实时荧光PCR芯片系统设计及其生物学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物芯片技术是20世纪末发展起来的一项新技术。生物芯片是在微小面积上,利用微加工技术,并结合有关的化学合成技术制造而成的一种具有一定分子生物学检验功能的微型器件。分析和解释生物芯片上得到的信息,将在DNA结构与功能之间架起一道桥梁,进而推进生命科学的迅速发展。
     首次将实时荧光PCR技术与微流控芯片技术相结合,设计了一款实时荧光PCR芯片。在此芯片中设计了一个坝状结构,芯片键合封装后在坝下面会形成一个1um的罅缝,此罅缝能从血液中分离出白细胞,细胞分离后再往此芯片中注入PCR反应液,实现在同一腔体中进行PCR反应。由于它在很小的腔体内进行PCR反应,能大大节省样品和试剂的使用量。
     在此芯片上利用微加工技术,集成制作了微加热器和温度传感器。由于芯片本身是由硅片和玻璃片经阳极键合而成,有非常好的导热效果,而且没有使用具有较大热容的外置加热器件,从而提高了PCR反应的升降温速度,缩短了PCR反应总时间。加热器和温度传感器的集成化,使得我们设计的芯片温控、荧光检测平台得以微型化。
     同时自主设计了针对此芯片的专用检测平台,该平台由注射泵系统、实时荧光信号采集系统和PCR温度控制系统等组成,能实现样品进样,PCR温度控制,实时荧光检测、检测结果分析及处理等功能。
     最后,将此实时荧光PCR芯片及其检测平台应用于强直性脊柱炎相关基因HLA-B27的检测,实验证明该芯片系统能快速准确的检测出血液中的HLA-B27基因,从而验证了此芯片系统的实用价值。
Biochip technology is a new technology, which developed at the end of the 20th century. Biochip is in the small area, using of micro-processing technology, combined with the chemical synthesis technology to create micro-devices, which have the function of molecular biology test. Analysis and interpretation the information of biological chips will build a bridge between the structure and function of DNA, and push forward the rapid development of life sciences.
     In this paper, we introduce a novel real-time fluorescent polymerase chain reaction (PCR) chip, which integrated the pretreatment of biological sample, the PCR reaction and the real-time fluorescent detection. We have built a dam in the chamber of the chip, and formed a crack underneath it to separate the white blood cell from the whole blood. Due to its small cavity in the body for PCR reaction, the sample and the use of reagents can be reduced substantially.
     We have produced a micro-heater and temperature sensor, using micro-chip processing technology. As the biochip is combined with silicon and glass by anodic bonding, there is a very good thermal conductivity effect. And no use of larger heat capacity of the external heater parts, so as to enhance the heating and cooling rate of the PCR reaction, reducing The total time of the PCR reaction. Heater and temperature sensor integrated, allow us to miniaturize the platform of the chip temperature controling, and fluorescence detecting.
     We have designed the corresponding examination system in view of this chip, which is composed of syringe pump module, temperature control module and fluorescence sampling module.
     We also used the constructed chip for the examination of HLA-B27 related to ankylosing spondylitis and the results show that the chip is available for the accurate and rapid analysis of HLA-B27 in the whole blood.
引文
[1] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensor Actuators B, 1990, 1(1): 244-248
    [2] Harrison D J, Manz A, Fan Z H, et al. Capillary electrophoresis and sample injection system integrated on a planar glass chip. Analytical Chemistry, 1992, 64: 1926-1932
    [3] Jacobson S C, Hergenroeder R, Koutny L B, et al. High speed separatins on a microchip. Analytical Chemistry, 1994, 66: 1114-1118
    [4] Woolley A T, Mathies R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Analytical Chemistry, 1995, 67(20): 3676-3680
    [5] Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Analytical Chemistry, 1996, 68(23): 4081-4086
    [6] Woolley A T, Sensabaugh G F, Mathies R A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Analytical Chemistry, 1997, 69: 2181-2186
    [7] Paegel B M, Yeung S H I, Mathies R A. Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Analytical Chemistry, 2002, 74: 5092-5098
    [8] Thorsen T, Maerki S J, Quake S R. Microfluidic large-scale integration. Science, 2002, 18: 580-584
    [9] 方肇伦等.微流控分析芯片.北京:科学出版社,2003
    [10] Lagally E T, Simpson P C, Mathies R A. Monolithic integrated micro-fluidic DNA amplification and capillary electrophoresis analysis system. Sens Actuators B, 2000, 63: 138-146
    [11] Khandurina J, McKnight T E, Jacobson S C, et al. Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices, Analytical Chemistry, 2000, 72: 2995-3000.
