燃煤链条锅炉燃烧的数值建模及配风与炉拱的优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤链条锅炉是我国重要的热力设备,量大面广,但效率却十分低下。在链条锅炉中,燃烧优化的3T+E要素,即Time(停留时间),Temperature(温度),Turbulence(混合),Excess air(空气过量率)主要由配风和炉拱来调节控制,优化配风和炉拱是提高链条炉燃烧效率的常用手段。
     然而,长久以来,无论是传统炉拱还是双人字拱等新型节能炉拱都依赖于经验设计,配风也往往由司炉人员根据经验调节,存在很大的盲目性,常造成燃烧效果不佳,甚至出现不明机理的正压燃烧问题。
     针对燃烧优化设计缺乏理论预测的问题,本文旨在建立基于煤质分析和供风配置的燃煤链条锅炉燃烧数值模型。该模型主要由三部分组成,即床层燃烧模型,炉膛气相燃烧模型,以及两者的流动传热耦合。床层模型中,考虑到我国燃煤颗粒大、灰量高的特点,建立了包含煤块内部温度梯度和灰层扩散阻力的二维床层燃烧模型,然后基于煤层和炉膛的整体网格,将其与炉膛气相燃烧模型结合,耦合两者的流动、辐射、对流等条件,集成为一体化的链条炉燃烧模型。
     为验证模型的准确性,采用气相色谱测量了实际链条炉中煤层表面的气体成分分布,并与模型预测结果校对。研究结果显示,模型具有较好预测结果,且精度较一般的等温模型有所提高。为进一步对不同煤种的预测结果进行分析,搭建了单元体实验炉,利用红外烟气分析仪,对三种不同挥发份等级的煤种的煤层表面气体组分进行实时测量记录,通过与模拟结果的对比,发现本文的模型在整体上具有合理的精度,可以满足配风和炉拱辅助设计的要求。在成功建立模型的基础上,对影响煤层燃烧的基本因素,如炉排前进速度、煤层厚度进行了研究,揭示其影响机理,为运行提供理论指导。
     将模型用于配风和炉拱优化分析,研究了不同配风方式对不同挥发份等级煤种煤层燃烧的影响,及作用机理。并针对新型双人字节能炉拱,研究了其工作原理,配风搭配,及拱型设计原则。随后,针对某20t/h锅炉炉拱存在的问题,通过辅助计算确定改良炉拱形状和配风,经实测,获得了较好的节能效果。
     最后,针对炉拱设计不当引起的非阻力型正压燃烧这一局部特殊问题,建立挥发份燃烧炉内脉动压力测试实验台,研究其发生机理。采用动态压力传感器数据采集系统测量了不同配风下炉内压力的波动。通过大涡模拟结果与实验比对,并对炉内的燃烧分析表明,非阻力正压是由于周期性的涡脱落诱导挥发份不正常燃烧引起的。根据得出的机理,提出了避免非阻力型正压的炉拱设计方式。
Coal-fired travelling grate boilers are important thermal facilities in China with a huge number and wide distribution. The efficiency, however, is relatively low. The“3T+E”combustion optimization factors, i.e., time, temperature, turbulence and excess air in travelling grate boilers are mainly adjusted by arch in the furnace and air distribution under the grate. Optimization of arch and air distribution is the common method to improve the combustion efficiency.
     However, the design of arches, either conventional arch or novel arches such as double-herringbone arch, are based on experience. Air distribution is also mainly determined by the experience of stokers. These empirical methods are greatly blindfolded, which usually leads to low improvement of combustion efficiency, even unclear puffing combustion in the furnace.
     In consideration of the lack of prediction method in the combustion optimization, this paper aims to develop a coal-fired travelling grate boiler combustion numerical model using coal analysis and air supply as the input conditions. The model comprises three parts, i.e., bed model, furnace model and their coupling model. In the bed model, a non-isothermal two-dimensional method considering the temperature gradient and ash diffusion resistance in particles is established in view of the special features of domestic coals (large-diameter and high-ash). Then the bed model is combined with the furnace model based on an integrated grid. After the couplings between the furnace and the bed, such as flow, radiation and convection are added, the integrated travelling grate boiler combustion model is achieved.
