基于乙醇柴油单液滴蒸发和湍流扩散模型的喷雾和燃烧过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油供需矛盾的不断加剧,代用清洁燃料的研究越来越受到重视。乙醇是一种可再生的清洁含氧燃料,借助助溶剂制备乙醇柴油,具有广阔的应用前景。随着柴油机向着高效、清洁和低CO2排放发展,需要深入了解多组分燃料乙醇柴油在缸内雾化燃烧行为细节,利用燃料的理化性质协同燃烧边界优化控制燃烧路径,实现“油、气、室”三者的优化匹配。围绕多组分燃料的物性计算、乙醇柴油单液滴蒸发模型和传质传热过程分析以及湍流扩散燃烧模型等基础理论开展研究,改进内燃机缸内流体动力学仿真软件(ICFD-CN)燃料物性参数库、雾化燃烧相关模块,运用FORTRAN语言编写底层代码,构建多组分燃料雾化燃烧仿真平台,利用激光喷雾试验和台架试验验证了仿真平台的可靠性。以YZ4102ZLQ柴油机为对象,结合数值模拟和试验开展了乙醇柴油燃料特性对雾化燃烧过程影响机理的研究。主要内容如下:
     (1)开展混合燃料物性参数实时动态计算。对于乙醇柴油来说,液滴在蒸发过程中各组分质量分数在不断发生变化,需采用经验公式计算物性参数。选取经验公式预测对十四烷、乙醇和正丁醇的液体表面张力、蒸发焓、液体热导率、粘度、密度、饱和蒸气压、标准生成焓以及正丁醇蒸气在空气中扩散系数,对比计算值与参考值,根据两者的差异,对液体热导率和粘度的经验公式进行修正,使其估算精度进一步提高。
     (2)构建多组分燃料乙醇柴油单液滴蒸发模型,开展燃料特性对蒸发过程的影响分析。液滴蒸发是缸内燃油雾化蒸发重要阶段,而乙醇柴油是由理化性质存在较大的组分构成,与柴油单液滴蒸发存在明显差异。根据缸内高温高压强旋流环境、高压喷射雾化液滴直径以及乙醇柴油理化性质的特点,提出应用曲线蒸馏模型同时耦合沸腾蒸发模型描述乙醇柴油单液滴蒸发时传质传热过程,借助文献验证模型的可行性。结合柴油机边界条件,获得燃料特性对液滴蒸发时传质传热过程的影响规律。
     (3)采用具有很强的工程应用前景的火焰面模型计算柴油机湍流扩散燃烧速率。针对乙醇柴油多组分燃料的特点,增加控制方程,扩展火焰面模型基础方程,使其能计算乙醇柴油湍流扩散燃烧速率。
     (4)基于ICFD-CN,搭建多组分燃料乙醇柴油的雾化燃烧平台。①根据网格单元温度和压力,采用修正后的物性公式改进ICFD-CN软件中fuel、evap、colide、lawall、chem和chemeq等模块中物性值计算代码;②耦合构建的多组分燃料蒸发模型,编写蒸发代码,替代ICFD-CN原有evap蒸发模块,修改其它辅助计算雾化蒸发的子模块相关代码;③进一步耦合包含CO、CO2生成的两步动力学反应预混合燃烧模型以及构建的多组分燃料扩散燃烧模型,编写程序,改进chem、chemeq和rinput模块,从而构建多组分燃料乙醇柴油的雾化燃烧仿真平台。以YZ4102ZLQ柴油为对象,利用激光喷雾试验和台架试验验证喷雾形态、缸内压力以及NOx排放。结果表明,计算值与实验吻合良好,可进一步应用于乙醇柴油发动机雾化燃烧过程的数值研究。该平台的构建,解决了原ICFD-CN软件不能预测乙醇柴油多组分燃料雾化燃烧过程的局限,对于由理化性质差异较大组成的混合燃料的燃烧过程仿真,具有重要的参考价值。
     (5)分析乙醇柴油燃料特性对喷射和雾化过程的影响规律。测量柴油机燃用十四烷和N5E10时高压油管嘴泵端压力,分析并获得燃料特性对高压油管内燃油压力波特性的影响规律。仿真围绕乙醇柴油燃料特性对连续射流初次雾化、液滴二次雾化、二次雾化特征参数对液滴半径敏感性、缸内燃油蒸发速率、气相流场和喷雾演变的影响,得出燃用乙醇柴油时会增加燃油射流产生的平衡区涡团脉动,同时探明缸内N5E10燃油雾化效果优于十四烷的根本原因。
     (6)利用台架试验,开展乙醇柴油发动机的燃烧和排放特性对助溶剂感受性研究。获得燃用乙醇柴油/柴油时气缸压力、放热率、预混合和扩散燃烧持续期和热量分配、燃烧重心、常规排放以及颗粒物粒径分布特性等方面变化规律。与柴油相比,乙醇柴油预混合燃烧期缩短,预混合燃烧阶段放热量比例降低,扩散燃烧期缩短,燃烧重心更加向上止点靠近。乙醇柴油的NOx和不透光烟度降低,且N5E10效果更好。乙醇柴油的排放颗粒物分布向小粒径方向移动,助溶剂种类对乙醇柴油燃烧颗粒粒径分布有影响;与N5E10相比,B10E10燃烧颗粒小粒径的质量分数进一步增加。
     (7)利用构建的仿真平台,数值分析乙醇柴油燃料特性对燃烧过程的影响规律。获得燃料特性对燃油质量蒸发速率、混合气分布、燃料浓度场、温度场、滞燃期和滞燃期形成可燃混合气数量、燃料燃烧速率以及燃烧过程中关键组分浓度的影响规律。十四烷中掺醇,燃烧稳定性得到改善,温度分布更加均匀,局部高温区减小,高温区形状由狭长型过渡为块状分布。燃用十四烷和N5E10时滞燃期以及滞燃期内形成的可燃混合气数量与燃烧始点判断方式有关。与十四烷相比,着火时刻N5E10缸内燃料瞬时燃烧速率略降低,预混合阶段质量燃烧速率与负荷有关,扩散阶段燃料燃烧速率提高。
As the oil supply is increasingly tight, the study on alternative clean fuel receives the increasing attention. Ethanol, as a renewable clean oxygen-bearing biofuel, and with the help of cosolvent for the preparation of ethanol-diesel fuel, will has the broad application prospect in the diesel engine. As the diesel engine are to developed into the clean, efficient and low CO2emission, it is necessary to look into the details of atomization combustion of multicomponent fuel ethanol diesel fuel in cylinder, and to realize the optimized matching of "fuel oil supply system and alternative fuel, inlet system, structure parameter of combustor" by using the physicochemical property of fuel and core boundary conditions to conduct the optimal control