柴油—甲醇组合燃烧发动机的控制策略及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机因为其良好的经济性以及可靠性,得到越来越广泛的应用。但是,微粒和氮氧化物(NOx)排放达标问题仍是制约其发展的关键。随着我国经济的快速发展,对石油的需求量日益增加,所以寻找石油替代燃料也已是当务之急。针对甲醇燃料的特点,提出柴油-甲醇组合燃烧方式。组合燃烧系统在发动机起动、暖车以及怠速工况下使用纯柴油工作模式,当发动机机体温度上升,进入正常运行工况后,进入柴油-甲醇组合燃烧模式。
     根据组合燃烧发动机的特点,将发动机运行工况分为6类,针对每类工况提出不同的控制策略。采用C语言和汇编语言的混合编程方法编写完成组合燃烧控制软件。控制软件的编写运用模块化设计思路,自顶向下、逐步细化的结构化软件设计方法。软件以MC9S12DP256芯片作为运行平台,通过对发动机传感器的信号识别,能够准确判断柴油-甲醇组合燃烧发动机的运行工况,在发动机电子控制单元的内部数据存储区间存储了发动机运行二维控制MAP图,该软件通过MAP插值计算方法将二维控制MAP图中离散、有限的控制量转变成连续的控制量,根据发动机负荷的变化自动定时定量的控制甲醇燃料喷射电磁阀。
     提出了以甲醇对柴油的替代率和替换比为控制目标,以排放作为约束条件的组合燃烧标定方法,在发动机台架上进行了标定工作,采用神经网络算法对MAP数据进行了优化,得到了更为紧密和平滑的控制MAP数据。结果表明运用神经网络优化的方法不仅能够减少标定工作量,而且完全能够达到组合燃烧系统的要求。
     在490QDI发动机台架上对组合燃烧发动机进行了不同控制方式、不同替代比率以及加装了DOC(氧化催化转化器)之后的对比试验。试验结果表明组合燃烧系统在小负荷时,甲醇对柴油的替代率不宜过高,在中等负荷采用30%~40%的替代率,在大负荷时采用40%~50%替代率能够取得较好的燃油经济性和排放性能。通过加装DOC后处理器后能够大幅度的降低HC和CO的排放量。采用甲醇的顺序喷射控制方式,发动机燃油经济性、HC、CO排放均略优于甲醇连续喷射控制方式,但是,NOx排放略高于后者。
     组合燃烧汽车道路试验结果表明,甲醇对柴油的平均替代率达到了36%,仅需要1.66单位质量的甲醇替换1单位质量的柴油,燃烧效率提高8.78%。组合燃烧系统能够有效消除柴油机在起步加速过程中“冒黑烟”的现象。
     在WD615增压中冷柴油机上进行了排放试验,结果表明,采用组合燃烧系统后国Ⅱ排放品质的发动机完全能够达到国Ⅲ排放限值。
Diesel engines have gotten more and more widely used in trucks, buses and even in passenger cars, because of its excellent fuel economy as well as performance and reliability. However, PM and NOx emissions from diesel engine restrict it for further development. With the economy development of china, oil demand increases rapidly. Therefore, to develop the alternative fuel for oil is an urgent task for us. China is abundant in coal resource, but less storage in oil. Methanol can be produced from various kinds of materials such as coal, natural gas and biomass, which is one of the best alternative fuels for oil in future.
     As cetane number of methanol is quite low, it is difficult to be applied to compression ignition engine. So diesel-methanol compound combustion (DMCC) was brought forward based on methanol’s property. DMCC engine uses diesel fuel only in start, warming-up and idle operating condition. After water temp and engine speed rise up, diesel fuel model swiches to DMCC model.
     Six operation conditions were put forward according to DMCC engine characteristics. Each operation condition has its own control strategy. ECU controller software was compiled with language C and assembling language mixed programmed method. Controller software uses MC9S12DP256 chip as platform. Recognizing signals from sensors, software can judge operation condition of engine exactly.
