基于AlGaAs光学非线性效应的全光信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,人们对信息的需求与日俱增,通信和网络已渗透到人类社会的方方面面,各种数据业务和多媒体业务的快速发展更进一步刺激着现有通信技术特别是光纤通信技术日新月异的发展。基于全光方式交换数据和信息的全光网络因有望解决传统光网络中光-电-光转换的电子瓶颈问题而成为了光通信网络发展的趋势和业界共识。全光网络的构建必然要求各种信号处理如波长转换,码型转换,逻辑开关,路由选择,3R再生等使用全光的方式完成。
     全光信号处理可以通过应用特殊材料中的光学非线性效应实现,基于光学非线性效应实现全光信号处理具有响应速度快,通信容量高等优点,另一方面,随着半导体技术的进步,光电子器件正向小型化,集成化方向发展。AlGaAs拥有丰富的二阶、三阶非线性效应,易于与其它半导体光器件集成,工艺成熟,成为了制作全光信号处理器件的理想材料。在非线性的应用中,非线性的转换效率与器件中的光强度成正向对应关系,微环谐振腔可以在增加光强的同时增加光与物质相互作用时间,这可以提高非线性的转换效率。本论文应用AlGaAs中的二阶、三阶非线性效应与微环谐振腔结合实现全光波长转换,全光逻辑门,全光计算,全光UWB信号产生等全光信号处理,其主要内容概括如下:
     (1)在介绍了AlGaAs的材料及光学非线性特性的基础上,从麦氏方程出发推导了其非线性效应表达方程。简要分析了当前各向同性介质中二阶非线性效应相位匹配的方法。鉴于本论文中大多数器件的设计是基于微环谐振腔实现的,在理论部分对微环谐振腔做了详细介绍,推导了稳态情况下微环的传输函数及其他相关函数,对微环性能的评价参数做了解释,着重对微环谐振腔的相位传输特性做了讨论,分析了不同耦合系数下的相移特性以及振幅变化规律,最后介绍了AlGaAs器件的一般制作工艺。
     (2)基于非线性极化产生的过程,理论推导了角度准相位匹配(AQPM)的匹配条件。为了解决AlGaAs弯曲波导中的角度准相位匹配时弯曲半径过小的困难,这里引入了形式双折射,通过把形式双折射与角度准相位匹配结合在微环谐振腔中实现有效的倍频产生(SHG)。分析了耦合系数,波导损耗,输入功率,微环Q因子等对转换效率的影响,给出了各种条件下的理论转换效率,并对双折射微环谐振腔的制作工艺提供了可能性的方案。进一步扩展方案于无谐振的弯曲波导用以实现宽带宽的波长转换。
     (3)把AlGaAs中的交叉相位调制(XPM)与微环谐振腔结合以实现小功率输入情况下的大相位调制,在此基础上提出了基于微环谐振腔级联实现全光的XOR、XNOR、NOT逻辑操作的方案,接着又使用一个变形的马赫-曾德尔干涉仪(MZI)与微环谐振腔结合实现了AND、NAND、OR、NOR、NOT、XOR和XNOR全部七种基本逻辑操作。在此基础上,提出用AlGaAs微环谐振腔与波导结合的单一器件实现半加,半减,全加,全减四种基本的逻辑计算,这里四种计算功能的切换依靠选择不同的信号光输入端口和输入强度实现。
     (4) DPSK码型在光通信中已经大量使用,DPSK码若要正确传输信号,需要对传输信息进行预编码。传统的DPSK预编码是在电域中完成的,本论文基于DPSK预编码是依靠XOR逻辑操作来实现的这一事实,提出使用全光的XOR逻辑操作来实现光域内的DPSK预编码过程。
     (5)在讨论了利用AlGaAs微环谐振腔中的XPM实现对探测光相位大范围调制的基础上,提出把微环谐振腔与马赫-曾德尔干涉仪结合实现超宽带(UWB)脉冲的产生,采用两环级联实现一阶(Monocycle)和二阶(Doublet)UWB信号产生,采用单个微环与MZI结合实现二阶UWB信号脉冲产生。详细讨论了器件延时,输入功率,泵浦脉冲宽度等对UWB频谱分布的影响。
     (6)本论文的方案中广泛使用了微环谐振腔的相移特性,而这里微环谐振腔传输相位移动本质上是由微环谐振腔内的有效折射率变化造成的。实现有效折射率变化可以通过电光效应,双光子吸收,自相位调制和交叉相位调制等实现,我们对它们做了一个简单描述并分析使用倍频效应与单光子吸收产生自由载流子从而实现对微环谐振腔内有效折射率进行控制的可能性。
With the development of human society, people’s demand for information is boomingday by day, and communication and network has penetrated into every corner of humansociety. The rapid development of the various services, such as voice, data and multimedia,has boosted the communication technology, especially optical fiber communicationtechnology. The all-optical network with data and information exchange based on usingall-optical methods hopefully solves the bottlenecks of O-E-O in traditional optical network,which has become an inevitable trend and consensus in the optical network field. Theconstruction of all-optical network is required various signal processings, such aswavelength conversion, format conversion, logic switches, routing selection and3Rregeneration and so on, all of which can be achieved by using all-optical methods.