of combustion path. Based on physical property calculation of multicomponent fuel, ethanol diesel fuel single-droplet evaporation model, the analysis on mass and heat transfer, and the turbulent diffusion combustion model, the fuel physical property parameter library and diesel atomization and combustion modules of internal combustion engine's in-cylinder fluid dynamics simulation software (ICFD-CN) are improved, FORTRAN language is used to write the underlying code, the multicomponent fuel atomization and combustion simulation platform is built, and laser atomizing test bed and bench test are used to verify the reliability of the simulation platform. With YZ4102ZLQ engine as the object, the study on the influence mechanism of ethanol diesel fuel property on spray and combustion is carried out by using the numerical calculation and experiment, and the main contents are as follows:
     (1) The real-time dynamic calculation of physical property parameter of mixed fuel is carried out. For ethanol-diesel fuel, the mass fraction of components in the process of droplet evaporation is constantly changing, and the empirical formula shall be used to calculate physical parameters. Empirical formula is chosen to estimate the surface tension of liquid, evaporation enthalpy and thermal conductivity, viscosity, density, saturated vapor pressure and standard enthalpy of formation of tetradecane, ethanol and n-butyl alcohol, as well as the diffusion coefficient of n-butyl alcohol vapor in the air, the calculation results obtained from empirical formula shall be compared with the reference value, and according to the difference of estimated value and experimental value, the empirical formula of the thermal conductivity and viscosity were corrected for high estimation precision.
     (2) The evaporation model of the single droplet of multicomponent fuel was built, and the influence of fuel property on the evaporation process was carried out. Droplet evaporation is an important stage of in-cylinder fuel evaporation and atomization of diesel engine, and ethanol-diesel(diesel fuel is considered as the one-component) is composed of the components with bigger difference of physicochemical property, which is different from the single-droplet evaporation of diesel. According to the difference of physicochemical property between ethanol and diesel(boiling phenomenon can't be ignored) under the high-temperature, high-pressure and strong-vortex environment of engine and small high-pressure injection atomization droplets, the distillation curve model and boiling evaporation coupling model are put forward to describe the droplet's mass and heat transfer process of ethanol-diesel, and references are used to verify the feasibility of model. Combined with boundary condition of diesel engine, the influence rules of mass and transfer process during droplet evaporation is investigated.