     In order to verify the model, the gas components along the grate length in a 20t/h boiler are measured by a gas chromatograph and the data are compared with those predicted by the model. The result shows that the model is in reasonable agreement with the experiment. Additionally, the precision is improved compared with the conventional isothermal model. To further verify the model ability for different coals, a lab-scale furnace is set up. The gas components at the bed surface when burning three coals of different volatile level are measured by an infrared gas analyzer. The data are used for the verification and the result shows that the model has a reasonable precision on the whole, which is satisfied for the design of arches and air distribution. On this base, some influencing factors, such as grate velocity, bed thickness are analyzed and influencing mechanisms are revealed.
     Next, the influences and mechanisms of different air distribution modes on the beds of various volatile level coals are studied. For the novel double-herringbone arch, the working principle, suitable air distribution and arch shape are analyzed. Later, the arch and air distribution in a 20t/h boiler are improved with the aid of the numerical model. The efficiency measurement shows a good energy-saving result.
     Finally, a pulsating micro-pressure test rig of volatile combustion is set up to study the mechanism of non-resistance puffing combustion led by inappropriate arch design. A dynamic pressure transducer is used to measure the pressure fluctuations in the furnace under different air distribution modes. Large eddy simulation is performed to compare with the experiment and analyze the combustion features in the furnace. The result shows that non-resistance puffing combustion is led by the abnormal volatile combustion induced by periodic vortex shedding. The arch design scheme to avoid the non-resistance puffing combustion is suggested based on the mechanism.
引文
[1]林宗虎,我国能源政策的调整对工业锅炉发展的影响,工业锅炉, 2002(3): 4-7.
    [2]李振钢.层燃锅炉燃烧恶化与严重漏风原因分析探讨. in 2004中美工业锅炉先进技术研讨会. 2004.北京.
    [3]安晶,李振华,工业锅炉的烟气脱硫技术,节能技术, 2003, 21(4): 35-37.
    [4] Zhufeng, Y., X. Yunhan, L. Xin, et al., China National Energy Strategy and Policy Study, Sub-project 11:Policy study on development and utilization of CCT, 2005. http://www.efchina.org/documents/11_Clean_Coal_Technology.pdf.
    [5] Energy and Environmental Analysis, I., Characterization of the U.S. Industrial/Commercial Boiler Population. 2005: Arlington, Virginia. http://www.cibo.org/pubs/industrialboilerpopulationanalysis.pdf.
    [6]黄祥新,宽煤种高效消烟双人字形节煤炉拱,工业锅炉, 1996, 17(1): 2-4.
    [7]庄正宁,朱长新,唐桂华, et al.,适用于无烟煤燃烧的新型涡流拱特性的研究,热能动力工程, 2001(4): 403-405.
    [8]顾志龙,锅炉自动炉拱技术,节能, 1999(2): 22-24.
    [9]惠世恩,徐通模,刘仲军, et al.,一种强湍动α形燃烧火焰的火床炉炉拱设计新方法,热能动力工程, 1994(5): 280-284.
    [10]钱正辉,郝明为,李志鹏, et al.,锅炉高效节能α形火焰炉拱改造技术,节能, 1998(1): 26-29.
    [11]罗永浩,双人字形宽煤种节能炉拱的工作原理和运行方式,节能技术, 1999(1): 10-11.
    [12]吴志余,多煤种、高效节能炉拱——可调式锅炉炉拱设计及应用,工业锅炉, 2005(3): 18-20.
    [13]陈爽,链条锅炉分层燃烧装置,能源技术, 2002, 23(3): 121-122.
    [14]崔海龙,谷丰,宋跃文,锅炉分层给煤装置的机理及效果分析,沈阳航空工业学院学报, 1999, 16(4): 70-73.
    [15]黄儒林,锅炉分层给煤装置的弊端及其解决办法,江西能源, 2000(3): 22.
    [16]张志英,余德祖,徐正好, et al.,大风仓小风斗供风系统试验分析,工业锅炉, 2005(6): 7-11.
