用户名: 密码: 验证码:
微纳光纤器件及其在全光信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳光纤是纳米光子学中的一个重要研究领域,它以其卓越的性能成为未来光器件微型化集成化的一种可供选择的基本单元。微纳光纤作为光波导具有以下独特的优点:具有极低的光纤到器件再到光纤的耦合损耗,粗糙度极低的波导表面,高折射率差的强限制光场,大百分比的倏逝场,极轻的质量及灵活的色散特性。所以对微纳光纤特性、微纳光纤光子器件及微纳光纤应用的研究正吸引越来越多研究者的注意。
     本论文针对微纳光纤还从未涉足的领域:光信号处理展开研究;除了提出并实验实现了一些基于微纳光纤的新型光子器件,还对微纳光纤在全光码型转换和微波光子学中的应用进行了深入研究,概括全文的研究成果和贡献,有如下几个方面:
     (1)建立了微纳光纤的物理模型,推导了微纳光纤的单模传输条件,分析了微纳光纤基模的电场分布和能量分布的特点,以及群速度和波导色散,采用FDTD法研究了微纳光纤相互之间的的模场耦合特性。
     (2)搭建了微纳光纤的拉制平台和基于微纳光纤的光子器件的装配测试平台,成功制作出了可满足实验需求的各种直径和长度的微纳光纤,并装配测试了多种微纳光纤光子器件,为后续的应用实验研究工作打下了坚实的基础。
     (3)提出了反射型微纳光纤环谐振器(RMRR)的概念,推导了该器件的反射传递函数,实验组装了RMRR,获得了一系列不同FSR的梳状反射谱。提出了微纳光纤布拉格光栅(MFBG)的概念,理论推导了多模传输的MFBG除了具有正向基模与反向基模耦合产生的反射峰,还有正向高阶模式与反向基模耦合所产生的反射峰;利用包层部分掺锗的特殊光纤拉制出微纳光纤,并通过相位掩模板在KrF准分子激光器的紫外曝光下,成功制作出不同直径的MFBG;并用其进行了折射率传感的实验,获得了较高的传感灵敏度。
     (4)提出了基于微纳光纤环谐振器(MRR)的RZ到NRZ的全光码型转换方案,理论模拟了利用MRR进行RZ到NRZ码型转换的原理,分析了MRR的失谐量、消光比及精细度对转换的NRZ信号的质量的影响;基于MRR的可调谐性实验实现了20Gb/s和40Gb/s等不同速率下的的RZ到NRZ码型转换;并且实验验证了多信道RZ码到NRZ码的码型转换的可行性。
     (5)提出了基于MRR的微波光子学滤波器实现方案,首先利用MRR构建了单纵模双波长激光器,然后利用色散介质引入延时差,实现了大FSR的微波光子学滤波器;理论分析了MRR特性参数对微波光子学滤波器滤波特性的影响,实验结果表明通过调节微纳光纤环的直径可以方便实现微波光子学滤波器的可调谐性。
     (6)提出了基于微纳光纤的毫米波超宽带信号的产生方案,理论推导了利用该方案产生正负monocycle和正负doublet的毫米波超宽带信号的原理,实验实现了24GHz的毫米波超宽带信号,通过调谐微纳光纤环谐振器的透射谱,可以获得正monocycle的和负monocycle自由切换的毫米波超宽带信号,所获得24GHz的毫米波超宽带信号的频谱完全符合FCC的要求。
As an important research topic of Nano-photonics, microfiber will become an alternative fundamental building block of future miniaturized and integrated photonic devices or circuits thanks to its excellent performance. Microfibers have many particular characteristics such as very low fiber-to-fiber coupling loss, extremely small surface roughness, strongly confined field due to high refractive index difference, high fractional evanescent field, extremely light in mass, and flexible dispersion property. Therefore, there are more and more efforts devoted to the research of microfiber fabrication, photonic devices based on microfiber, and application of microfiber.