     All-optical signal processing can be obtained using optical nonlinear effects in thenonlinear materials. The all-optical signal processing based on optical nonlinear effects hasdistinct advantages of ultra-fast response, high-capacity communication. Meanwhile, withthe development of semiconductor technology, optoelectronic devices are developingtowards miniaturization and integration. AlGaAs, with characteristic of great second-orderand third-order nonlinearity effects, mature production technology and easy to be integratedwith other semiconductor devices, makes itself as an ideal material for all-optical signalprocessing devices. In nonlinearity application, there is a positive correspondence betweennonlinearity conversion efficiency and the light intensity in optical devices. Microringresonator can increase the time of interaction between the light and matter with the increaseof the light intensity, which has greatly improved the nonlinearity conversion efficiency.
     All-optical signal processing, such as all-optical wavelength conversion, all-opticallogic gates, all-optical computing, all-optical UWB signal generation and so on, can beobtained with the help of microring resonator and the second-order or third-ordernonlinearity effects based on AlGaAs, the detailed contents can be found as follows:
     (1) The material properties and nonlinear characteristics of AlGaAs are discussed indetails; nonlinearity effect expression equation has been derived based on Maxwellequation. For second-order nonlinearity effect, various current methods of phase matchingin isotropy media are presented. Considering the design of most devices in this thesis is based on microring resonator, details about microring resonator are theorecticallyinvestigated. Microring resonator transfer functions and other related functions at stablestate are derived. Evaluation parameters for microring resonator performance are alsointroduced and explained. Here focus on phase transfer functions of microring resonator,analyze phase shift characteristics with different coupling coefficient and the amplitude ofvibration, finally, and discuss the manufacture technology of AlGaAs devices.
     (2) AQPM matching conditions are theorectically derived based on the process ofnonlinear polarization generation. To avoid too small bending radius in AQPM withAlGaAs bend waveguide, we propose to use in combining the form birefringence andAQPM in microring resonator to realize effective Second-Harmonic Generation (SHG),analyze the impacts of coupling coefficient, waveguide losses, input power, microring Qfactor on the conversion efficiency, present the theoretical conversion efficiency in differentconditions, as well as provide the possibilities for making birefringence microring resonator.On that basis, we further analyze to utilize AQPM and form birefringence to realize theeffective wavelength conversion in bent waveguide.
     (3) We propose to use a method of combining of cross phase modulation (XPM) inAlGaAs with microring resonator to obtain large phase modulation in the conditions oflower power input. And this dissertation puts forward to realize all-optical XOR、XNOR、NOT logical operation based on microring resonators cascade,and then a deformable MZIis used in combination with microring resonators to obtain all of the seven logicaloperations: AND、NAND、OR、NOR、NOT、XOR and XNOR. On this basis, a devicedesigned to combine AlGaAs microring resonators with waveguide to obtain four basiclogical computation (half adder, half subtracter,full adder,full subtracter) is presented inthis dissertation. The switching between the above mentioned logical computation isdepends on the use of different signal input ports and input intensity.