    [17]栾庆富,白彩云,半封闭式风室链条炉的均匀配风与风室密封的研究,华中科技大学学报(自然科学版), 1988, 16(5): 95-100.
    [18]刘建华,黄逸胜,通过配风减轻链条锅炉结焦的方法,集美航海学院学报, 1995, 13(2): 16-19.
    [19]张元忠,何若敏,徐开义, et al.,试论链条炉排配风问题,动力工程, 1983(5): 52-59.
    [20]赵志宽,贺东伟,链条炉燃烧合理配风,应用能源技术, 2004, 86(2): 23-24.
    [21]聂永丰,刘富强,赵颖,我国现有垃圾焚烧炉排炉技术分析和炉膛模拟优化,中国城市环境卫生, 2004(3): 13-18.
    [22]闫海燕,分区送风及二次风对链条锅炉燃烧的作用,应用能源技术, 2000, 64(4): 28-30.
    [23]黄祥新,层燃炉中的推迟配风法及空气二次利用原理,工业锅炉, 1999, 60(4): 33-35.
    [24]张志英,余德祖,卢玫, et al.大风仓小风斗供风系统试验分析. in 2004中美工业锅炉先进技术研讨会会议论文集. 2004. [C].北京:中国动力工程学会.
    [25]王军,冯晓如, KZL16-4型锅炉炉拱的改造,包钢科技, 2003, 29(5): 66-67.
    [26]黄家瑶,Ⅱ类无烟煤链条炉排锅炉燃烧室的拱型,工业锅炉, 2004(2): 13-17.
    [27] Minchener, A.J., Market Assessment of Industrial Size Coal-Fired Boilers in China. 2001, CRE Group Limited. http://www.dti.gov.uk/energy/coal/cfft/cct/pub/pdfs/r205.pdf.
    [28]北京科林燃烧工程有限公司,工业锅炉设计计算方法, ed,中国高效工业锅炉项目办公室,北京,内部资料, 2002.
    [29]缪正清,窦文宇,惠世恩, et al.,火床炉拱区流动阻力特性分析,动力工程, 2000, 20(6): 933-936.
    [30]徐通模,惠世恩,刘仲军, et al.,关于防止火床炉炉膛冒正压的若干措施,热能动力工程, 1994, 9(1): 14-17.
    [31]白绍义,工业锅炉设置低长后拱局限性分析,节能, 2000(11): 41-42.
    [32]黄祥新,层燃炉中的"微爆燃"现象及其与炉拱的关系--炉拱理论的新进展,工业锅炉, 1999(1): 18-20.
    [33] Huang, X., G. Lu. The discovery of "slight explosion" phenomenon and study of anti-explosion arch in stoker firing. in Proceedings of the International conference on energy and environment, ICEE, Energy and Environment. 1995. Shanghai.
    [34]陆桂成,“微爆燃”现象的研究及拱区流场的数值计算, [硕士],上海,能源系,上海交通大学, 1995
    [35] Huang, X.-x., G.-c. Lu, The Detection and Study of the "Mini-Explosion" Phenomenon in Stoker Firing, Proceedings of CSPE-JSME-ASME International Conference on Power Engineering, 1995, 1: 287-290.
    [36]钱焕群,缪正清,链条炉炉拱的空气流动数值计算,节能, 2007(4): 20-21.
    [37]王擎,关键,孙东红, et al.,卧式煤无烟燃烧锅炉炉内冷态流场的数值模拟,中国电机工程学报, 2003, 23(163-166).
    [38]黄竹青,柳文刚,王擎, et al.,煤无烟燃烧锅炉炉内冷态流动特性的数值研究,东北电力学院学报, 2004, 24(1): 10-14.
    [39]王基壮,锅炉拱型对炉膛传热过程影响的分析, [工程硕士论文],大连,动力工程,大连理工大学, 2003
    [40]柏静儒,王擎,孙佰仲, et al.,煤无烟燃烧锅炉炉内燃烧特性分析,环境污染治理技术与设备, 2006, 7(8): 140-144.
    [41] Hobbs, M.L., Modeling countercurrent fixed-bed coal gasification, [Ph.D thesis], Provo, Department of Chemical Engineering, Brigham Young University, 1990
    [42] Hobbs, M.L., P.T. Radulovic, D.L. Smoot, Modeling fixed-bed coal gasifiers, AIChE Journal, 1992, 38(5): 681-702.