    [12] Lagally E T, Medintz I, Mathies R A. Single-molecule DNA amplification and analysis in an integrated microfluidic device Analytical Chemistry, 2001, 73(3): 565-570
    [13] Kopp M U, de Mello A J, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science, 1998, 280: 1046-1047
    [14] Belgrader P, Benett W, Hadley D, et al. PCR detection of bacteria in seven minutes. Science, 1999, 284: 449-450
    [15] Wilding P, Kricka L J, Cheng J, et al. Integrated cell isolation and polymerase chain reaction analysis using siliconmicrofilter chambers. Anal Biochem, 1998, 257(2): 95-100
    [16] 刘金华,殷学峰,方肇伦.螺旋通道微流控PCR芯片连续自动扩增DNA片段的研究.高等学校化学学报.2004,25:30
    [17] Huhmer A F R, Landers J P. Noncontact Infrared Mediated Thermocycling for Effective Polymerase Chain Reaction Amplification of DNA in Nanoliter Volumes. Anal. Chem. 72: 5507-5512.
    [18] Hong J W, Fujii T, Seki M, et al. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis. 2001, 22: 328-333
    [19] Yang J N, Liu Y J, Rauch C B. High sensitivity PCR assay in plastic micro reactors. Lab Chip. 2002, 2: 179-187
    [20] 刘金华;殷学锋;徐光明等.流动型微流控PCR扩增芯片的研究.高等学校化学学报.2003,24:232
    [21] Liu J, Enzelberger M, Quake S. A nanoliter rotary device for polymerase chain reaction. Electrophoresis. 2002, 23: 1531-1536
    [22] Hataoka Y, Zhang L H, Mori Y, et al. Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips. Anal Chem. 2004, 76: 3689-3693
    [23] Lee D S, Park S H, Yang H, et al. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip, 2004, 4: 401-407
    [24] Liu R H, Yang J, Lenigk R, et al. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry, 2004, 76: 1824-1831
    [25] Friedman N A, Meldrum D R. Capillary tube resistive thermal cycling. Analytical Chemistry, 1998, 70(14): 2997-3002
    [26] Shen K Y, Chen X F, Guo M, et al. A microchip-based PCR device using flexible printed circuit technology. Sens. Actuators B, 2005, 105: 251-258
    [27] Yan W P, Du L Q, Wang J, et al. Simulation and experimental study of PCR chip based on silicon. Sens. Actuators B, 2005, 108: 695-699
    [28] Higuchi R, Dollinger G, Walsh PS, et al. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 1992, 10(4): 413-417
    [29] 李金明.实时荧光PCR技术.人民军医出版社.2007
    [30] Lund O T, Dufva M, Dahl J A, et al. Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform. Biomedical Microdevices. 2008, 10(6): 769-776.
    [31] Xiang Q, Xu B, Li D. Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module. Biomedical Microdevices. 2007, 9(4): 443-449.
    [32] Chien J H, Lee D S, Chou W P, et al. Simultaneous quantification for hepatitis B virus and hepatitis C virus using real-time PCR lab-on-a-chip. 2006, IEEE International Conference of Nano/Micro Engineered and Molecular Systems, Zhuhai, PEOPLES R CHINA, JAN 18-21.
    [33] Neuzil P, Pipper J, Hsieh T M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Molecular Biosystems. 2006, 2(6-7): 292-298
    [34] Beer N R, Hindson B J, Wheeler E K, et al. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Analytical Chemistry. 2007, 79(22): 8471-8475.
