聚合物平板微器件的翘曲及模内键合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微注塑成型具有周期短、效率高的特点,已经成为聚合物平板微器件的重要加工方法。翘曲是微注塑成型中的主要缺陷之一,直接影响到平板微器件的成型质量,以及后续的加工工序,翘曲控制已成为国内外学者的研究热点。此外,平板微器件的成型与键合相互分离,键合需要在专门的仪器设备上完成,增加了生产周期和成本,因此,高效的键合方法是平板微器件批量化生产的关键环节。
     本文以微注塑成型平板微器件为研究对象,从注塑残余应力的角度来研究翘曲变形的控制方法,利用仿真计算和测量实验,分析了注塑工艺参数对翘曲影响的权重顺序,以及工艺结构对残余应力分布和翘曲变形的改善作用,选择异丙醇为辅助溶剂,进行了模内键合实验。主要研究内容包括:
     设计了一套型芯可插拔式的微注塑模具。采用镶拼式结构,型芯采用硅为材料,利用MEMS工艺加工制作,金属模架部分借鉴常规模具的设计原则,设计了浇注系统、模温控制系统、排气系统和推出机构,设计了基于插板结构的装配方式,实现了模具型芯的快速无损装配。
     通过正交仿真试验,分析了注塑工艺参数及工艺结构对翘曲的影响。采用Moldflow软件研究了熔体温度、保压压力、保压时间、模具温度和冷却时间对翘曲的影响,优化了工艺参数;在相同工艺条件下,仿真分析了增加工艺结构对减小翘曲的影响,采用Ansys软件分析了工艺结构对注塑残余应力的改善作用。
     完成了平板微器件的翘曲测量实验。根据仿真试验内容,测量了不同工艺参数下平板微器件的翘曲值,比较了增加工艺结构前后,平板微器件翘曲变形的变化趋势,对仿真结果作了进一步验证。
     利用异丙醇完成了模内键合实验。测试了不同温度、时间条件下,PMMA芯片在异丙醇溶液中的溶胀作用,对微通道形貌和芯片表面粗糙度进行了观测,采用Babyplast610微型注塑机和微注塑模具作为键合平台,利用异丙醇进行键合实验,通过拉伸实验测试了芯片的键合强度,观察了键合后微通道截面形状,优化了键合工艺参数。
As its short injection cycle and high efficiency, micro injection molding is an important fabrication method of polymer flat micro parts. Warpage is one of the major problems in micro injection molding, which could not only weaken the injection quality, but also affect the following working procedures. Thus, warpage has been a research focus for domestic and foreign scholars. For the fabrication of polymer flat micro parts, the bonding procedure should be conducted in special facilities and is separate from molding, which leads to long production cycle and high cost. Therefore, to develop an efficient bonding method is the key part in the mass production of polymer flat micro parts.
     In this paper, the micro injection molded polymer flat micro parts were taken as the research object, the warpage controlling method was developed in terms of the residual stress in micro injection. Through the simulation and the measurement experiment, the influence order of the process parameters on warpage was analyzed as well as the effect of technological structures on warpage improvement. Further more, the solvent-assisted in-mold bonding experiment was conducted based on isopropanol. The major contents are as follows:
     A core-removable micro injection mold was designed. The insert structure was selected and the Si chip was fabricated as the core by MEMS process. With the utilization of traditional design discipline, the gating system, mold temperature controlling system, exhaust system and ejection mechanism were implemented. And a removable assembling method was designed to realize the rapid and non-damaged replacement of mold core.
     With the Taguchi method in the simulation, it was analyzed that the influence of injection process parameters and technological structures on warpage. Moldflow was conducted to research the influence of melt temperature, packing pressure, mold temperature and cooling time on warpage. and optimize the parameters. Further more, the weakening effect of technological structures on warpage was analyzed in the same conditions. And its influence on residual stress improvement was studied by Ansys.
     The warpage measurement experiment was implemented. According to the simulation results, the warpage values were measured under different process parameters. And the change of warpage values was compared to the former one after adding the technological structures, in order to test the simulation conclusion.
     In-mold bonding experiment was completed based on the isopropanol solvent. The swelling of PMMA was tested under different temperatures and times in the isopropanol. and the micro channel shapes and surface roughness were measured. Besides, the in-mold bonding experiment was carried out with isopropanol on Babyplast610micro injection machine, the bonding strength was tested through tensile experiment, and the process parameters were optimized.