    [43] Radulovic, P.T., M.U. Ghani, L.D. Smoot, Improved model for fixed bed coal combustion and gasification, Fuel, 1995, 74(4): 582-594.
    [44] Ghani, M.U., P.T. Radulovic, L.D. Smoot, An improved model for fixed-bed coal combustion and gasification: Sensitivity analysis and applications, Fuel, 1996, 75(10): 1213-1226.
    [45] Hobbs, M.L., P.T. Radulovic, L.D. Smoot, Combustion and gasification of coals in fixed-beds, Progress in Energy and Combustion Science, 1993, 19(6): 505-586.
    [46] Cooper, J., W.L.H. Hallett, Numerical model for packed-bed combustion of char particles, Chemical Engineering Science, 2000, 55(20): 4451-4460.
    [47] Arthur, J.R., Reactions Between Carbon and Oxygen, Transactions of the Faraday Society, 1951, 47: 164-176.
    [48] Biyikoglu, A., M. Sivrioglu, A two-dimensional mathematical modeling of combustion chambers of coal-fired boilers with a fixed bed, Energy Sources, 2001, 23(10): 859-871.
    [49] Biyikoglu, A., Mathematical modelling of a boiler with a fixed bed coal combustion, [Ph.D. thesis], Ankara (in Turkish), Institute of Science and Technology, Gazi University, 1993
    [50] Pratt, D.T., J.J. Wormeck, CREK a computer program for calculation of combustion reacting equilibrium and kinetics in laminar or turbulent flow, in Report WSU-ME-TEL-76-1. 1976, Washington State University.
    [51] Durst, F., T. Loy., Ein Berechnungsverfahren für zweidimensionale Laminare und Turbulente Str?mungen (TEACH), Tagungsunterlagen, Karlsruhe, 1984.
    [52] Ford, N.W.J., M.J. Cooke, P.W. Sage, Modelling of fixed bed combustion, Fuel Processing Technology, 1993, 36: 55-63.
    [53] Chejne, F., J.P. Hernandez, W.F. Florez, et al., Modelling and simulation of time-dependent coal combustion processes in stacks, Fuel, 2000, 79(8): 987-997.
    [54] Argo, W.B., J.M. Smith, Heat Transfer in Packed Beds, Chemical Engineering Progress, 1953, 49(8): 443-451.
    [55] Yagi, S., D. Kunii, Studies on effective thermal conductivities in packed beds, AIChE Journal, 1957, 3(3): 373-381.
    [56] Edwards, M.F., J.F. Richardson, Gas dispersion in packed beds, Chemical Engineering Science, 1968, 23: 109-123.
    [57] Tsotsas, E., E.U. Schlunder, On Axial Dispersion in Packed Beds with Fluid Flow, Chemical Engineering Process, 1988, 24: 15-31.
    [58] Dixon, A.G., D.L. Cresswell, Theoretical Prediction of Effective Heat Transfer Parameters in Packed Beds, AIChE Journal, 1979, 25(4): 663-675.
    [59] Vortmeyer, D., Radiation in packed solids, German Chemical Engineering, 1980, 3(2): 124-138.
    [60] Fjellerup, J., U. Henriksen, A.D. Jensen, et al., Heat transfer in a fixed bed of straw char, Energy and Fuels, 2003, 17(5): 1251-1258.
    [61] Frigerio, S., H. Thunman, B. Leckner, et al., Estimation of gas phase mixing in packed beds, Combustion and Flame, 2007, Article in Press, Available online.
    [62] Nijemeisland, M., Verification Studies of Computational Fluid Dynamics in Fixed Bed Heat Transfer, [Master Thesis], Worcester, Chemical Engineering, Worcester Polytechnic Institute, 2000
    [63] Guardo, A., M. Coussirat, M.A. Larrayoz, et al., Influence of the turbulence model in CFD modeling ofwall-to-fluid heat transfer in packed beds, Chemical Engineering Science, 2005, 60: 1733– 1742.