     In this thesis, some novel photonic devices based on microfiber are proposed and demonstrated. Optical format conversion and microwave photonics devices based on microfibers are researched. Several research achievements and contributions are summarized as followings:
     (1) Theoretical model of microfiber and single mode condition of microfiber are researched. We numerically simulate and analyze the distribution of electric-field and power, as well as the properties of waveguide dispersion and group velocity. FDTD simulation is used to research evanescent coupling between parallel microfibers.
     (2) We establish the fabrication setup of microfiber and assembling and measurement platform of photonic devices based on microfibers. A variety of microfibers with different diameters and lengths are fabricated successfully, which are utilized to assemble some photonic devices based on microfiber. All of these are substantial groundwork of the following experimental research.
     (3) Reflected microfiber ring resonator (RMRR) is proposed. The transfer function of RMRR is derived. Several RMRRs with different free spectral range are experimentally demonstrated. Novel microfiber Bragg grating (MFBG)is proposed. Simulation results show that the coupling between the forward-propagating fundamental mode and the backward-propagating fundamental mode produces the long-wavelength reflection, and the coupling between the counter propagating HE11 and HE12 modes generates the short-wavelength reflection. We demonstrate several MFBGs with different diameters using specially Ge doped microfiber through KrF excimer laser irradiation with a uniform phase mask. The diffractive index sensors based on these MFBGs are demonstrated,which have high sensitivity.
     (4) An all-optical return-to-zero (RZ) to nonreturn-to-zero (NRZ) format converter utilizing microfiber ring resonator is proposed. The operation principle is numerically simulated and analyzed. We analyze the Q factor of converted NRZ signal affected by detuning, extinction ratio, and finesse of MRR. We experimentally demonstrate the format conversion from RZ to NRZ at the different bit rates of 20 Gb/s and 40 Gb/s through adjusting the diameter of MRR. The multi-channel format conversions from RZ to NRZ are also successfully demonstrated
     (5) A novel tunable microwave photonic filter based on MRR is proposed and experimentally demonstrated. A fiber ring laser based on the microfiber ring resonator is employed to generate two singlelongitudinal-mode carriers, then the dispersive element introduces the delay between two modulated carriers. By adjusting the diameter of the microfiber ring resonator, the proposed microwave photonic notch filter with high free spectral range canbe continuously and widely tuned.
     (6) The photonic generation of millimeter-wave (MMW) ultra-wideband (UWB) signal using MRR is proposed, The operation principle of generating MMW-UWB with opposite polarities monocycle and doublet waveform is analyzed. We experimentally demonstrated the 24-GHz MMW-UWB signal. Through adjusting the transmission spectrum of MRR, the polarity of monocycle waveform can be switched. The generated 24-GHz MMW-UWB signal has power spectrum density complying with the Federal Communication Committee regulation.
引文
[1]Ohtsu M, Hori H. Near-field nano-optics:from basic principles to nano-facrication and nano-photonics. New York:Kluwer/Plenum Publishers,1999.5-8
    [2]Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature,2003,426(6968):816-819
    [3]Domachuk P, Eggleton B J. Photonics:Shrinking optical fibers. Nature Materials, 2004,3(2):85-86
    [4]Tong L M, Lou J Y, Ye Z Z, et al. Self-modulated taper drawing of silica nanowires. Nanotechnology,2005,16(9):1445-1448
    [5]Tong L M, Hu L L, Zhang J J, et al. Photonic nanowires directly drawn from bulk glasses. Optics Express,2006,14(1):82-87
    [6]Xing X B, Wang Y Q, Li B. J. Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Optics Express,2008,16(14):10815-10822
