超声波辅助微注塑方法及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统(MEMS)在微型光学、航空航天等领域不断发展,微型元器件的需求与日俱增,目前聚合物材料被认为是替代传统材料进行微型元器件加工的重要材料,而微注塑成型技术(μIM)是聚合物成型的关键技术之一,具有制造工艺简单,生产成本低,易于实现大批量自动化生产等优点。
     和传统注塑成型技术相比,微注塑成型技术面临的挑战主要是聚合物熔体在微尺度型腔中流动阻力增大,充模比较困难。本文提出将超声振动应用到微注塑成型过程中,利用超声能量降低熔体粘度,以超声场的作用去改善熔体流动行为及聚合物熔体冷却凝固时大分子结构的排列,从而达到在微小型腔顺利充模,提高微注塑成型质量的目的。
     本文在分析微注塑成型技术及超声波作用机理的基础上,自主开发了将超声波直接作用于聚合物熔体的微注塑成型模具系统,并以微光学系统元件菲涅尔透镜为成型目标,开展了超声波辅助微注塑成型工艺技术的研究。首先,利用正交实验法与仿真相结合的方法,对菲涅尔透镜塑件的微注塑成型参数进行了优化,同时进行了单因素实验模拟,分析了各注塑参数对塑件质量的影响规律;其次,利用自主开发的超声波辅助微注塑模具系统进行菲涅尔透镜的实际微注塑实验,考察了注塑过程中超声波对型腔中聚合物熔体流动性能和充模性能的影响,施加超声振动后透镜充模面积最大增大了17.3%;通过比较菲涅尔透镜表面形状精度,研究了超声微注塑在对菲涅尔透镜成型精度上的作用,结果表明,虽然超声波对于齿深和齿宽的改善程度不明显,但是却能明显改善菲涅尔透镜左右齿形的对称性,即熔体充填均匀性;最后,利用得到的最优微注塑工艺参数进行菲涅尔透镜的实际超声波辅助微注塑实验,验证了正交实验得到的最优工艺参数的准确性,实现了菲涅尔透镜的高质量微注塑加工。
As the rapid development of MEMS technology in micro-optics, aerospace and other fields, the demand of micro devices is increasing. Polymer material is considered as an important material to substitute traditional materials for micro products currently, and micro-injection molding technology (μIM), is one of the key technologies in forming polymer. The advantages ofμIM are simple to manufacture, low cost, easy to implement mass production and automated production and so on.
     Compared with conventional injection molding techniques, the main challenge ofμIM is polymer melt filling difficultly in small cavity. In order to solve this problem and to improve the quality of micro-products, the technology of ultrasound-assisted in micro-injection molding process is studied. The ultrasonic energy is used to reduce the melt viscosity, and to improve the melt flow behavior in filling as well as the structure after solidification.
     According to micro injecting molding technology and the action principle of ultrasound, an ultrasound-assisted micro injection mold which the ultrasound is exerted on the polymer directly is designed. First, based on orthogonal experiment and simulation result, the influences of technological parameters on the molding quality were discussed. Second, in order to verify effect of ultrasound-assisted micro-injection molding, an ultrasound-assisted micro-injection molding for Fresnel lens was launched, the experimental results showed that the mould filling capability of micro injection molding had been improved by about17.3% with the same injection parameters, and the structure of Fresnel were more uniformity. Finally, obtained results showed orthogonal experiment was credibility for gaining optimization parameters, and high quality micro-Fresnel lens molding processing was achieved by ultrasound-assisted micro-injection.