    [64] Thunman, H., B. Leckner, Co-current and counter-current fixed bed combustion of biofuel - A comparison, Fuel, 2003, 82(3): 275-283.
    [65] Johansson, R., H. Thunman, B. Leckner, Sensitivity analysis of a fixed bed combustion model, Energy and Fuels, 2007, 21(3): 1493-1503.
    [66] Johansson, R., H. Thunman, B. Leckner, Influence of intraparticle gradients in modeling of fixed bed combustion, Combustion and Flame, 2007, 149(1-2): 49-62.
    [67] Thunman, H., B. Leckner, Modeling of the combustion front in a countercurrent fuel converter, Proceedings of the Combustion Institute, 2002, 29: 511-518.
    [68] Thunman, H., B. Leckner, Influence of size and density of fuel on combustion in a packed bed, Proceedings of the Combustion Institute, 2005, 30: 2939–2946.
    [69] Wurzenberger, J.C., S. Wallner, H. Raupenstrauch, et al., Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling, AIChE Journal, 2002, 48(10): 2398-2411.
    [70] Kaer, S.K., Numerical modelling of a straw-fired grate boiler, Fuel, 2004, 83(9): 1183-1190.
    [71] Kaer, S.K., Straw combustion on slow-moving grates - A comparison of model predictions with experimental data, Biomass and Bioenergy, 2005, 28(3): 307-320.
    [72] Ryu, C., D. Shin, S. Choi, Effect of fuel layer mixing in waste bed combustion, Advances in Environmental Research, 2001, 5(3): 259-267.
    [73] Shin, D., C.K. Ryu, S. Choi, Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators, Journal of the Air and Waste Management Association, 1998, 48: 345-351.
    [74] van der Lans, R.P., L.T. Pedersen, A. Jensen, et al., Modelling and experiments of straw combustion in agrate furnace, Biomass and Bioenergy, 2000, 19(3): 199-208.
    [75] Zhou, H., A.D. Jensen, P. Glarborg, et al., Numerical modeling of straw combustion in a fixed bed, Fuel, 2005, 84(4): 389-403.
    [76] Yang, Y.B., C. Ryu, A. Khor, et al., Fuel size effect on pinewood combustion in a packed bed, Fuel, 2005, 84(16): 2026-2038.
    [77] Yang, Y.B., V.N. Sharifi, J. Swithenbank, Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds, Fuel, 2004, 83: 1553–1562.
    [78] Yang, Y.B., Y.R. Goh, R. Zakaria, et al., Mathematical modelling of MSW incineration on a travelling bed, Waste Management, 2002, 22(4): 369-380.
    [79] Yang, Y.B., V.N. Sharifi, J. Swithenbank, Converting moving-grate incineration from combustion to gasification–Numerical simulation of the burning characteristics, Waste Management, 2007, 27: 645-655.
    [80] Yang, Y.B., H. Yamauchi, V. Nasserzadeh, et al., Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed, Fuel, 2003, 82: 2205–2221.
    [81] Yang, Y.B., V.N. Sharifi, J. Swithenbank, Substoichiometric conversion of biomass and solid wastes to energy in packed beds, AIChE Journal, 2006, 52(2): 809-817.
    [82] Remiarova, B., J. Markos, R. Zajdlik, et al., Identification of the mechanism of coal char particle combustion by porous structure characterization, Fuel Processing Technology, 2004, 85(4): 303-321.
    [1]黄祥新,层燃炉中的推迟配风法及空气二次利用原理,工业锅炉, 1999, 60(4): 33-35.
    [2] Yang, Y.B., V.N. Sharifi, J. Swithenbank, Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds, Process Safety and Environmental Protection, 2005, 83(6 B): 549-558.
    [3] Peters, B., Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles, Combustion and Flame, 2002, 131(1-2): 132-146.
    [4] Yang, Y.B., V.N. Sharifi, J. Swithenbank, Substoichiometric conversion of biomass and solid wastes to energy in packed beds, AIChE Journal, 2006, 52(2): 809-817.
    [5] Yang, Y.B., Y.R. Goh, R. Zakaria, et al., Mathematical modelling of MSW incineration on a travelling bed, Waste Management, 2002, 22(4): 369-380.