    [7]Ward J M, O'Shea D G, Shortt B J, et al. Heat-and-pull rig for fiber taper fabrication. Review of Scientific Instruments,2006,77(8):25-29
    [8]Shi L, Chen X F, Liu H J, et al. Fabrication of submicron-diameter silica fibers using electric strip heater. Optics Express,2006,14(12):5055-5060
    [9]Xing X B, Zhu H, Wang Y Q, et al. Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Letters,2008,8(9):2839-2843
    [10]Li Y H, Tong L M. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Optics Letters,2008,33(4):303-305
    [11]Wang S S, Hu Z F, Li Y H, et al. All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors. Optics Letters,2009,34(3):253-255
    [12]Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Applied Physics Letters,2003,83(8):1527-1529
    [13]Cho S Y, Jokerst N M.A polymer microdisk photonic sensor integrated onto silicon. IEEE Photonics Technology Letters,2006,18(17-20):2096-2098
    [14]Xu D X, Densmore A, Delage A, et al. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Optics Express,2008, 16(19):15137-15148
    [15]Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. Journal of Lightwave Technology,1997,15(6):998-1005
    [16]Little B E, Foresi J S, Steinmeyer G, et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photonics Technology Letters,1998, 10(4):549-551
    [17]Chu S T, Little B E, Pan W G, et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technology Letters, 1999, 11(6):691-693
    [18]Little B E, Chu S T, Hryniewicz J V, et al. Filter synthesis for periodically coupled microring resonators. Optics Letters,2000,25(5):344-346
    [19]Van V. Synthesis of elliptic optical filters using mutually coupled microring resonators. Journal of Lightwave Technology,2007,25(2):584-590
    [20]Liu F F, Li Q, Zhang Z Y, et al. Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(3):706-712
    [21]Li Q, Liu F F, Zhang Z Y, et al. System Performances of On-Chip Silicon Microring Delay Line for RZ, CSRZ, RZ-DB and RZ-AMI Signals. Journal of Lightwave Technology,2008,26(21-24):3744-3751
    [22]Hill M T, Dorren H J S, de Vries T, et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature,2004,432(7014):206-209
    [23]Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics,2007,1(1):65-71
    [24]Wang Z R, Yuan G H, Verschaffelt G, et al. Storing 2 bits of information in a novel single semiconductor microring laser memory cell. IEEE Photonics Technology Letters,2008,20(13-16):1228-1230
    [25]Absil P P, Hryniewicz J V, Little B E, et al. Wavelength conversion in GaAs micro-ring resonators. Optics Letters,2000,25(8):554-556
    [26]Turner A C, Foster M A, Gaeta A L, et al. Ultra-low power parametric frequency conversion in a silicon microring resonator. Optics Express,2008,16(7):4881-4887
    [27]Ibrahim T A, Grover R, Kuo L C, et al. All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technology Letters,2003,15(10): 1422-1424
    [28]Xu Q F, Lipson M. All-optical logic based on silicon micro-ring resonators. Optics Express,2007,15(3):924-929
    [29]Lu Y Y, Liu F F, Qiu M, et al. All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators. Optics Express, 2007,15(21):14275-14282
    [30]Zhang L, Yang J Y, Song M, et al. Microring-based modulation and demodulation of DPSK signal. Optics Express,2007,15(18):11564-11569
    [31]Sumetsky M, Dulashko Y, Fini J M, et al. Optical microfiber loop resonator. Applied Physics Letters,2005,86(16):136-139
    [32]Guo X, Li Y H, Jiang X S, et al. Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Applied Physics Letters,2007,91(7):214-217
    [33]Wu Y, Zeng X, Hou C L, et al. A tunable all-fiber filter based on microfiber loop resonator. Applied Physics Letters,2008,92(19):96-101
    [34]Jiang X S, Tong L M, Vienne G, et al. Demonstration of optical microfiber knot resonators. Applied Physics Letters,2006,88(22):85-93