     (3) Flame surface model with great engineering application prospect is used to calculate the turbulent diffusion combustion rate. According to the property of multicomponent fuels of ethanol-diesel, the control equation was added, and the basic equation of flame surface model was extended to calculate the turbulent diffusion combustion rate of ethanol-diesel.
     (4) Based on ICFD-CN, atomization and combustion platform of multicomponent fuel was established.①ccording to the grid cell temperature and pressure, the revised physical property formula was used to improve the calculation code of property value in the modules such as fuel, evap, colide, lawall, chem and chemeq in ICFD-CN software;②The evaporation model of multicomponent fuel combined with evaporation code were written to replace the original evap evaporation module of ICFD-CN, meanwhile, the related code of other submodules was written, which help conduct the auxiliary calculation of atomization and evaporation;③Two-step reaction kinetics premixed combustion model generated by CO and CO2and diffusive combustion model of multicomponent fuel shall be further combined. Writing programs and improving chem, chemeq and rinput module are to build the atomization and combustion simulation platform of ethanol-diesel. With YZ4102ZLQ diesel as object, the laser atomizing test and bench test were used to verify the atomizing process, in-cylinder pressure and NOx emission. The results show that the calculated value is consistent with the experimental value, and can be further applied to the numerical investigation on spray and combustion process of ethanol-diesel engine. The construction of such platform break through the limitations of the original ICFD-CN program failed to predict the spray and combustion process of ethanol-diesel, which is of important reference value for the combustion process simulation of mixed fuel with bigger differences in physicochemical property.
     (5) Analysis on the influence of ethanol-diesel's property on the injection and spray process was conducted. The nozzle end and pump end pressures of high pressure pipe of YZ4102ZLQ engine fueled with tetradecane and N5E10was measured, and the influence of fuel characteristics and engine load on fuel pressure wave property inside the high-pressure oil pipe were analyzed. Around the sensitivity of fuel property of ethanol-diesel to the primary atomization of continuous jet flow, and secondary atomization of droplet, and secondary atomization characteristic parameter to droplet radius, in-cylinder fuel evaporation rate, gas phase flow field and atomizing change, the influence of fuel property on atomization were analyzed in details, and it is concluded that the combustion of ethanol diesel fuel will further increase the vortex pulsation in the balance area balance area, but exerting little effect on the vortex motion. Meanwhile, the reasons of the in-cylinder atomization effect of N5E10better than that of tetradecane was explored.
     (6)The bench test was used to carry out the sensitivity research of the combustion and emission characteristics of ethanol-diesel to the cosolvent. The changes of cylinder pressure, rate of heat release, premixing and diffusive combustion duration, distribution of heat quantity, center of combustion, emission and particle size distribution of particulate matter from ethanol-diesel and diesel without changing structure parameter of diesel engine wereobtained. Compared with diesel, ethanol-diesel's premixed combustion period is shorten that proportion of heat quantity in premixed combustion phase, diffusion combustion period is also shortens, and the center of combustion get close to the top dead center. NOx and smoke intensity of B10E10and N5E10were reduced, and N5E10is better. The distribution peak of exhaust particulate from ethanol-diesel moves to small size, and the variety of cosolvent is associated with combustion particle size distribution of ethanol-diesel. Compared with N5E10, the mass fraction of small size of particulate is further increased.
     (7) With the built simulation platform, the influence of fuel property of ethanol-diesel on combustion process was conducted. The influence of fuel property on evaporation rate of fuel, mixture distribution, fuel concentration field, temperature field, ignition delay period and combustible mixture quantity produced during the ignition delay period, fuel's mass burning rate and concentration of key components in combustion process was obtained. The ethanol-diesel will improve the combustion stability, make temperature distribution more uniform and local high-temperature area decrease, and shape of high-temperature area turns from long and narrow distribution to the blocky distribution. During combustion of tetradecane and N5E10, the combustible mixture quantity produced in the ignition delay period is associated with the judgment of starting point of the start timing of combustion. Compared with tetradecane, the in-cylinder instantaneous mass burning rate of N5E10in the ignition moment will slightly lower, mass burning rate in the premixed combustion phase is associated with load, and burning rate in the diffusion phase will increase.