    [6] Bruch, C., B. Peters, T. Nussbaumer, Modelling wood combustion under fixed bed conditions, Fuel, 2003, 82: 729-738.
    [7]余其铮,辐射换热原理,哈尔滨,哈尔滨工业大学出版社, 2000.
    [8]于娟,挥发份、CO火焰与炭粒燃烧的互相作用及其模化, [博士论文],上海,热能工程研究所,上海交通大学, 2003
    [9]胡国新,田伟学,许伟, et al.,大颗粒煤在移动床中的热解模型,上海交通大学学报, 2001, 35(5): 733-736.
    [10] Saxena, S.C., Devolatilization and combustion characteristics of coal particles, Progress in Energy and Combustion Science, 1990, 16(1): 55-94.
    [11]范维澄,万跃鹏,流动及燃烧的模型与计算,合肥,中国科学技术大学出版社, 1992.
    [12] Shin, D., S. Choi, Combustion of simulated waste particles in a fixed bed, Combustion and Flame, 2000, 121(1): 167-180.
    [13] Hallett, W., Packed Bed Combustion: An Overview, 2005: http://www.genie.uottawa.ca/~hallett/cics05plenary.pdf.
    [14] Merrick, D., Mathematical models of the thermal decomposition of coal - 1. the evolution of volatile matter, Fuel, 1983, 62(5): 534-539.
    [15] Thunman, H., B. Leckner, Modeling of the combustion front in a countercurrent fuel converter, Proceedings of the Combustion Institute, 2002, 29: 511-518.
    [16]赵坚行,燃烧的数值模拟,北京,科学出版社, 2002.
    [17] Fluent公司, Fluent软件内部自带数据库, Fluent软件内部自带数据库, 2006.
    [18] Johansson, R., H. Thunman, B. Leckner, Influence of intraparticle gradients in modeling of fixed bed combustion, Combustion and Flame, 2007, 149(1-2): 49-62.
    [19] Zhou, H., A.D. Jensen, P. Glarborg, et al., Numerical modeling of straw combustion in a fixed bed, Fuel, 2005, 84(4): 389-403.
    [20] Jones, W.P., R.P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combustion and Flame, 1988, 73(3): 233-249.
    [21] Cooper, J., W.L.H. Hallett, Numerical model for packed-bed combustion of char particles, Chemical Engineering Science, 2000, 55(20): 4451-4460.
    [22] Watanabe, H., M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier, Fuel, 2006, 85(12-13): 1935-1943.
    [23] Cloke, M., T. Wu, R. Barranco, et al., Char characterisation and its application in a coal burnout model, Fuel, 2003, 82(15-17): 1989-2000.
    [24] Arthur, J.R., Reactions Between Carbon and Oxygen, Transactions of the Faraday Society, 1951, 47: 164-176.
    [25]斯穆特, L.D., P.J.史密斯,煤的燃烧与气化, ed,傅维标,卫景彬, and张燕屏,北京,科学出版社, 1992.
    [26] Hobbs, M.L., Modeling countercurrent fixed-bed coal gasification, [Ph.D thesis], Provo, Department of Chemical Engineering, Brigham Young University, 1990
    [27] Samuilov, E.V., M.F. Faminskaya, E.S. Golovina, Model and Calculation of the Gasification of a Single Carbon Particle, Combustion, Explosion and Shock Waves, 2004, 40(1): 77-84.
    [28] Rafsanjani, H.H., E. Jamshidi, M. Rostam-Abadi, A new mathematical solution for predicting char activation reactions, Carbon, 2002, 40(8): 1167-1171.
    [29] Wang, F.Y., S.K. Bhatia, A generalised dynamic model for char particle gasification with structure evolution and peripheral fragmentation, Chemical Engineering Science, 2001, 56(12): 3683-3697.
    [30] Merrick, D., Mathematical Models of the Thermal Decomposition of Coal - 3. Density, Porosity and Contraction Behaviour, Fuel, 1983, 62(5): 547-552.
    [31] Merrick, D., Mathematical models of the thermal decompositionof coal - 2. Specific heats and heats of reaction, Fuel, 1983, 62(5): 540-546.