     (4) DPSK has been widely used in optical communications, but to correctly transmitsignals, it needs to pre-code the transmitting information. It is known that traditional DPSKpre-coding is completed in the electrical domain. In this dissertation, we propose to useall-optical XOR logical operation to achieve DPSK pre-coding in the optical domain basedon the fact that the realization of DPSK pre-coding depends on XOR logical operation.
     (5) Based on the discussion of using XPM in AlGaAs microring resonator to obtainphase modulation in a wide range for the probe light, we propose to combine microringresonator with MZI to obtain UWB generation, utilize two ring cascade to achieveMonocycle and Doublet UWB signal generation, and use single microring, in combinationwith MZI to obtain Doublet UWB pulse signal generating. The impacts of device timedelay, input power, the pump pulse width on the UWB spectrum distribution are analyzedin details.
     (6) A scheme of using phase shift characteristic in microring resonator is presented inthis thesis, and the phase shift here, essentially, is caused by the effective refractive indexchanges in microring resonator. The effective refractive index changes can be achievedthrough the electro-optics effect, two-photon absorption, self phase modulation and crossphase modulation. We describe this in brief and analyze using SHG and single photonabsorptiometry (SPA) to generate free charge carriers, so as to achieve the possibility on thecontrol of effective refractive index changes in microring resonator.
引文
[1] Mukherjee B. Optical communication networks. New York: McGraw-Hill,1997.30-36
    [2] Cochrane P. Optical Network Technology--Foreword. London: Chapman&Hall,1995.28-30
    [3] Ramaswami R, Sivarajan KN, Sasaki GH. Optical networks: a practical perspective.UK: Morgan Kaufmann,2009.15-25
    [4] Saleh AAM, Simmons JM. Evolution toward the next-generation core opticalnetwork. Journal of Lightwave Technology,2006,24(9):3303-3321
    [5] Sano A, Masuda H, Kobayashi T, et al.69.1-Tb/s (432x171-Gb/s) C-and extendedL-band transmission over240km using PDM-16-QAM modulation and digitalcoherent detection. in: Optical Fiber Communication Conference,(OFC'2010),2010.PDPB7
    [6] Vlachos K, Pleros N, Bintjas C, et al. Ultrafast time-domain technology and itsapplication in all-optical signal processing. Journal of Lightwave Technology,2003,21(9):1857-1868
    [7] Mulvad HCH, Galili M, Oxenl we LK, et al. Demonstration of5.1Tbit/s datacapacity on a single-wavelength channel. Optics Express,2010,18(2):1438-1443
    [8] Gnauck AH, Winzer PJ. Optical Phase-Shift-Keyed Transmission. Journal ofLightwave Technology,2005,23(1):115-130
    [9] Li F, Vo TD, Husko C, et al. All-optical XOR logic gate for40Gb/s DPSK signals viaFWM in a silicon nanowire. Optics Express,2011,19(21):20364-20371
    [10] Hasegawa A, Kodama Y. Signal transmission by optical solitons in monomode fiber.Proceedings of the IEEE,1981,69(9):1145-1150
    [11] Hasegawa A. Optical solitons in fibers. Springer Tracts in Modern Physics,1989,116(1989):1-74
    [12] Houbavlis T, Zoiros K, Kalyvas M, et al. All-optical signal processing andapplications within the esprit project DO_ALL. Journal of Lightwave Technology,2005,23(2):781-801
    [13] Liu Y, Hill M, Calabretta N,et al. All-optical buffering in all-optical packet switchedcross connects. IEEE Photonics Technology Letters,2002,14(6):849-851
    [14] Fu S, Shum P, Zhang L, et al. Design of SOA-based dual-loop optical buffer with a3×3collinear coupler: guideline and optimizations. Journal of Lightwave Technology,2006,24(7):2768-2778
    [15] Contestabile G, Presi M, Ciaramella E. Multiple wavelength conversion for WDMmulticasting by FWM in an SOA. IEEE Photonics Technology Letters,2004,16(7):1775-1777