引文
[1]Hayes T K,Savage L D, White R A,et al.The effect of fumigation of different ethanol proofs on a turbo-charged diesel engine[A]. SAE Paper[C].1988,880497.
    [2]Irshad Ahmed. Diesel fuel composition[P].US0092228A1,2002.
    [3]Irshad Ahmed. Diesel fuel composition[P].US6017369,2000.
    [4]Killick RW,Parnaby L H,Parnab BR,et al. Fuelblends[P].US6129773,2000.
    [5]P Satge de Caro. Interest of combining an additive with diesel-ethanol blends for use in diesel engines[J]. Fuel,2002,80:565-574.
    [6]Smith Harry A.Dialkyl carbonates as phase separation inhibitors in liquid hydrocarbon fuel and et hanol mixtures[P].US4380455,1983.
    [7]Killick Robert William.Fuel blends[P].WO090469A1,2002.
    [8]Mori, Mitsuyoshi. Fuel for diesel engine[P].US4405337,1983.
    [9]Michio Ikura,Maria Stanciulescu,Edward Hogan.Lowtemperature stable diesel oil alcohol mixtures[P]. US0178650A 1,2002.
    [10]Koichiro Itow.Kunihiko komiyama.Fuel blended with alcohol for diesel engine[P]. US4509953,1985.
    [11]EARL E Roland D, Thomas, GA. Phase stabilized alcohol based diesel fuel containing ignition additives[P].WO24593,1993.
    [12]古文英,史权,彭勃,等.乙醇柴油的物化性质研究[J].炼油技术与工程,2005,35(5):39-42.
    [13]姜光军,张煜盛,余敬周,等.乙醇/柴油混合燃料喷雾粒度分布特性研究[J].内燃机工程,2011,32(1):39-42.
    [14]陈虎,帅石金,王建昕.乙醇、柴油及其混合燃料的喷雾特性[J].燃烧科学与技术,2005,11(5):465-469.
    [15]王建昕,闫小光,程勇,等.乙醇-柴油混合燃料的燃烧与排放特性[J].内燃机学报,2002,20(3):225-229.
    [16]何旭,马晓,齐运亮,等.乙醇柴油混合燃料碳烟特性可视化研究[J].工程热物理学报,2010,31(12):2141-2144.
    [17]吕兴才,黄震,张武高,等.用光学可视化方法研究乙醇柴油混合燃料的燃烧特征[J].中国公路学报,2004,17(2):109-112.
    [18]Abu-Qudais M, Haddad O, Qudaisat M. The effect ofalcohol funigation ondiesel engine performance and emissions[J].Emergy Conversion & Management,2000,41:389-399
    [19]Shih L K, Comparison of the effects of various fuel additives on the diesel engine em issions,SAE Paper 982573,1998.
    [20]Keith C Corkwell,M itchell M.Jackson,et al. Review of exhaust emission of compression ignition engines operating on E diesel fuel blends. SAE Paper.2003-01-3283.
    [21]Cole R L, Poola R B, Sekar R, Schaus J E, et al. The evaluation of diesel/ethanol fuel blends for diesel vehicles in thailand:Performance and Em issions Studies, International Symposium on Alcohol Fuels XIV,Phuket,Thailand,2002.
    [22]Bergeron C A,Hallett W L H. Ignition Characteristics of Liquid Hydricarbon Fuels as Single Droplets[J].Canadian Journal of Chemical Engineering,1989,67-142.
    [23]WISE H,BALHARRY D,REYNOLDS L J,et al.Conventional and toxicogenomic assessment of the acute pulmonarydamage induced by the instillation of Cardiff PM1.0 into the rat lung[J].Sci Total Environ,2006,360(1/2/3):60-67.
    [24]张旭升,赵晖,胡宗杰,等.共轨柴油机燃用生物柴油的排气颗粒粒径分布及核态纳米颗粒生成机理研究[J]中国科学E辑:技术科学,2009,39(9):1589-1594.
    [25]K. D. B. Engines and Nanoparticles:A Review [J]. Journal of Aerosol Science,1998,29 (5/6):575-588.