    [32] FLUENT(Inc.), Fluent 6.3 User Guide. 2006.
    [33] Cheng, P., Two dimensional radiation gas flow by a moment method, AIAA Journal, 1964, 2: 1662-1664.
    [34] Siegel, R., J.R. Howell, Thermal radiation heat transfer (4th ed.), New York, Taylor & Francis, 2002.
    [35] Coppalle, A., P. Vervisch, The Total Emissivities of High-Temperature Flames, Combustion and Flame, 1983, 49: 101-108.
    [36] Smith, T.F., Z.F. Shen, J.N. Friedman, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, Journal of Heat Transfer, ASME, 1982, 104(4): 602-608.
    [37] Goddard, C.D., Y.B. Yang, J. Goodfellow, et al., Optimisation study of a large waste-to-energy plant using computational modelling and experimental measurements, Journal of the Energy Institute, 2005, 78(3): 106-116.
    [38] Ryu, C., D. Shin, S. Choi, Combined simulation of combustion and gas flow in a grate-type incinerator, Journal of the Air and Waste Management Association, 2002, 52(2): 189-197.
    [39] K?r, S.K., Numerical investigation of ash deposition in straw-fired boilers——Using CFD as the framework for slagging and fouling predictions, [Ph.D Thesis], Denmark, Institute of Energy Technology, Aalborg University, 2001
    [40] Calderbank, P.H., L.A. Pogorski, Heat transfer in packed beds, Transactions of Institution of Chemical Engineering, 1957, 35: 195-207.
    [1]王方,刘准,刘宝东,链条炉内型煤着火过程的试验研究,热能动力工程, 1989, 4(5): 40-46.
    [2]赵广播,栾积毅,董芃, et al.,链条炉内块粒型煤着火时间的实验研究,煤炭转化, 2003, 26(2): 52-55.
    [3]王乃计,纪任山,小林斡, et al.,模拟链条锅炉层状煤燃烧方法研究,洁净煤技术, 2003, 9(2): 38-42.
    [4]郑航,张学宏,炉前成型煤的特征及其燃烧特性,锅炉技术, 1998(7): 23-27.
    [5] Starley, G.P., F.W. Bradshaw, C.S. Carrel, et al., The influence of Bed-Region Stoichiometry on Nitric Oxide Formation in Fixed-Bed Coal Combustion, Combustion and flame, 1985, 59: 197-211.
    [6] Livingston, W.R., M.C. Birch. The control of NOx emissions from stoker-fired boilers, Combustion and Emissions Control II. in Proceedings of the Second International Conference on Combustion and Emissions Control. 1995. London.
    [7] ford, N., M.J. Cooke, M.D. Petttt, The use of a laboratory fixed-grate furnace to simulate industrial stoker-fired plant, Journal of the Institute of Energy, 1992, 65(9): 137-143.
    [8] Pisupati, S.V., B.G. Miller, A.W. Scaroni, Effect of blending low-grade anthracite products with bituminous coals on combustion characteristics in a bench-scale stoker simulator, Fuel Processing Technology, 1992, 32: 159-179.
    [9] Nadziakiewicz, J., M. Kozio, Co-combustion of sludge with coal, Applied Energy, 2003, 75: 239-248.
    [10]Γ.Φ.克诺烈,锅炉燃烧过程, ed,马.译,北京,中国工业出版社, 1966.
    [11]陈镜泓,李传儒,热分析与应用,北京,科学出版社, 1985.
    [12]张永照,陈听宽,黄祥新,工业锅炉,北京,机械工业出版社, 1995.
    [1]徐通模,惠世恩,刘仲军, et al.,关于防止火床炉炉膛冒正压的若干措施,热能动力工程, 1994, 9(1): 14-17.
    [2]黄祥新,层燃炉中的推迟配风法及空气二次利用原理,工业锅炉, 1999, 60(4): 33-35.
    [3]常兵,配风方式对层燃炉燃烧特性影响的试验研究, [硕士论文],上海,机械与动力学院,上海交通大学, 2007
    [4]周春艳,马晓茜,毛恺,配风方式对垃圾焚烧炉燃烧效率的影响分析,煤气与热力, 2003, 23(7): 395-399.