引文
[1]林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社,2008.
    [2]Ramalingam N, Zhang Rui, Liu Hao-Bing, et al. Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens[J]. Sensors and Actuators,2010(145):543-552.
    [3]史学峰,郭培基.导光板注塑成型技术的研究[D].苏州:苏州大学,2008.
    [4]罗建华,蒋炳炎.超薄导光板的微注塑成型及其工艺参数的优化[D].长沙:中南大学,2006.
    [5]Huang Ming-Shyan, Chung Chin-Feng. Injection Molding and Injection Compression Molding of Thin-Walled Light-Guided Plates with V-Grooved[J]. Applied Polymer Science,2011 (121):1151-1159.
    [6]Lee J Y, Fauchet P M. Slow-light dispersion in periodically patterned silicon microring resonators[J]. Optical Society of America,2012,37(1):58-60.
    [7]Chen Kaixin, Chu Pak L. Design and Fabrication of a Broadband Polymer Vertically Coupled Optical Switch[J]. LIGHTWAVE TECHNOLOGY,2006,24(2):904-911.
    [8]蒋炳炎,刘瑶,李代兵等PMMA微流控芯片高效键合工艺研究[J].塑料工业,2010,38(4):33-36.
    [9]Liu Fen, Zhou Huamin, Li Dequn. Numerical Simulations of Residual Stresses and Warpage in Injection Molding[J]. Reinforced Plastics and Composites,2009,28(5):571-585.
    [10]Ozcelik Babur, Ibrahim Sonat. Warpage and structural analysis of thin shell plastic in the plastic injection molding[J]. Materials and Design,2009(30):367-375.
    [11]Liu Fen, Zeng Shengqu, Zhou Huamin, et al. A Study on the Distinguishing Responses of Shrinkage and Warpage to Processing Conditions in Injection[J]. Applied Polymer Science,2012 (125):731-744.
    [12]Sanchez R, Aisa J, Martinez A, et al. On the relationship between cooling setup and warpage[J]. Measurement,2012(45):1051-1056.
    [13]吴海宏,赵振峰,黄明等.聚合物注塑内应力和翘曲变形的数值模拟[J].高分子材料科学与工程,2007.23(6):16-19.
    [14]任柏青,宋满仓.薄壁注塑填充性和残余应力的研究[D].大连:大连理工大学,2007.
    [15]李海梅,申长雨,顾元宪.注塑件残余应力计算及翘曲变形分析[J].流变学进展,1999(11):431-435.
    [16]Zheng R, Kennedy P, Phan-Thien N, et al. Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics[J]. Non-Newtonian Fluid Mech,1999(84), 159-190.
    [17]李金良,龙玲.注塑制品的翘曲变形分析[J].电加工与模具,2004:56-58.
    [18]李海梅,顾元宪,申长雨.注塑件的翘曲变形分析与成型尺寸预测[J].中国机械工程,2002,13(10):826-828.
    [19]Gao Yuehua, Wang Xicheng. Surrogate-based process optimization for reducing warpage in injection molding[J]. Materials processing technology,2009(209):1302-1309.
    [20]Tang S H, Tan Y J, Sapuan S M, et al. The use of Taguchi method in the design of plastic injection mould for reducing warpage[J]. Materials Processing Technology,2007(182): 418-426.
    [21]Choi Du-Soon, Im Yong-Taek. Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding[J]. Composite Structures, 1999(47):655-665.
    [22]Zhou H, Zeng S, Wang Z, et al. Warpage simulation of plastic injection moulded parts using a multi-point constraint approach[J]. Materials Research Innovations,2011, 15(1):237-240.
    [23]CellereA, LucchettaG. Identification of crims model parameters for warpage prediction in injection moulding simulation[J]. Mater Form,2010,3(1):37-40.
    [24]Grujicic M, Sellappan V, Pandurangan B, et al. Computational analysis of injection-molding residual-stress development in direct-adhesion polymer-to-metal hybrid body-in-white components [J]. Materials processing technology,2008 (203):19-36.
    [25]温敏,王晓东,刘冲等PMMA微流控芯片微通道热压成形与键合工艺研究[J].光学精密工程,2004,12(3):272-276.
    [26]朱学林,郭育华,王俊等PMMA面键合的热压法工艺研究[J].中国机械工程,2005,16:451-453.