    [35]Jiang X D, Chen Y, Vienne G, et al. All-fiber add-drop filters based on microfiber knot resonators. Optics Letters,2007,32(12):1710-1712
    [36]Vienne G, Coillet A, Grelu P, et al. Demonstration of a reef knot microfiber resonator. Optics Express.2009,17(8):6224-6229
    [37]Sumetsky M. Uniform coil optical resonator and waveguide:transmission spectrum, eigenmodes, and dispersion relation. Optics Express,2005,13(11):4331-4340
    [38]Xu F and Brambilla G. Manufacture of 3-D microfiber coil resonators. IEEE Photonics Technology Letters,2007,19(17-20):1481-1483
    [39]Sumetsky M. Optical fiber microcoil resonator. Optics Express,2004,12(10): 2303-2316
    [40]Xu F, Brambilla G. Embedding optical microfiber coil resonators in Teflon. Optics Letters,2007,32(15):2164-2166
    [41]Jiang X S, Yang Q, Vienne G, et al. Demonstration of microfiber knot laser. Applied Physics Letters,2006,89(14):156-163
    [42]Jiang X S, Song Q H, Xu L, et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters,2007,90(23):112-117
    [43]Yang Q, Jiang X S, Guo X, et al. Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Applied Physics Letters,2009, 94(10):156-162
    [44]Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Applied Physics Letters,2008,92(10):243-248
    [45]Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor. Optics Express,2007,15(12):7888-7893
    [46]Guo X, Tong L M. Supported microfiber loops for optical sensing. Optics Express, 2008,16(19):14429-14434
    [47]Wu Y, Rao Y J, Chen Y H, et al. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Optics Express,2009,17(20): 18142-18147
    [48]Gu F X, Zhang L, Yin X F, et al. Polymer single-nanowire optical sensors. Nano Letters,2008,8(9):2757-2761
    [49]Wu Y. MOEMS Accelerometer Based on Microfiber Knot Resonator. IEEE Photonics Technology Letters,2009,21(20):1547-1549
    [50]Magi E C, Fu L B, Nguyen H C, et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Optics Express,2007,15(16):10324-10329
    [51]You H, Hendrickson S M and Franson J D. Analysis of enhanced two-photon absorption in tapered optical fibers. Physical Review A,2008,78(5):231-238
    [52]Spillane S M, Pati G S, Salit K, et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Physical Review Letters,2008,100(23):174-180
    [53]Leon-Saval S G, Birks T A, Wadsworth W J, et al. Supercontinuum generation in submicron fibre waveguides. Optics Express,2004,12(13):2864-2869
    [54]Gattass R R, Svacha G T, Tong L M, et al. Supercontinuum generation in submicrometer diameter silica fibers. Optics Express,2006,14(20):9408-9414
    [55]Foster M A, Gaeta A L. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Optics Express,2005,13(18):6848-6855
    [56]Le Kien F, Gupta S D, Balykin V I, et al. Spontaneous emission of a cesium atom near a nanofiber:Efficient coupling of light to guided modes. Physical Review A, 2005,72(3):89-93
    [57]Sague G, Vetsch E, Alt W, et al. Cold-atom physics using ultrathin optical fibers: Light-induced dipole forces and surface interactions. Physical Review Letters,2007, 99(16):57-62
    [58]She W L, Yu J H, Feng R H. Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light. Physical Review Letters, 2008,101(24):46-53
    [59]Brevik I. Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light. Physical Review Letters,2009,103(21):74-82
    [60]Mansuripur M. Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light. Physical Review Letters,2009,103(1):95-102
    [61]Snyder A W, Love J D. Optical waveguide theory. New York:Chapman and Hall, 1983.56-73
    [62]Saleh B E A, Teich M C. Fundamentals of Photonics. New York:John Wiley & Sons, 1991.85-94
    [63]Kersey A D, Davis M A, Patrick H J, et al. Fiber grating sensors. Journal of Lightwave Technology,1997,15(8):1442-1463
    [64]Kersey A D, Berkoff T A, Morey W W. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters,1992, 28(3):236-238
    [65]Bhatia V, Campbell D, Claus R O, et al. Simultaneous strain and temperature measurement with long-period gratings. Optics Letters,1997,22(9):648-650