引文
[1]Kukla C, Loibl H, Detter H, et al., Micro-injecting molding-the aims of a project partnership, Kunststoffe plast Europe,1998, 88(9):6~7
    [2]Pei-Chi Chang, Sheng-Jye Hwang, Huei-Huang Lee, et al., Development External type Micro injection Molding Module for Thermoplastic Polymer, Journal of Materials Processing Technology, 2007, 184(3):163~172
    [3]王勇,微型齿轮注塑成型工艺实验研究:[硕士学位论文],大连;大连理工大学,2006
    [4]Michaeli W, Spennemann A, Gartner R, New plastification concepts for micro injection molding, Micro system Technologies,2002,8(1):55~57
    [5]Knights M, Micro molding Sizing Up the Challenges, Plastic Technology, 2001( 8):54~62
    [6]庄俭,张建国,高世权等,微注塑成型机的研究现状与进展,塑料科技,2009,37(5):92~95
    [7]J A McGeough, M C Leu, K P Rajurkar, Electroforming process and application to micro/macro manufacturing, Keynote paper in annals of CIRP,2001,50(2):499~513
    [8]Chen R H, Chang J R, Shyur J S, Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan Starch, Ultrasound in Medicine and Biology, 2002, 28(1):116~123
    [9]Rokita B, Czechowska-Biskup R, Ulanski P, Modification of polymers by ultrasound treatment in aqueous solution, Epolymer Art, 2005,24(5):46~50
    [10]Renata C B, Bozena R, Salah L,et al., Degradation of chitosan and starch by 360KHz ultrasound, Carbohydrate Polymers, 2005, 60(2):175~184
    [11]Michaeli W, Spennemann A, Gartner R, New plastification concepts for micro injection molding, Microsystem Technologies, 2002,8(1):55~57
    [12]Bretthauer C, Kauzlaric D, Muller C, Particle based modeling of ultrasonic Plastification with a yield-stress fluid (simulation and experiments),The Third International Conference on Proceeding of Multiscale Materials Modeling. Freiburg, Germany, 18~22th September,2006, 917~920
    [13]应继儒,彭少贤,胡圣飞等,聚合物新型塑化模型构建及装置的研制,塑料工业,2003,34(7):44~48
    [14]吴旺青,聚合物超声熔融塑化技术与测试装备研究:[硕士学位论文],湖南;中南大学,2008
    [15]胡建良,聚合物超声波熔融塑化速率测定及其影响因素分析:[硕士学位论文],湖南;中南大学,2010
    [16]Harutaka Mekaru, Hiroshi Goto, Masaharu Takahashi,et al., Development of ultrasonic micro hot embossing technology, Microelectronic Engineering, 2007, 84(8):1282~1287
    [17]A.I.Isayev, C.M.Wong, X.Zeng, Effect of Oscillations During Extrusion on Rheology and Mechanical Properties of Polymers, Advances in Polymer Technology,1990, 10:31~32
    [18]Feng.W, A.I.Isayev, et al., In situ ultrasonic compatibilization of unvulcanized and dynamically vulcanized PP/EPDM blends,Polymer Engineering and Science, 2004,44(11):2019~2028
    [19]Bo Peng, Hong wu, Shaoyun Guo, et al., Static ultrasonic oscillations induced degradation and its effect on the linear rheological behavior of novel propylene based plastomer melts, Polymer Degradation and Stability,2007,92(8):1632~1639
    [20]彭响方,高文龙,兰庆贵等,超声振动对聚合物结构性能的影响,塑料工业,2004,32(7):4~6
    [21]Saito Inoue, Kazuo Sato, Molding Method and Molding Device Utilizing Ultrasonic Vibration and Optical Lens, EP1621315A1.2006
    [22]Lei Xie, Gerhard Ziegmann, Bingyan Jiang, Reinforcement of micro injection molded weld line strength with ultrasonic oscillation, Microsystem Technology, 2010,16:399~404
    [23]曹凤国,超声加工技术,北京:化学工业出版社,2005,40~42
    [24]王博文,曹淑瑛,磁致伸缩材料与器件,北京:冶金工业出版社,2008
    [25]林书玉,超声换能器的原理及设计,北京:科学出版社,2004,91~97
    [26]张云电,夹心式压电换能器及其应用,北京:科学出版社,2006,59~66
    [27]徐明刚,超声振动气体介质电火花复合加工技术及机理研究:[博士学位论文],山东;山东大学,2007
    [28]贺西平,程存弟,几种常见形状函数超声波变幅杆性能参量的统一表达,陕西师范大学报,1994
    [29]廖华丽,周军,功率超声加工中超声波发生器的研究,煤矿自动化,1999(6):11~13
    [30]王敏慧,鲍善惠,粗细端等长阶梯形变幅杆的有限元分析,应用声学,2005,24(5):275~280
    [31]万德安,刘春节,超声变幅杆的模态分析,北京:机械与电子,2004
    [32]王荣津,水声材料手册,北京:科学出版社,1983
    [33]周长城,Ansys 11.0基础与典型范例,北京:电子工业出版社,2007,195~259
    [34]张朝晖,Ansys8.0结构分析与实例解析,北京:机械工业出版社,2003,181~185
    [35]王宝,陈依雯,菲涅尔透镜,云光技术,1983 (6):55~60
    [36]杨晓东,红外触发式数码成像系统的研究与实现:[硕士学位论文],广东;华南理工大学,2010
    [37]张维合,注塑模具设计实用教程,北京:化学工业出版社,2008,63~64
    [38]陈艳霞等,Moldflow2010完全自学与速查手册,北京:电子工业出版社,2010,231~232
    [39]陈志新,刘建雄,注射模设计中CAE技术的综合应用,北京:模具工业,2006( 9):24~27
    [40]张珑,塑料成型CAE-Moldflow应用基础,北京:电子工业出版社,2010,207~208
    [41]董斌斌,申长丽,刘春太,注射工艺参数对PC/ABS材料制品收缩与翘曲的影响,高分子材料科学与工程,2005,21(4):232~235
    [42]陈建松,基于仿真的注塑翘曲参数优化方法的研究,硕士学位论文,广东工业大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700