    [16] Absil PP, Hryniewicz JV, Little BE, et al. Wavelength conversion in GaAs micro-ringresonators. Optics Letters,2000,25(8):554-556
    [17] Dolgaleva K, Ng WC, Qian L, et al. Compact highly-nonlinear AlGaAs waveguidesfor efficient wavelength conversion. Optics Express,2011,19(13):12440-12455
    [18] Mishina K, Maruta A, Mitani S, et al. NRZ-OOK-to-RZ-BPSK Modulation-FormatConversion Using SOA-MZI Wavelength Converter. Journal of Lightwave Technology,2006,24(10):3751-3758
    [19] Dong J, Zhang X, Xu J, et al. High Order Ultrawideband Pulse Generation fromNRZ-DPSK Signals. In: Optical Fiber Communication Conference,(OFC'2008),2008. JThA67
    [20] Lu Y, Liu F, Qiu M, et al. All-optical format conversions from NRZ to BPSK andQPSK based on nonlinear responses in silicon microring resonators. Optics Express,2007,15(21):14275-14282
    [21] Chan L, Qureshi KK, Wai P, et al. All-optical bit-error monitoring system usingcascaded inverted wavelength converter and optical NOR gate. IEEE PhotonicsTechnology Letters,2003,15(4):593-595
    [22] Poustie A, Blow K, Manning R, et al. All-optical pseudorandom number generator.Optics Communications,1999,159(4-6):208-214
    [23] Poustie A, Blow K, Kelly A, et al. All-optical parity checker with bit-differentialdelay. Optics Communications,1999,162(1-3):37-43
    [24] Mulvad HCH, Galili M, Oxenlowe L, et al. Polarization-independent high-speedswitching in a standard non-linear optical loop mirror. In: Optical Fibercommunication/National Fiber Optic Engineers Conference,(OFC/NFOEC2008),2008.1-3
    [25] Hu H, Palushani E, Galili M, et al.640Gbit/s and1.28Tbit/s polarisation insensitiveall optical wavelength conversion. Optics Express,2010,18(10):9961-9966
    [26] Morais R, Meleiro R, Monteiro P, et al. OTDM-to-WDM conversion based onwavelength conversion and time gating in a single optical gate. in: Optical FiberCommunication Conference,(OFC'2008),2008. OTuD5
    [27] Berrettini G, Simi A, Malacarne A, et al. Ultrafast integrable and reconfigurableXNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics TechnologyLetters,2006,18(8):917-919
    [28] McGeehan JE, Kumar S, Willner AE. Simultaneous optical digital half-subtractionand-addition using SOAs and a PPLN waveguide. Optics Express,2007,15(9):5543-5549
    [29] Kumar S, Willner AE, Gurkan D, et al. All-optical half adder using an SOA and aPPLN waveguide for signal processing in optical networks. Optics Express,2006,14(22):10255-10260
    [30] Andronico A, Favero I, Leo G. Difference frequency generation in GaAs microdisks.Optics Letters,2008,33(18):2026-2028
    [31] Yang Z, Sipe J. Generating entangled photons via enhanced spontaneous parametricdownconversion in AlGaAs microring resonators. Optics Letters,2007,32(22):3296-3298
    [32] Van V, Ibrahim T, Ritter K, et al. All-Optical Nonlinear Switching in GaAs¨CAlGaAsMicroring Resonators. IEEE Photonics Technology Letters,2002,14(1):74-76
    [33] Gandomkar M, Ahmadi V. Design and analysis of enhanced second harmonicgeneration in AlGaAs/AlOx microring waveguide. Optics Express,2011,19(10):9408-9418
    [34] Li L, Sun J. Theoretical investigation of phase-based all-optical NOT, XOR andXNOR logic gates based on AlGaAs microring resonators. journal of modern optics,2012,59(9):809-813
    [35] Astar W, Apiratikul P, Cannon BM, et al. Conversion of RZ-OOK to RZ-BPSK byXPM in a Passive AlGaAs Waveguide. IEEE Photonics Technology Letters,2011,23(19):1397-1399
    [36] Wang J, Sun J, Zhang X, et al. All-Optical Tunable Wavelength Conversion WithExtinction Ratio Enhancement Using Periodically Poled Lithium NiobateWaveguides. Journal of Lightwave Technol,2008,26(17):3137-3148