    [26]M. M. M. Stephen J. Harris. Signature size distributions for diesel and gasoline engine exhaust parti-culate matter[J]. Aerosol Science,2001,32:749-764.
    [27]KIM H.CHOI B.Effect of ethanol-diesel blend fuels on emission and particle size distribution in a common-rail direct injection diesel engine with warm-up catalytic converter[J].Renewable Energy, 2008,33(10):2222-2228.
    [28]陈虎,陈文淼,王建昕,等.柴油机燃用乙醇-柴油含氧燃料时微粒特性的分析[J].内燃机学报,2005,23(4):307-312.
    [29]李铭迪,王忠,李立琳.等.乙醇/柴油燃烧颗粒状态特征试验研究[J].农业机械学报,2013,44(3):28-32.
    [31]Takaaki Kitamura,Takayuki Ito,Jiro Senda. Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels.SAE 2001-01-1262.
    [32]Hideyuki Ogawa,Noboru Miyamoto,Masayuki Yagi.Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels.SAE 2003-01-3190.
    [33]Frossling N. Uber die Verdunstung fallender Tropfen[J]. Gerlands Beitr, Geophys,1983,52:170-216.
    [34]Raiz W E, Marshall W R. Evaporation from drops[J]:Part I. Chemical engineering progress,1952, 48(3):141-146.
    [35]Raiz W E,Marshall W R, Evaporation from drops[J]:Part II. Chemical engineering progress,1952, 48(3):173-180.
    [36]Brenn K V,Pruppacher H R. A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air[J]. Journal of the atmospheric sciences,1971,28:1455-1465.
    [37]Roth N, Anders K, Frohn A. Determination of size, evaporation rate and freezing of water droplets using light scattering and radiation pressure[J]. Particle & particle systems characterization, 1994,11(3):207-211.
    [38]Stengele J, Prommersberger K, Willmann M, et al. Experimental and theoretical study of one-an two-component droplet vaporization in a high pressure environment[J]. International journal of heat and mass transfer,1999,42(14):2683-2694.
    [39]Chen G, Aggarwal S K, Jackson T A, et al. Experimental study of pure and multicomponent fuel droplet evaporation in a heated air flow[J]. Atomization and Spays,1997,7(3):317-337.
    [40]Randolph A L, Makino A, Law C K. Liquid-phase diffusional resistance in multicomponent droplet gasification[J], Symposium on combustion,1986,21(1):601-608.
    [41]Gokalp I,Chauveau C, Berrekam H, et al. Vaporization of miscible binary fuel droplets under laminar and turbulent convective conditions[J], Atomization and sprays,1994,4(6):661-676.
    [42]Runge T, Teske M, Polymeropoulos C E. Low-temperature vaporization of JP-4 and JP-8 fuel droplets. Atomization and sprays[J],1998,8(1):25-44.
    [43]田章福,陶玉静,苏凌宇,等.多组分液滴蒸发过程的理论模拟及实验研究[J].推进技术,2006,27(6):568-571.
    [44]Abramzon B, Sirignano W A. Droplet vaporization model for spray combustion calculations[J]. International journal of heat and mass transfer,1989,32(9):1605-1618.
    [45]Jochen Wilms. Evaporation of Multicomponent droplets[D]. Germany:University of Stuttgart,2005.
    [46]F,dwardsT,MaurieeL.Surrogate mixtures to represent complex aviation and roeket fuel[R].AlAA 1999-2217.
    [47]WoodCP.Development and application of a surmgate distillate fuel[J].AIAA Joumal of Propulsion and Power,5(4):399-405,1989.
    [49]Sehulz W D.Oxidation Produets of a surrogate JP-8fuel[J] Joumal of Propulsion and Power,1993,9(1): 5-9.
    [49]HarstadKqetal.A robust statistical model for the evaporation of multicomponent-fuel drops containing a nultitude of chemieal species[R].AIAA2003-1321
    [50]ManuelAZ,RosnerbDE.Multi component fuel droplet vaporization and combustion using spectral theory for a continuous mixture[J].Combustion and Flame.135:271-284,2003.
    [51]Magnassen B F,Hjertager B H. On Mathmatical Model of Turbulent Combustion with Special Emphasis on Soot Formation and Combution.16th Symp.(Int.)on Combust.,1997.
    [52]Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion [J].Progress in Energy and Combust Sci,1984,10:319-339.