     Calibration of MAP data has been undertaken on the engine bench. Using neural network optimize MAP data. This method makes the MAP data smoother. These data after optimization were tested on the bench test. The result showed that neural network can reduce the workload.
     Comparison of different control method, different proportion of methanol to diesel, with DOC and without DOC was conducted on the engine bench. The results showed that the proportion of methanol to diesel should be less at low load; the ratio 30%~40% at the medium load. Although the ratio could be higher at high load, it should not be more than 40%~50%. Additionally, the oxide catalyst had important impact to exhaust emissions,Economical performance gets better, HC and CO emission decrease using multi-point sequential injection. NOx emission almost remains the same.
     DMCC vehicle load test showed that the proportion of methanol to diesel was 36%, 1.66 kilogram methanol can replace 1.0 kilogram diesel, combustion efficiency increase 8.78%. DMCC vehicle reduce smoke emission in large extent during standing start.
     The exhaust experiments on the WD615 turbocharged, intercooled diesel engine showed that the emission quality of engine can be remarkably improved from basic ChinaⅡupgrade to ChinaⅢalthough the engine equipped with conventional in-line injection pump,line and injectors.
引文
[1]张娥,我国石油进口量仍将继续攀登, www.worldoilweb.com世界石油网,2008-02-28
    [2]崔民选,2007年中国能源发展报告,北京:中国社会科学文献出版社:5~7
    [3] Man-ok Kang, Special Measures to Improve the Metropolitan Air Quality in Korea. China-Korea Automotive and Environment Seminar, 2006
    [4]陈虎,乙醇柴油的喷雾燃烧与排放特性研究[博士学位论文],北京:清华大学,2006
    [5]国家环境保护总局,国家质量监督检验检疫总局,GB17691-2005,车用压染式、气体燃料点燃式发动机与汽车排放污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段),中华人民共和国国家标准,北京:中国标准出版社,2005-05-30
    [6]何学良,詹永厚,李疏松,内燃机燃料,北京:中国石化出版社,1999,344-345
    [7]薛云,王斌,陆学成,燃氢发动机的爆震燃烧问题,可再生能源,2007,25(5):53~56
    [8]王红民,氢气在燃油替代能源方面的应用,武汉理工大学学报,2006,28(2):21~26
    [9] Gill D, Ofner H, Dimethyl ether– a clean fuel for transportation, SAE Paper 990059, Washington, USA: Society of Automotive Engineers Inc., 1999,3-10
    [10] Zhou Longbao, Wang Hewu, Jiang Deming. Study of Performance and combustion characteristics of a DME fueled light duty direct injection diesel engine, SAE Paper 1999-01-3669, Washington, USA: Society of Automotive Engineers Inc., 1999,3-9
    [11]张金宝,梁光荣,汽车新能源的研究现状及应用,内燃机,2007,10(5):49~51
    [12]李伟,张希良,国内二甲醚研究评述,煤炭转化,2007,30(3):89~95
    [13]吴竺,阮伟民,城市DME汽车加气站的设计、施工实践与探讨,上海煤气,2007,4:16~19