    [66]Grubsky V, Feinberg J. Long-period fiber gratings with variable coupling for real-time sensing applications. Optics Letters,2000,25(4):203-205
    [67]Liu L H, Zhang H, Zhao Q D, et al. Temperature-independent FBG pressure sensor with high sensitivity. Optical Fiber Technology,2007,13(1):78-80
    [68]Guo T, Shao L Y, Tam H Y, et al. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Optics Express,2009, 17(23):20651-20660
    [69]Gagliardi G, Salza M, Ferraro P, et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Measurement Science & Technology,2008,19(8):72-81
    [70]Guo T, Ivanov A, Chen C K, et al. Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling. Optics Letters,2008,33(9): 1004-1006
    [71]Davis M A, Kersey A D, Sirkis J, et al. Shape and vibration mode sensing using a fiber optic Bragg grating array. Smart Materials & Structures,1996,5(6):759-765
    [72]Chang J, Wang Q P, Zhang X Y, et al. Fiber-optic vibration sensor system. Laser Physics,2008,18(7):911-913
    [73]Kanellopoulos S E, Handerek V A, Rogers A J. SIMULTANEOUS STRAIN AND TEMPERATURE SENSING WITH PHOTOGENERATED IN-FIBER GRATINGS. Optics Letters,1995,20(3):333-335
    [74]Liu H B, Liu H Y, Peng G D, et al. Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings. Optics Communications, 2003,219(1-6):139-142
    [75]Lowder T L, Smith K H, Ipson B L, et al. High-temperature sensing using surface relief fiber Bragg gratings. IEEE Photonics Technology Letters,2005,17(9): 1926-1928
    [76]Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors:Overview and state-of-the-art. IEEE Sensors Journal,2008,8(7-8):1184-1193
    [77]Betz D C, Thursby G, Culshaw B, et al. Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Materials & Structures,2003,12(1):122-128
    [78]Guan B O, Tam H Y, Lau S T, et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technology Letters,2005,17(1):169-171
    [79]Reilly D, Willshire A J, Fusiek G, et al. A fiber-Bragg-grating-based sensor for simultaneous AC current and temperature measurement. IEEE Sensors Journal,2006, 6(6):1539-1542
    [80]Grillet A, Kinet D, Witt J, et al. Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sensors Journal,2008,8(7-8):1215-1222
    [81]Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters,2010,35(7):1007-1009
    [82]Lepley J, Ellison J, Ellison S, et al. Excess penalty impairments of polarization shift keying transmission format in presence of polarization mode dispersion. Electronics Letters,2000,36(8):736-737
    [83]Nelson L E, Kogelnik H. Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion. Optics Express,2000,7(10): 350-361
    [84]Nelson L E, Nielsen T N, Kogelnik H. Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission. IEEE Photonics Technology Letters,2001,13(7):738-740
    [85]Walklin S, Conradi J. Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems. Journal of Lightwave Technology,1999,17(11):2235-2248
    [86]Golovchenko E, Bergano N, Davidson C, et al. Modeling versus experiments of 16×10 Gbit/s WDM chirped RZ pulse transmission over 7500 km. Presented at the Optical Fiber Communication Conference (OFC),1999. Paper THQ3
    [87]Bakhshi B, Vaa M, Golovchenko E, et al. Comparison of CRZ, RZ and NRZ modulation formats in a 64×12.3 Gb/s WDM transmission experiment over 9000 km. Presented at the Optical Fiber Communication Conference (OFC),2001. Paper WF4
    [88]Griffin R, Walker R, Johnstone R, et al. Integrated 10 Gb/s chirped return-to-zero transmitter using GaAs-AlGaAs modulators. Presented at the Optical Fiber Communication Conference (OFC),2001. PD15
    [89]Bergano N. Undersea communication systems. in Optical Fiber Telecommunication IV, I. Kaminow and T. Li, Eds., New York:Academic,2002.154-197
    [90]Norte D, Willner A E. Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency. IEEE Photonics Technology Letters,1996, 8(5):712-714