    [53]Bilger Rw. Condition moment closuer for turbulent reacting flow.Physics of Fluids, A Fluid Dynamica, 1993,5:436-447.
    [54]Han I, Huh K Y. Condition moment closuer Modeling of Turbulent Spray Combustion in a Direct Injection Diesel Engine. International Multidimensional Engine Modeling User's Group Meeting, Derroit, MI, USA, March 7,2004.
    [55]王海峰,陈义良.采用考虑详细化学反应机理的火焰面模型模拟湍流扩散火焰[J].燃烧科学与技术,2004,10(1):77-81.
    [56]倪培永,王忠,毛功平,等.静止环境中甲醇液滴蒸发的数值模拟[J].江苏大学学报(自然科学版),2010,31(3):269-272.
    [57]苏凌宇,刘卫东.运动液滴蒸发时传热传质过程的理论分析[J].国防科技大学学报,2008,30(5):10-14.
    [58]胡鹏,孙平,梅德清,等.微乳化乙醇柴油燃料单液滴的蒸发特性研究[J].内燃机工程,2013,34(3):9-14.
    [59]胡鹏,孙平,夏舜午.正庚烷单液滴在高质量分数CO2/水蒸气氛围中蒸发燃烧特性[J].内燃机学报,2013,31(6):525-530.
    [60]青岛化工学院.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [61]Brock J R, Bird R B.AIChE J.,1955,1:174.
    [62]Hakim D I,Steinberg D, Stiel L I.Ind. Eng. Chem. Fundam.,1971,10:174.
    [63]RIEDEL L. Eine neue universelle Dampf druckformel. Untersuchungen uber eine Erweiterung des Theorems der ubereinstimmenden Zust nde. Teil[J]. Chem. Ing.Tech.,1954,26(2):83-89.
    [64]Missenard F A.Rev. Gen.Thermodyn.1970,101(5):649.
    [65]Letsou A, Stiel L I. AIChE J.,1973,19:409.
    [66]刘新华.某些液态物质的密度与温度的定量关系[J].化学通报.1999,3:54-56.
    [67]童景山.流体热物性学[M].北京:中国石化出版社,2008.
    [68]Bergeron C A, Hallett W L H. Ignition Characteristics of Liquid Hydricarbon Fuels as Single Droplets [J]. Canadian Journal of Chemical Engineering,1989,67:142.
    [69]傅维标,龚景松,侯凌云.乳化油柴油机中不存在微爆现象[J].科学通报,2006,51(9):1117-1120.
    [70]余敬周.DME闪急沸腾喷雾特性及在柴油HCCI发动机上的应用研究[D].武汉:华中科技大学能源与动工程科学院,2009:30-31.
    [71]温龙泽.LNG缸内液喷闪急沸腾过程的仿真研究[D].吉林:吉林大学汽车工程学院,2012:25-27.
    [72]Berlemont A, Grancher M S, Gouesbet G. Heat and mass transfer coupling between vaporizing droplets and tur bulence using a Lagrangian approach[J]. IntJ Heat Mass Transfer,1995,38(16): 3023-3024.
    [73]赵鹏.燃油液滴蒸发过程传质传热机理的数值模拟与实验研究[D].北京:北京交通大学交通运输学院,2012:129-143.
    [74]H arstad K G. A robust statistical mode 1 for the evaporation of multicom ponent-fuel drops containing a multitude o f chemical species[R]. AIAA 2003-1321.
    [75]Brenn G, Deviprasath LJ, Durst F, Fink C. Evaporation of acoustically levitated multi-component liquid droplets. Int. J. International Journal of Heat and Mass Transfer,2007; 50:5073-5086.
    [76]田章福.低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究[D].长沙:国防科学技术大学研究生院,2007:49.
    [77]Lei Zhang, Song-Charng Kong. Modeling of multi-component fuel vaporization and combustion for gasoline and diesel spray[J].Chemical Engineering Science,2009,64(16):3688-3696.
    [78]刘乃玲,张旭.液滴蒸发过程理论分析及非稳态过程数值求解[J].制冷,2007,26(3):45-48.
    [79]胡鹏,孙平,梅德清.正十二烷单液滴在含乙醇氛围中蒸发特性[J].江苏大学学报(自然科学版),2013,34(5):508-513.