    [14]中国投资咨询网,2008年中国天然气工业分析及投资咨询报告,www.ocn.com.cn,2008-05
    [15]李世豪,发展天然气公共汽车-共创绿色公交,城市车辆,2007,10:31~34
    [16]孔金凤,王梅山,CNG加气站建设管理中应注意的几个问题,油气储运,2007,26(8):50~52
    [17]陈叔平,谢高峰,李秋英,等,天然气加气站运行费用的研究,煤气与热力,2006,26(11):37~41
    [18]胡京南,郝吉明,傅立新,应用燃气汽车对北京市机动车排放的影响,清华大学学报(自然科学版)2006,46(3):350~354
    [19]马志光,方美兰,日本汽车节油经验及其对我国的启示,节能与环保,2005,13(8):33~36
    [20]王琢玉,LPG加气站规划布局评价方法研究,城市公共交通,2006,5:28~30
    [21]乙醇汽油毁掉巴西大草原,来源:广州日报,2007-8-3
    [22] Reed T B, Lerner R M , Methanol: a versatile fule for immediate use, Science, 1973, 182(4119):1299~1304
    [23] Daniel Sperling, Mark A, Deluchi, Is methanol the transportation fuel of the future?, Energy, 1989, 14(8):469~482
    [24]燃油告急煤都加紧“甲醇替油工程”进程,二十一世纪经济报道,2004,6
    [25]吴域琦,冯向法,甲醇燃料-最具竞争力的可替代能源,中外能源,2007,12(1):16~24
    [26] George A.Olah, Alain Goeppert,G.K, Surya Prakash ,Beyond Oil and Gas: The Methanol Economy,(胡金波等译),北京:化学工业出版社,2007,3~5
    [27]肖经纬,甲醇燃料的毒性及应用研究进展,国外医学卫生学分册,2006,33(6):334~337
    [28] The Los Angeles country Metropolitan Transportation Authority. Methanol Buses Return to Los Angeles, http://www.afdc.org (Alternative Fuel Data Center of USA), 1998-01-30
    [29]梁英,全甲醇燃料汽车尾气的生物学效应研究[博士学位论文],成都:四川大学,2005
    [30]万升龙,李均,国内外车用含醇燃料的研究和应用近况,石油科技,2003,21(4):5~8
    [31] B.Bartunek, Verwendung Von, Methanol in PKW-Motoren mit Direkeinsprit zuang, Tagung Wolfsburg, 1992(12)
    [32]山西将封闭式推广甲醇汽油,中国石油物质网,www.pmnet.com.cn,2007-04-13
    [33]刘永启,王延霞,柴油-甲醇-水复合乳化的机理研究,淄博学院学报,2002,4(3):32~35
    [34]吴东垠,盛宏至,张宏策,等,柴油、甲醇和水三组元乳化液滴微爆过程的研究,西安交通大学学报,2007,41(7):772~775
    [35]谢洁,王锡斌,卢红兵,等,柴油-甲醇微乳化燃料的制备及燃烧特性的研究,内燃机工程,2004,25(2):1~5
    [36] Yao C D,Cheung C S, Cheng C H,Wang Y S,Reduction of smoke and NOx from diesel engines using a diesel/methanol compound combustion system,Energy Fuels,2007, 21(2):686~691
    [37] Cheng C H, Cheung C S, Chan T L, et al, Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine. Science of the Total Environment, 2008,389(1):115~124
    [38]姚春德,段峰,李云强等,柴油/甲醇组合燃烧发动机的燃烧特性与排放,燃烧科学与技术,2005,11(3):214~217
    [39]姚春德,刘希波,王洪夫等,改善DMCC发动机废气排放质量的研究,内燃机学报,2006,24(5):402~407
    [40] Cheng C H, Cheung C S, Chan T L,et al, Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated Methanol, Fuel, 2008, available online
    [41]王银山,柴油/甲醇组合燃烧柴油机控制策略的研究与应用[博士学位论文],天津:天津大学,2005
    [42]姚春德,李云强,王银山等,用柴油/醇组合燃烧法在城市车用柴油机上实行同时降低碳烟与NOx排放的研究,环境科学学报,2004,24(5):828-823
    [43] AT89C51芯片用户手册,ATMEL有限公司,2002
    [44] MC9S12DP256芯片用户手册,飞思卡尔(中国)有限公司,2005
    [45]卓斌,刘启华,车用汽油机燃料喷射与电子控制,北京:机械工业出版社,1999,204~258