    [35] Mohamed H, McCurdy L D, Szarowski D H, et al. Development of a rare cell fractionation device: Application for cancer detection. IEEE T. Nanobiosci., 2004, 3(4): 251-256
    [36] Wilding P, Kricka L J, Cheng J, et al. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem, 1998, 257(2): 95-100
    [37] Carlson R H, Gabel C V, Chan S S, et al. Self-sorting of white blood cells in a lattice. Phys. Rev. Lett., 1997, 79(11): 2149-2152
    [38] Fu A Y, Spence C, Scherer A, et al. A microfabricated fluorescence-actived cell sorter. Nat. Biotechnol. 1999, 17(11): 1109-1111
    [39] Li H B, Bashir R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens. Acutators. B, 2002, 86(2-3): 215-221
    [40] Fiedler S, Shirley S G, Schnelle T, et al. Dielectrophoretic sorting of particles and cells in a microsystem. Analytical Chemistry, 1998, 70(9): 1909-1915
    [41] Gawad S, Schild L, Renaud P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip, 2001, 1(1): 76-82
    [42] Arai F, Ichikawa A, Ogawa M, et al. High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis, 2001, 22(2): 283-288
    [43] Furdui V I, Harrison D J. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip, 2004, 4(6): 614-618
    [44] Tsong T Y, Neumannn E, Sowers A E, et al. Electroporation and Electrofusion in Cell Biology. New York: Plenum press, 1989, 149-163
    [45] Bates G W, Chang D C, Chassy B M, et al. Guide to Electroporation and Electrofusion. New York: Plenum press, 1989, 249-264
    [46] Vulto P, Glade N, Altomare L, et al. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip, 2005, 5(2):158-162
    [47] Di Carlo D, Jeong K H, Lee L P. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip, 2003, 3(4): 287-291
    [48] Li P C H, Harrison D J. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Analytical Chemistry, 1997, 69(8): 1564-1568
    [49] Di Carlo D, Ionescu-Zanetti C, Zhang Y, et al. On-chip cell lysis by local hydroxide generation. Lab Chip, 2005, 5(2): 171-178
    [50] Pierre Dubus,王廷华,景强等.PCRN论与技术.科学出版.2005
    [51] Schneega I, Kohler J M. Reviews in Molecular Biotechnology. 2001, 82: 101
    [52] Chou C F, Changrani R, Roberts P, et al. A miniaturized cyclic PCR device modeling and experiments. Microelectronics Eng., 2002, 61-62: 921-925
    [53] Liu J, Enzelberger M, Quake S. A nanoliter rotary device for polymerase chain reaction. Electrophoresis, 2002, 23: 1531-1536
    [54] Chen Z Y, Qian S Z, Abrams W R, et al. Thermosiphon-based PCR reactor: experiment and modeling. Analytical Chemistry, 2004, 76(13): 3707-3715
    [55] Chiou J, Matsudaira P, Sonin A, et al. A closed-cycle capillary polymerase chain reaction machine. Analytical Chemistry, 2001, 73(9): 2018-2021
    [56] Bu M Q, Melvin T, Ensel G1, et al. Design and theoretical evaluation of a novel microfluidic device to be used for PCR. Micrlmech. Microeng., 2003, 13: 125-130
    [57] Lin Y C, Yang C C, Huang M Y. Simulation and experimental validation of micro polymerase chain reaction chips. Sens. Actuators B, 2000, 71: 127-133
    [58] Ferrance J P, Wu Q J, Giordano B C, et al. Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Anal Chim Acta, 2003, 500: 223-236
    [59] Lagall E T, Emrich C A, Mathies R A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip, 2001, 1: 102-107
    [60] 李金明.实时荧光PCR技术.人民军医出版社.2007
    [61] 孔德明,古珑,沈含熙,宓怀风,TaqMan-分子灯标:一种新型的荧光基因检测探针,化学学报,2003,61(5)
    [62] 李秉鸿.实时荧光定量检测技术及应用.动物医学进展,2003,24(5)
    [63] 陈英剑,胡成进,赵苗青.SYBR Green实时荧光定量PCR技术平台的建立.实用医药杂志,2004,11
    [64] 余道坚,章桂明,陈志粦等.SYBR Green实时荧光PCR快速鉴定辣椒实蝇.植物检疫,2006,1
    [65] 王怡瑾,王宏,聂立波等.分子信标技术.化学通报,2004,12
    [66] 张永有,程金平,朱艳冰.分子信标及其应用研究进展.生命的化学,2002,2
    [67] 江雅新,方晓红,万立骏等.一种新型荧光探针--分子信标的研究及应用进展.分析化学,2004,5
    [68] R. Hirata, J. Barrera, R. F. Hashimoto, et al. Segmentation of microarray images by mathematical morphology. Real-time imaging, 2002, 8: 491-505.