    [5]鞠占英,分段送风对链条炉燃烧的影响,锅炉制造, 2002(3): 57-58.
    [6]张元忠,何若敏,徐开义, et al.,试论链条炉排配风问题,动力工程, 1983(5): 52-59.
    [7]王君儒,黄逸胜,刘建华,链条炉燃烧无烟煤的炉拱与配风研究,节能, 1995(7): 29-31.
    [8]赵志宽,贺东伟,链条炉燃烧合理配风,应用能源技术, 2004, 86(2): 23-24.
    [9]黄祥新,宽煤种高效消烟双人字形节煤炉拱,工业锅炉, 1996, 17(1): 2-4.
    [1]黄祥新,层燃炉中的"微爆燃"现象及其与炉拱的关系--炉拱理论的新进展,工业锅炉, 1999(1): 18-20.
    [2] Huang, X., G. Lu. The discovery of "slight explosion" phenomenon and study of anti-explosion arch in stoker firing. in Proceedings of the International conference on energy and environment, ICEE, Energy and Environment. 1995. Shanghai.
    [3]陆桂成,“微爆燃”现象的研究及拱区流场的数值计算, [硕士],上海,能源系,上海交通大学, 1995
    [4] Huang, X.-x., G.-c. Lu, The Detection and Study of the "Mini-Explosion" Phenomenon in Stoker Firing, Proceedings of CSPE-JSME-ASME International Conference on Power Engineering, 1995, 1: 287-290.
    [5]顾志刚,电站煤粉炉防爆措施,东方电气评论, 1994, 8(1): 37-40.
    [6]张冬阳,吕太,郝振彬,制粉系统掺炉烟防止可燃气体爆炸的探讨,黑龙江电力, 1994, 16(6):334-336.
    [7] Linak, W.P., J.D. Kilgroe, J.A. McSorley, et al., On the occurrence of transient puffs in a rotary kiln incinerator simulator: I. prototype solid plastic wastes, JAPCA (Journal of the Air Pollution Control Association), 1987, 37(1): 54-65.
    [8] Linak, W.P., J.A. McSorley, J.O.L. Wendt, et al., On the occurrence of transient puffs in a rotary kiln incinerator simulator: II contained liquid wastes on sorbent, JAPCA (Journal of the Air Pollution Control Association), 1987, 37(8): 934-942.
    [9] Smagorinsky, J., General circulation experiments with the primitive equations. I. The basic experiment, Monthly Weather Review, 1963, 91(3): 99-164.
    [10] Lilly, D.K., On the Application of the Eddy Viscosity Concept in the Inertial Subrange of Turbulence, NCAR Manuscript, 1966, 123.
    [11] Bakker, A., L.M. Oshinowo, E.M. Marshall, The use of large eddy simulation to study stirred vessel hydrodynamics, 10th European Conference on Mixing, 2000(July 2-5): 247-254.
    [12] Pentaris, A., S. Tsangaris, Numerical simulation of Unsteady Viscous Flows Using an Implicit Projection Method, International Journal for Numerical Methods in Fluids, 1996, 23: 897-921.
    [13] Zhou, X., K.H. Luo, J.J.R. Williams, Vortex dynamics in spatio-temporal development of reacting plumes, Combustion and Flame, 2002, 129(1-2): 11-29.
    [14] Zhou, X.Y., J.C.F. Pereira, Large Eddy Simulation (2D) of a Reacting Plane Mixing Layer Using Filtered Density Function Closure, Flow, Turbulence and Combustion, 2000, 64: 279-300.
    [15] Wegner, B., Y. Huai, A. Sadiki, Comparative study of turbulent mixing in jet in cross-flow configurations using LES, International Journal of Heat and Fluid Flow, 2004, 25(5): 767-775.
    [16] Cheng, P., Two dimensional radiation gas flow by a moment method, AIAA Journal, 1964, 2: 1662-1664.
    [17] Siegel, R., J.R. Howell, Thermal radiation heat transfer 4th ed, New York, Taylor & Francis, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700