    [46]周长发,科学与工程数值算法,北京:清华大学出版社,2002,258~323
    [47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C- The Art of Scientific Computing(Second Edition)傅祖芸等译,北京:电子工业出版社,1995,88~102
    [48]徐士良,C语言常用算法程序集,北京:清华大学出版社,1996,107~136
    [49]刘生全,马志义,王平福,等,车用甲醇汽油燃料技术性能,长安大学学报,2007,27(4)88~91
    [50]微软公司,实用软件工程方法,北京:高等教育出版社,2005-08,39~51
    [51]贾长云,软件工程初步,北京:高等教育出版社,2006-06,8~15
    [52]张海藩,软件工程的概念与方法,北京:中国科学技术出版社17~48
    [53]闻新,周露,王丹力,等,MATLAB神经网络应用设计,北京:科学出版社,2000-09,207~232
    [54]许东,吴铮,基于MATLAB6.X的系统分析与设计(第二版),陕西:西安电子科技大学出版社186~194
    [55]吴义虎,汽车发动机技术中的神经网络方法,北京:人民交通出版社,2000-06,104~122
    [56]侯志祥,申群太,吴义虎,基于BP神经网络的车用汽油机过渡工况空燃比多步预测模型,汽车工程,2006,28(9):809~811
    [57]李军,秦大同,基于BP神经网络技术在汽车发动机排放检测中的应用,汽车与船舶,2004,12:81~83
    [58]姚春德,王银山,李云强,等,进气预混甲醇柴油机电控系统,天津大学学报,2005,38(2):133~136
    [59]王银山,姚春德,程传辉,等,甲醇-柴油汽车的控制与性能研究,辽宁工程技术大学学报,2005,24(5):745~747
    [60] Schematic of MC9S12DP256EVB, FREESCALE Austin, Texas, USA, 2002
    [61]王尚勇,杨青,柴油机电子控制技术,北京:机械工业出版社,2006-02
    [62]魏春源等译,汽车电气与电子,北京:北京理工大学出版社,2004-07
    [63]秦曾煌,电工学(下册)电子技术,北京:高等教育出版社,2000-10,154~173
    [64]朱军,电子控制发动机电路波形分析,北京:机械工业出版社,2003-10
    [65]皇甫正贤,数字集成电路基础,南京:南京大学出版社,1995-05,137~159
    [66]王幸之,王雷,翟成,等,单片机应用系统抗干扰技术,北京:北京航空航天大学出版社,2000-02,12~25
    [67]诸邦田,电子电路实用抗干扰技术,北京:人民邮电出版社,1994-10,148~158
    [68]国家质量技术监督局,GB/T 18297-2001,汽车发动机性能试验方法,中华人民共和国国家标准,北京:中国标准出版社,2003-09-28
    [69]周龙保,内燃机学,北京:机械工业出版社,2003-01,192~291
    [70]杨建华,龚金科,吴义虎,内燃机性能提高技术,北京:人民交通出版社,2000,355~362
    [71]童澄教,内燃机排放与净化,上海:上海交通大学出版社,1994-06,103~126
    [72]崔心存,金国栋,内燃机排气净化,武汉:华中理工大学出版社,1991-04,76~104
    [73]孙志远,柴油机燃用甲醇燃料的可行性及其科研现状,小型内燃机,1993,22(6):1~6
    [74] Hideaki Suganuma, Koji Sato, Hiroaki Takada. A Study of Evaluating the Real-time Property for Engine Control Software, SAE2001-01-0058
    [75] Andreas Greff, Torsten Gunther. A New Approach for a Multi-fuel Torque-based ECU Concept using Automatic Code Generation. SAE2001-01-0267
    [76] Rosana Bray, Massimo Carignano, Cesare Giordano et al. A New Apporach for the Validation of engine Management Strategies Specifications through Simulation Algorithms. SAE2001-01-1223
    [77] Susan Kwan,David Parker, and Kathleen Nolan. Effectiveness of Engine Calibration Techniques to Reduce Off-cycle Emission. SAE971602
    [78] Kim Lyon. Control System Development and Calibration Methodology. SAE962544
    [79] Takehiko Kowatari, Shigeru Tokumoto, Toshifumi Usui. Optimization of an Electronic-throttle-control Actuator for Gasoline Direct-injection Engines. SAE1999-01-0542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700