    [91]Bigo S, Leclerc O, Desurvire E. All-optical fiber signal processing and regeneration for soliton communications. IEEE Journal of Selected Topics in Quantum Electronics, 1997,3(5):1208-1223
    [92]Kawaguchi H, Yamayoshi Y, Tamura K. All-optical RZ to NRZ format conversion using an ultrafast polarization bistable vertical-cavity surface-emitting laser. Presented at the Leos 2000-IEEE Annual Meeting Conference Proceedings,2000. Vols.1 & 2
    [93]Park S G, Spiekman L H, Eiselt M, et al. Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit. IEEE Photonics Technology Letters,2000,12(3):233-235
    [94]Xu L, Wang B C, Baby V, et al. All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter. IEEE Photonics Technology Letters,2003,15(2):308-310
    [95]Jiang Z, Leaird D E, Weiner A M. Width and wavelength-tunable optical RZ pulse generation and RZ-to-NRZ format conversion at 10 GHz using spectral line-by-line control. IEEE Photonics Technology Letters,2005,17(12):2733-2735
    [96]Lee S H, Chow K K, Shu C. Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion. Optics Express,2005, 13(5):1710-1715
    [97]Kwok C H, Lin C L. Simultaneous 4 x 10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber. IEEE Photonics Technology Letters,2007,19(21-24):1825-1827
    [98]Silveira T G, Teixeira A, Beleffi G T, et al. All-optical conversion from RZ to NRZ using gain-clamped SOA. IEEE Photonics Technology Letters,2007,19(6):357-359
    [99]Yu Y, Zhang X L, Huang D X, et al.20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters,2007,19(13-16):1027-1029
    [100]Dong J J, Zhang X L, Xu J, et al.40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express,2007, 15(6):2907-2914
    [101]Wang J, Sun J Q, Sun Q Z, et al. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking. Optics Letters,2007,32(16): 2462-2464
    [102]Ye T, Yan C S, Lu Y Y, et al. All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide. Optics Express,2008,16(20): 15325-15331
    [103]Yu Y, Zhang X L, Rosas-Fernandez J B, et al. Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Optics Express,2008,16(20):16166-16171
    [104]Contestabile G, Presi M, Proiletti R, et al. Optical reshaping of 40-Gb/s NRZ and RZ signals without wavelength conversion. IEEE Photonics Technology Letters,2008, 20(13-16):1133-1135
    [105]Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007,1(6):319-330
    [106]Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):877-887
    [107]Seeds A J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006,24(12):4628-4641
    [108]Yao J P. Microwave Photonics. Journal of Lightwave Technology,2009,27(1-4): 314-335
    [109]Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):832-846
    [110]Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology,2006,24(1):201-229
    [111]Dai Y T and Yao J P. Nonuniformly-spaced photonic microwave delay-line filter. Optics Express,2008,16(7):4713-4718
    [112]Xu E M, Zhang X L, Zhou L N, et al. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Optics Letters,2010,35(8):1242-1244
    [113]Chen L R, Page V. Tunable photonic microwave filter using semiconductor fibre laser. Electronics Letters,2005,41(21):1183-1184
    [114]Ning G, Aditya S, Shum P, et al. Tunable photonic microwave bandpass filter using phase modulation and a chirped fiber grating in a Sagnac loop. IEEE Photonics Technology Letters,2005,17(9):1935-1937
    [115]Chan E H W, Minasian R A. Sagnac-loop-based equivalent negative tap photonic notch filter. IEEE Photonics Technology Letters,2005,17(8):1740-1742
    [116]Ning G, Cheng L, Aditya S, et al. General analyses of infinite impulse microwave photonic filters with an intensity modulator in an opto-electronic feedback loop. Applied Physics B-Lasers and Optics,2008,92(4):609-614
    [117]Cheng L H, Aditya S. A novel photonic microwave filter with infinite impulse response. IEEE Photonics Technology Letters,2007,19(17-20):1439-1441
    [118]Ning G, Cheng L H, Aditya S, et al. Microwave photonic filter with triangle shaped infinite impulse response. Electronics Letters,2008,44(3):208-209