    [80]丁继贤,孙凤贤,姜任秋.对流条件下环境压力对液滴蒸发的影响研究[J].哈尔滨工程大学学报,2007,28(10):1104-1108.
    [81]孙凤贤,姜任秋,丁继贤.正庚烷液滴对流蒸发中的膨胀与环境压力影响[J].哈尔滨工业大学学报,2008,40(1):131-135.
    [82]刘戈,解茂昭,贾明.基于互动小火焰模型的内燃机燃烧过程大涡模拟[J].化工学报,2011,62(9):2490-2498.
    [83]王海峰,陈义良,董刚,等.拉伸层流扩散火焰面结构及熄火的研究[J].工程热物理学报,2003,24(4):695-698.
    [84]杨滴,将德明.用新的相关火焰模型对点火发动机燃烧过程的多维模拟[J].燃烧科学与技术,1998,4(3):312-319.
    [85]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.
    [86]Spalding D B. Mathematical models of turbulent flames;a review[J].Combustion Science and Technology,1976,13:3-25.
    [87]Lockwood F C, Naguib A S. The prediction of the fluctuation in the properties of free, roundjet, turbulent diffusion flame [J]. Combustion and Flame,1975, (24):109-124.
    [88]Peters N. Turbulent Combustion [M]. Cambridge University Press,2000.
    [89]Jimenez J, Linan A, Rogers M, etal. A Prior testing of subgrid models for chemically reacting non-premixed turbulent shear flows [J]. Journal of Fluid Mechanics,1997,(349):149-171.
    [90]Wall C, Boersma B J, Moin P. An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of non-premixed turbulent combustion with heat release[J]. Phys Fluids,2000, (12):2522-2529.
    [91]Lee D, Rutland C J. Probabltity density function combustion modeling of diesel engines. Combust. Sci. and Tech:2002,174(10):19-54.
    [92]Pope S B, Chen Y L. The velocity-dissipation rate probability density function model for turbulent flows [J]. Phys. Fluid,1990, (2):1437-1449.
    [93]Wang H F, Chen Y L. Steady flamelet modeling of a turbulent non-premixed flame considering scalar dissipation rate fluctuations[J].Fluid Dynamics Research,2005, (37):133-153.
    [94]王海峰,陈义良,蔡晓丹等.湍流射流扩散火焰的层流火焰面模拟[J].推进技术,2003,24(1):58-62.
    [95]董刚,王海峰,陈义良.用火焰面模型模拟甲烷/空气湍流射流扩散火焰[J].力学学报,2005,37(1):73-79.
    [96]范周琴.超声速湍流燃烧火焰面模型判别建模及应用研究[D].长沙:国防科学技术大学研究生院, 2011:37.
    [97]Chen C S, Chang K C, Chen J Y. Application of a robust beta-pdf treatment to analysis of thermal NO formation in nonpremixed hydrogen-air flame [J]. Combustion and Flame,1994,98:375-390.
    [98]Han, Z., Reitz, R.D. Turbulence modeling of internal combustion using RNG k-emodels. Combst.Sci. and Tech.,1995, Vol.106:267-295.
    [99]Yakhot,V.,Smith,L.M.Therenormalizationgroup,theε-expansion and derivation of turbulence models. J. of Scientific Computing,1992, Vol.7:35-61.
    [100]蒋德明,陈长佑,杨嘉林,等.高等车用内燃机原理[M].西安:西安交通大学出版社,2007.
    [101]Chen C S, Chang K C, Chen J Y. Application of a robust beta-pdf treatment to analysis of thermal NO formation in nonpremixed hydrogen-air flame[J]. Combustion and Flame,1994,98:375-390
    [102]Gianpietro E. Cossali, Aido Coghe, Gianni Brunello. Effect of Spray Wall Interaction on Air Entrainment in a Transient Diesel Spray. SAE Transactions,1993,102(3):1362-1370.
    [103]Zhengbai Liu, Tomio Obokata, Rolf D. Reitz. Modeling Drop Drag Effects on Fuel Spray Impingement in Direct Injection Diesel Engine. SAE Transactions,1997,106(3):1377-1390.
    [104]Alex B. Liu,Daniel Mather and Rolf D. Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Transactions,1993,102(3):83-95.
    [105]Reitz R. D. and Diwaker R. Effect of Drop Breakup on Fuel Sprays. SAE Transactions,1986,95(3): 218-227.
