2009, 50(21):4998-5001
    [136] Kim J., Kim D. H., Son Y. Abnormal rheological behavior of linear low density polyethylene melts at high shear rate [J]. Polym Bull, 2008, 60(6):821-828
    [137] Wagner M.H., Bernnat A., Schulze V. Rheology of the rheotens test [J]. J Rheol, 1998, 42(4):917-928
    [138] Wagner M.H., Schulze V., Gottfert A. Rheotens-mastercurves and drawability of polymer melts [J]. Polym Eng Sci, 1996, 36(7):925-935
    [139] Yang C., Li L., Huang H.-X., et al. Replication characterization of microribs fabricated by combining ultraprecision machining and microinjection molding [J]. Polym Eng Sci, 2010, 50(10):2021-2030
    [140] Yao D, Kim B. Scaling issues in miniaturization of injection molded parts [J]. J Manuf Sci Eng, 2004, 126(4): 733-739
    [141] Yang C., Huang H.-X., Castro J.M., et al. Replication characterization in injection molding of microfeatures with high aspect ratio: influence of layout and shape factor [J]. Polym Eng Sci, 2011, 51(5):959-968
    [142] Yan C., Nakao M., Go T., et al. Injection molding for microstructures controlling mold-core extrusion and cavity heat-flux [J]. Microsyst Technol, 2003, 9(3):188-191
    [143] Kim S.K., Choi S.-J., Lee K.-H., et al. Observation of instabilities in flow front during micro injection molding process [J]. Polym Eng Sci, 2010, 50(7):1377-1381
    [144] Zhou Y.-G., Turng L.-S., Shen C.-Y., Modeling and prediction of morphology and crystallinity for cylindrical-shaped crystals during polymer processing [J]. Polym Eng Sci, 2010, 50(6): 1226-1235
    [145] Doi M., Edwards S.F. The theory of polymer dynamics, Oxford, UK: Clarendon, 1986
    [146] Tadmor Z.J. Molecular orientation in injection molding [J]. J Appl Polym Sci, 1974, 18(6):1753-1772
    [147] Nguyen N.T., Wu Z. Micromixers-a review [J]. J Micromech Microeng, 2005, 15, R1-R16
    [148] Munson M.S., Yager P. Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer [J]. Anal Chim Acta, 2004, 507(1):63-71
    [149] Sch?nfeld F., Hessel V., Hofmann C. An optimised split-and-recombine micro-mixer with uniform‘chaotic’mixing [J]. Lab Chip, 2004, 4(1):65-69
    [150] Lee S.W., Kim D.S., Lee S.S., et al. A split and recombination micromixer fabricated in a PDMS three-dimensional structure [J]. J Micromech Microeng, 2006, 16, 1067-1072
    [151] Kim D.S., Lee S.H., Kwon T.H., et al. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers [J]. Lab Chip, 2005, 5(7): 739-747
    [152] Li, L., Yang C., Shi H., et al. Design and fabrication of an affordable polymer micromixer for medical and biomedical applications [J]. Polym Eng Sci, 2010, 50(8): 1594-1604
    [153] B?umer S. Handbook of plastic optics, Wiley-VCH: Weinheim, 2005
    [154] Watanabe T., Ooba Naoki, Hida Y., et al. Influence of humidity on refractive index of polymers for optical waveguide and its temperature dependence [J]. Appl Phys Lett, 1998, 72(13):1533-1535
    [155] Kim H.K., Shi F.G. Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence [J]. J Mater Sci-Mater Electron, 2001, 12(7):361-364
    [156] Tanio N., Irie M. Refractive Index of Organic Photochromic Dye-Amorphous Polymer Composites [J]. Jpn J Appl Phys, Part 1, 1994, 33(7):3942-3946
    [157] Hanemann T., Hauelt J., Ritzhaupt-Kleissl E. Compounding, micro injection moulding and characterisation of polycarbonate-nanosized alumina-composites for application in microoptics [J]. Microsyst Technol, 2009, 15(3):421-427
    [158] Carrillo A. J., Isayev A. I. Birefringence in gas-assisted tubular injection moldings: Simulation and experiment [J]. Polym Eng Sci, 2009, 49(12):2350-2373
    [159] Huang H.-X., Yang C., Li K. Effects of process parameters on shrinkage uniformity and birefringence of injection-compression molded parts [C]. ASME, 2009, 15:193-200
    [160] Yang C., Su L., Huang C.-N., et al. Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens [J]. Adv Polym Tech, 2011, 30(1):51-61
    [161] Dennis T., Gill E.M., Gilbert S.L. Interferometric measurement of refractive-index change in photosensitive glass [J]. Appl Opt, 2001, 40(10):1663-1667
    [162] Alexandrov S.A., Chernyh I.V. Interference method for determination of the refractive index and thickness [J]. Opt Eng, 2000, 39(9): 2480
    [163] Maruyama H., Inoue S., Mitsuyama T., et al. Low-Coherence Interferometer System for the Simultaneous Measurement of Refractive Index and Thickness [J]. Appl Opt, 2002, 41(7): 1315-1322
    [164] Coppola G., Ferraro P., Iodice M., et al. Method for Measuring the Refractive Index and the Thickness of Transparent Plates with a Lateral-Shear, Wavelength-Scanning Interferometer [J]. Appl Opt, 2003, 42(19):3882-3887
    [165] Ohmi M., Nishi H., Konishi Y., et al. High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics [J]. Meas Sci Technol, 2004, 15(8):1531-1535
    [166] Kuryaeva R.G. Effect of pressure on the refractive index and relative density of the CaO ? Al2O3 ? 6SiO2 glass [J]. J Non-Cryst Solids, 2009, 355(3): 159-163
    [167] Francesconi R., Bigi A., Vitalini D., et al. Densities, viscosities, refractive indices, and heat capacities of four poly(ethylene glycol)-Poly(propylene glycol)-Poly(ethylene glycol)-block-Copolymers+Dimethyl Sulfoxide at (298.15 and 313.15) K and at Atmospheric Pressure [J]. J Chem Eng Data, 2009, 54(3): 956-961
    [168] Su L., Chen Y., Yi A.Y., et al. Refractive index variation in compression molding of precision glass optical components [J]. Appl opt, 2008, 47(10): 1662-1667
    [169] Welsh B.M., Ellerbroek B.L., Roggemann M.C., et al. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor [J]. Appl Opt, 1995, 34(21): 4186-4195
    [170] Koch J.A., Presta R.W., Sacks R.A., et al. Experimental Comparison of a Shack-Hartmann Sensor and a Phase-Shifting Interferometer for Large-Optics Metrology Applications [J]. Appl Opt, 2000, 39(25): 4540-4546
    [171] Chang R.Y., Chen C.H., Su K.S. Modifying the tait equation with cooling-rate effects to predict the pressure-volume-temperature behaviors of amorphous polymers: Modeling and experiments [J]. Polym Eng Sci, 1996, 36(13):1789-1795

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700