    [119]Liu D, Ngo N Q, Ning G, et al. Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation. Optics Communications,2006, 266(1):240-248
    [120]Mora J, Martinez A, Manzanedo M D, et al. Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter. Electronics Letters,2005,41(16):921-922
    [121]Pape D R, Goutzoulis A P. New wavelength division multiplexing true-time-delay network for wideband phased array antennas. Journal of Optics a-Pure and Applied Optics,1999, 1(2):320-323
    [122]Lee J H, Chang Y M, Han Y G, et al. Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter. Electronics Letters,2006,42(14):812-814
    [123]Choi Y K, Jeon S W, Kim Y, et al. A tunable photonic microwave notch filter using a multiple wavelength optical source. Microwave and Optical Technology Letters, 2010,52(1):134-138
    [124]Lee K, Lee J H, Lee S B. Tunable photonic microwave notch filter using SOA-based single-longitudinal mode, dual-wavelength laser. Optics Express,2009,17(15): 13216-13221
    [125]Zhou J Q, Aditya S, Shum P, et al. Microwave photonic bandpass filter using a multi-wavelength laser with a Bell-shaped power profile. Microwave and Optical Technology Letters,2009,51(5):1329-1332
    [126]Campillo A L, Bucholtz F. Increased nonlinear crosstalk in analog wavelength-division-multiplexed links due to the chromatic dispersion of optical filters. IEEE Photonics Technology Letters,2006,18(17-20):2014-2016
    [127]Yi X K, Minasian R A. Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):880-886
    [128]Coppinger F, Yegnanarayanan S, Trinh P D, et al. All-optical incoherent negative taps for photonic signal processing. Electronics Letters,1997,33(11):973-975
    [129]Coppinger F, Yegnanarayanan S, Trinh P D, et al. All-optical RF filter using amplitude inversion in a semiconductor optical amplifier. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1473-1477
    [130]You N, Minasian R A. Novel photonic recursive signal processor with reduced phase-induced intensity noise. Journal of Lightwave Technology,2006,24(7):2558-2563
    [131]Xiaoke Y, Wei F, Hong N J, et al. Tunable microwave filter design using wavelength conversion technique and high dispersion time delays. IEEE Photonics Technology Letters,2001,13(8):857-859
    [132]Wang X, Chan K T. Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fibre Bragg gratings. Electronics Letters, 2000,36(24):2001-2003
    [133]Manzanedo M D, Mora J and Capmany J. Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer. IEEE Photonics Technology Letters,2008,20(5-8):526-528
    [134]Kim T Y, Oh C K, Kim S J, et al. Tunable photonic microwave notch filter with negative coefficient based on polarization modulation. IEEE Photonics Technology Letters,2007,19(9-12):907-909
    [135]Oh C K, Kim T Y, Park C S. Reconfigurable photonic microwave bandpass filter with negative coefficients based on polarisation modulation. Electronics Letters, 2007,43(11):639-641
    [136]Capmany J, Pastor D, Martinez A, et al. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Optics Letters, 2003,28(16):1415-1417
    [137]Sales S, Capmany J, Marti J, et al. Experimental demonstration of fiberoptic delay-line filters with negative coefficients. Electronics Letters,1995,31(13): 1095-1096
    [138]Capmany J, Cascon J, Martin J L, et al. Synthesis of fiberoptic delay-line filters. Journal of Lightwave Technology,1995,13(10):2003-2012
    [139]Yan Y, Yao H P. A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter. IEEE Photonics Technology Letters,2007,19(17-20):1472-1474
    [140]Sagues M, Loayssa A, Capmany J. Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering. IEEE Photonics Technology Letters,2007,19(13-16):1194-1196
    [141]Loayssa A, Capmany J, Sagues M, et al. Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photonics Technology Letters,2006,18(13-16):1744-1746
    [142]Sagues M, Olcina R G, Loayssa A, et al. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering. Optics Express,2008,16(1):295-303