    [27]Sun Yi, Kwok Y C, Nguyen N T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separat ion[J]. Micromechanics and Microengineering,2006(16):1681-1688.
    [28]Roy S, Yue C Y, Wang Z Y, et al. Thermal bonding of microfluidic devices:Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers[J]. Sensors and Actuators,2012(161):1067-1073.
    [29]张宗波,罗怡,王晓东等.基于局部溶解性激活的聚合物微流控芯片超声波键合[J].纳米技术与精密工程,2011,9(4):345-349.
    [30]Truckenmiiller R, Henzi P, Herrmann D, et al. A New bonding process for polymer micro-and nanostructures based on near-surface degradation[C].17th IEEE International Conference on Micro Electro Mechanical Systems,2004:761-764.
    [31]Hidetoshi Shinohara, Jun Mizuno, Shuichi Shoji. Low-temperature Direct Bonding of Poly(methyl methacrylate) for Polymer Microchips[J]. transactions on electrical and electronic engineering,2007,2:301-306.
    [32]Sun Xinhua, Peeni B A, Yang Weichun, et al. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding[J] Chromatography A,2007(1162):162-166.
    [33]Ng S H, Tjeung R T, Wang Zhenfeng. Formation of Embedded Microchannels by a Solvent Displacement Bonding Technique[C].9th Electronics Packaging Technology Conference,2007:211-214.
    [34]Shah J J, Geist J, Locascio L E, et al. Capillarity Induced Solvent-Actuated Bonding of Polymeric Microfluidic Devices[J]. Anal. Chem,2006,78:3348-3353.
    [35]蓝才红,蒋炳炎,刘瑶等.聚合物微流控芯片键合微通道变形仿真研究[J].塑料工业,2009,37(5):31-34.
    [36]蓝才红,蒋炳炎.聚合物微流控芯片模内键合微通道变形研究[D].长沙:中南大学,2009.
    [37]申瑞霞,蒋炳炎.基于透气钢的微流控芯片气动吸脱模系统实验研究[D].长沙:中南大学,2009.
    [38]Tsao C W, DeVoe D L. Bonding of thermoplastic polymer microfluidics[J]. Microfluid Nanofluid,2009(6):1-16.
    [39]Liu Yufei, Zeng Jun, Wang Changhai. Accurate Temperature Monitoring in Laser-Assisted Polymer Bonding for MEMS Packaging Using an Embedded Microsensor Array [J]. Microelectromechanical systems,2010,19(4):903-910.
    [40]Sun Yibo, Luo Yi, Wang Xiaodong, et al. A new ultrasonic precise bonding method with ultrasound propagation feedback for polymer MEMS[J]. Microelectronic Engineering, 2011(88):3049-3053.
    [41]Lin C H, Chao C H, Lan C W. Low azeotropic solvent for bonding of PMMA microfluidic devices[J]. Sensors and Actuators,2007(121):698-705.
    [42]Mair D A, Rolandi M, Snauko M, et al. Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips[J]. Anal. Chem,2007(79):5097-5102.
    [43]李丽萍,杜晓光.溶剂键合法制作聚碳酸酯微流控分析芯片[J].分析化学,2009(37):138-]38.
    [44]蔡娥,吴纬纬,徐勤雁.塑料模具设计与成型分析[M].杭州:浙江大学出版社,2008.
    [45]付伟,陈碧龙.注塑模具设计原则、要点及实例解析[M].北京:机械工业出版社,2010.
    [46]陈世煌,陈可娟.塑料注射成型模具设计[M].北京:国防工业出版社,2007.
    [47]宋满仓.注塑模具设计与制造实战[M].北京:机械工业出版社,2007.
    [48]申长雨.注塑成型模拟及模具优化设计理论与方法[M].北京:科学出版社,2009.
    [49]杨铎,刘冲,徐征.聚合物熔体表面效应与平板微器件的注塑成型研究[D].大连:大连理工大学,2011.
    [50]王彤珺,刘冲.基于微沟槽平板微器件的模具设计及翘曲优化[D].大连:大连理工大学,2010.
    [51]严志云,石虹桥,梁世强,等.聚合物复合材料界面粘合理论研究进展[J].仲恺农业技术学院学报,2007,20(2):62-65.
    [52]周瑞明.粘接机理的扩散理论与溶解度参数[J].温州师范学院学报,1994(3):60-64.
    [53]高保娇.溶解度参数及其应用[J].山西化工,1998(2):18-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700