    [69] 朱贵云,杨景和.激光光谱分析法,北京:科学出版社,1985
    [70] Grant W B. Laser remote sensing technique. Laser Spectroscopy and Its Application, 1987
    [71] Ocvirk G, Tang T, Harrison D J. Optimization of confocal epifluorescence microscopy for microchip-based miniaturized total analysis systems. Analyst, 1998, 123(7): 1429-1434
    [72] Effenhauser C S, Bruin G J M, Paulus A, et al. Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem, 1997, 69(17): 3451-3457
    [73] Hirschfeld T. Optical microscopic observation of single small molecules. Appl. Opt., 1976, 15(12): 2965-2966
    [74] Hamamatsu.光电倍增管--基础及应用.北京:北京滨松光子技术有限公司,1993,12-18
    [75] 李相民,周立伟,金伟其.科学级致冷CCD相机的性能和技术.大连理工大学学报,1997,37(2):163-165
    [76] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社,1998
    [77] Mello A J d. DNA amplification moves on. Nature, 2003, 422 (6927): 28-29.
    [78] Hagedorn R. , Fuhr G. , Muller T., et al. Travelling-wave dielectrophoresis of microparticles. Electrophoresis. 1992, 13: 49-54.
    [79] Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Trans. Ind. Appl. 1988, 23: 474-480
    [80] Morgan H, Green N G, Huges M P, et al. Large-area traveling-wave dielectrophoresis particle separator. Micromech. Microeng. 1997, 7: 65-70
    [81] Wang X B, Huang Y, Becker F F, et al. Dielectrophoretic manipulation of particles. IEEE/IAS Trans. 1997, 33: 660-669
    [82] Lee S W, Tai Y C. A micro cell lysis device. Sensors and Actuators, 1999, 73: 74-79
    [83] Babak Z, Antonio B, Ming L, et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Delivery. Rev., 2004, 56(2): 145-172
    [84] Schwarz M A, Hauser P C. Recent developments in detection methods for micro fabricated analytical devices, Lab on Chip, 2001, 1: 1-6
    [85] Texas Instruments. TMS320F/C24x DSP Controllers(Volumel: CPU and Instrucion Set). Texas Instruments, 1999
    [86] 张雄伟,曹铁勇.DSP芯片的原理与开发应用(第二版).北京航空航天大学出版社,2002
    [87] Mau W, Zeidler H, Mau R, et al. Clinical features and prognosis of patients with possible ankylosing spondylitis: results of a 10 years followup. J Rheumatol, 1988, 154, 15(4): 1109-1104
    [88] Liu Y, Li J, Chen B, et al. Familial aggregation ankylosing spondylitis in Southern China. Rheumatol, 2001, 28: 550-553
    [89] Zhang G, Luo J, Bruckel J, et al. Genetic studies in fam ilial ankylosing spondylitis susceptibility. Arthritis Rheum, 2004, 50(7): 2246-2254
    [90] Said N R, Miceli R C, Gautreau C, et al. The role of HLA genes in fam ilial spondyloarthropathy: a comprehensive study of 70 multiplex fam ilies. Ann Rheum Dis, 2002, 61(3): 201-206
    [91] www.capitalbio.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700