    [143]Xue W Q, Sales S, Mork J, et al. Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Letters,2009, 21(1-4):167-169
    [144]Chang Y M, Chung H Y, Lee J H. High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber. IEEE Photonics Technology Letters,2007,19(21-24):2042-2044
    [145]Ning G X, Aditya S, Shum P, et al. Tunable microwave filter that uses a high-birefringent fiber and a differential-group-delay element. Journal of the Optical Society of America a-Optics Image Science and Vision,2005,22(5):913-916
    [146]Gouraud H, Di Bin P, Billonnet L, et al. Optical fiber dispersion properties management for optimized narrowband bandpass microwave photonics slicing filter applications. Optics Communications,2006,265(2):506-512
    [147]Zhang W, Bennion I, Williams J A R. Chromatic dispersion effect in a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber. Optics Express,2005,13(17):6429-6437
    [148]Polo V, Ramos F, Marti J, et al. Synthesis of photonic microwave filters based on external optical modulators and wide-band chirped fiber gratings. Journal of Lightwave Technology,2000,18(2):213-220
    [149]Hunter D B, Nguyen L V T. Widely tunable RF photonic filter using WDM and a multichannel chirped fiber grating. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):900-905
    [150]Ning G, Shum P, Zhou J Q. Chromatic dispersion effect on microwave photonic filter with a tunable linearly chirped fiber bragg grating. Microwave and Optical Technology Letters,2007,49(9):2131-2133
    [151]Hunter D B, Englund M A and Edvell G. Multichannel fiber gratings with tailored dispersion profiles for RF filtering. IEEE Photonics Technology Letters,2005, 17(10):2173-2175
    [152]FCC. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. Tech. Rep., ET-Docket 98-153,2002. FCC02-48
    [153]FCC. Second Report and Order and Second Memorandum Opinion and Order. Tech. Rep.,2004. FCC 04-285
    [154]Ghavami M, Michael L B, Kohno R, Ultra Wideband Signals and Systems in Communication Engineering. West Sussex, U. K.:Wiley,2004.63-74
    [155]Porcine D, Research P, Hirt W. Ultra-wideband radio technology:Potential and challenges ahead. IEEE Communication Magazine,2003,41(7):66-74
    [156]Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microwave Magazine,2003,4(2):36-47
    [157]Siwiak K, McKeown D, Ultra-Wideband Radio Technology. Chichester, U.K.:Wiley, 2004.52-67
    [158]Yang L Q, Giannakis G B. Ultra-wideband communications:An idea whose time has come. IEEE Signal Processing Magazine,2004,21(6):26-54
    [159]Wu X, Tian Z, Davidson T N, et al. Optimum waveform design for UWB radios. IEEE Transaction on Signal Processing,2006,54(6):2009-2021
    [160]Lin W P, Chen J Y. Implementation of a new ultrawide-band impulse system. IEEE Photonics Technology Letters,2005,17(11):2418-2420
    [161]Fontana R J. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Transaction on Microwave Theory and Technology,2004,52(9): 2087-2104
    [162]Kuri T, Omiya Y, Kawanishi T, et al. Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques. Presented at the 2006 International Topical Meeting on Microwaves Photonics, New York,2006. 12-17
    [163]Guennee Y, Gary R. Optical frequency conversion for millimeter-wave ultra-wideband-over-fiber systems. IEEE Photonics Technology Letters,2007,19(13-16): 996-998
    [164]Fu S, Zhong W D, Wen Y J, et al. Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications. IEEE Photonics Technology Letters,2008,20(9-12):1006-1008
    [165]Chang Q J, Tian Y, Ye T, et al. A 24-GHz Ultra-Wideband Over Fiber System Using Photonic Generation and Frequency Up-Conversion. IEEE Photonics Technology Letters,2008,20(17-20):1651-1653
    [166]Li J, Liang Y, Wong K K Y. Millimeter-Wave UWB Signal Generation Via Frequency Up-Conversion Using Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters,2009,21(17):1172-1174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700