    [106]Song-charng Kong,Zhiyu Han,and Rolf D. Reitz.The Development and Application of a Diesel Igniion and Combustion Model for Multi-dimensional Engine Engine Simulations. SAE Transactions,1995,104(3):502-518.950278.
    [107]Liu,A. B. and Reitz R. D. Mechanism of Air-Assisted Liquid Atomization. Atomization and Sprays. 1993.3(1):55-75.
    [108]Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J].Progress in Energy and Combust Sci,1984,10:319-339.
    [109]Fan L., Li G., Han Z., et al. Modeling Fuel Praparation and Stratified Combustion in a Gasoline Direct Injection Engine. SAE Transactions,1999,108(3):120-132.
    [110]Baulch D. L.,Cobos c. j.,and Cox R. A. et al.Summary Table of Evaluated Kitnetic Data for Combustion Modeling:Supplement. Combust. & Flame,1994,98:59-79.
    [111]Patterson M. A., Kong S.C., Hampson G. J., et al. Modeling the Effects of Fuel Injention Characteristies on Diesel Engine Soot and NOx Emissions.SAE Transactions,1994,103(3):836-852.
    [112]Matsui Y., Kamimoto T. and Matsuoka S. A Gas Sampling Study on the Formation Processes of Soot and NO in DI Diesel Engine. SAE Transaction.1989,98(3):1175-1189.
    [113]高宗英,朱剑明.柴油机燃料供给与调节[M].北京:机械工业出版社,2009.10.
    [114]周龙保,高宗英.内燃机学(第2版)[M].机械工业出版社.北京:2005.
    [115]高宗英.柴油机喷油系统内实际压力波传播速度的测定[J].内燃机工程,1985(3):25-32.
    [116]高宗英.汽、液两相介质中压力波传播速度的研究[J].工程热物理学报,1984,5(2):200-205.
    [117]Tat M E, Van Gerpan. The speed of sound and isentropic bulk modulus of biodiesel at 21℃ from at mospheric pressure to 35 MPa[J]JAOCS.2000,73(3):285-289.
    [118]Gouw T H, Vluger J C. Physical properties of fatty acid methyl esters, IV[J]. Ultrasonic sound veloc-ity. JAOCS,41 (8):524-526.
    [119]梅德清.柴油机燃用生物柴油的燃烧过程和排放特性研究[D].镇江:江苏大学汽澈与交通工程学院,2005:41.
    [120]赵昌普,宋崇林,张延峰,等.涡流运动降低柴油机混合气浓度及碳烟排放的数值分析[J].内燃机学报,2004,10(6):489-496.
    [121]张晓宇,苏万华,裴毅强,等Bump环强化柴油混合过程的数值模拟研究[J].内燃机学报,2005,23(1):1-9.
    [122]林学东,李德刚,田维.高压喷射的高速直喷柴油机混合气形成及燃烧过程[J].吉林大学学报(工学版),2009,39(6):1446-1451.
    [123]林学东,田维,黄丫,等.高压共轨直喷柴油机缩口燃烧室内混合气形成的多维数值研究[J].吉林大学学报(工学版),2010,40(2):363-369.
    [124]吕继组,白敏丽.燃油的喷射雾化燃烧对柴油机缸内空气运动影响的研究[J].内燃机工程,2007,28(3):25-29.
    [125]苏万华,刘涛,纪军.国家自然科学基金重点项目推动-我国“新一代内燃机燃烧理论与技术”的源头创新[J].中国科学基金,2011,4:221-224.
    [126]MORINJ P,LEPRIEUR E,DIONNET F,et al. The influence of a particulate trap on the in vitro lung toxicity response to continuous exposure to diesel exhaust emissions[C]. SAE Paper 1999-01-2710.
    [127]陈虎,陈文淼,王建昕.柴油机燃用乙醇-甲酯-柴油时PM排放特性的研究[J].内燃机学报,2007,25(1):51-55.
    [128]梅德清,王书龙,袁银男,等.基于MOUDI采样装置的186FA柴油机微粒物粒径分布特性研究[J].车用发动机,2013,(1):70-74.
    [129]金华玉,刘忠长,王忠恕,等.柴油机燃烧过程模拟分析[J].吉林大学学报(工学版),2007,37(5):1028-1033.
    [130]石秀勇.喷油规律对柴油机性能与排放的影响研究[D].济南:山东大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700