    [37] Yen-Chieh H, Ker-Wei C, Yen-Hung C, et al. A high-efficiency nonlinear frequencyconverter with a built-in amplitude modulator. Journal of Lightwave Technology,2002,20(7):1165-1172
    [38] Bogoni A, Wu X, Fazal I, et al.160Gb/s time-domain channel extraction/insertionand all-optical logic operations exploiting a single PPLN waveguide. Journal ofLightwave Technology,2009,27(19):4221-4227
    [39] Wang J, Sun J, Sun Q. Single-PPLN-based simultaneous half-adder, half-subtracter,and OR logic gate: proposal and simulation. Optics Express,2007,15(4):1690-1699
    [40] Ta'eed VG, Pelusi MD, Eggleton BJ, et al. All-optical wavelength conversion of80Gb/s signal in highly nonlinear serpentine chalcogenide planar waveguides. In:Optical Fiber Communication Conference,(OFC'2008),2008. OMP2
    [41] Ni P, Ma B, Wang X, et al. Second-harmonic generation in two-dimensionalperiodically poled lithium niobate using second-order quasiphase matching. AppliedPhysics Letters,2003,82(24):4230-4232
    [42] Yu X, Scaccabarozzi L, Harris Jr J, et al. Efficient continuous wave second harmonicgeneration pumped at1.55|ìm in quasi-phase-matched AlGaAs waveguides. OpticsExpress,2005,13(26):10742-10748
    [43] Sun L, Figliozzi P, An Y, et al. Quadrupolar SHG enhancement in isotropic materialsusing two orthogonally polarized laser beams. In: Quantum Electronics and LaserScience Conference,(QELS '05),2005,1:274-276
    [44] Fiore A, Janz S, Delobel L, et al. Second-harmonic generation at λ=1.6μm inAlGaAs/AlO waveguides using birefringence phase matching. Applied PhysicsLetters1998,72(23):2942-2944
    [45] Xu CQ, Bracken J, Chen B. Intracavity wavelength conversions employing aMgO-doped LiNbO3 quasi-phase-matched waveguide and anerbium-doped fiber amplifier. J Opt Soc Am B,2003,20(10):2142-2149
    [46] Zhou B, Xu C, Chen B. Comparison of difference-frequency generation andcascaded (2) based wavelength conversions in LiNbO3quasi-phase-matchedwaveguides. J Opt Soc Am B,2003,20(5):846-852
    [47] Fiore A, Berger V, Rosencher E, et al. Phase matching using an isotropic nonlinearoptical material. Nature,1998,391(6666):463-466
    [48] Khurgin J, Pruessner M, Stievater T, et al. Suspended AlGaAs waveguides fortunable difference frequency generation in mid-infrared. Optics Letters,2008,33(24):2904-2906
    [49] Min YH, Lee JH, Lee YL, et al. Tunable all-optical control of wavelength conversionof5ps pulses by cascaded sum-and difference frequency generation (cSFG/DFG) ina Ti: PPLN Waveguide. In: Optical Fiber Communication Conference,(OFC'2003),2003:2:767-768
    [50] Chen B, Xu CQ. Analysis of novel cascaded χ (2)(SFG+DFG) wavelengthconversions in quasi-phase-matched waveguides. IEEE Journal of QuantumElectronics,2004,40(3):256-261
    [51] Gao S, Yang C, Xiao X, et al. Performance evaluation of tunable channel-selectivewavelength shift by cascaded sum-and difference-frequency generation inperiodically poled lithium niobate waveguides. Journal of Lightwave Technology,2007,25(3):710-718
    [52] Chou M, Brener I, Fejer M, et al.1.5-μm-band wavelength conversion based oncascaded second-order nonlinearity in LiNbO3waveguides. IEEE PhotonicsTechnology Letters,1999,11(6):653-655
    [53] Banfi G, Datta P, Degiorgio V, et al. Wavelength shifting and amplification of opticalpulses through cascaded second-order processes in periodically poled lithium niobate.Applied Physics Letters,1998,73(2):136-138
    [54] Zhou B, Xu CQ, Chen B. Comparison of difference-frequency generation andcascaded χ(2) based wavelength conversions in LiNbO3quasi-phase-matched waveguides. J. Opt. Soc. Am. B,2003,20(5):846-852
    [55] Wang F, Dong J, Xu E, et al. All-optical UWB generation and modulation usingSOA-XPM effect and DWDM-based multi-channel frequency discrimination. OpticsExpress,2010,18(24):24588-24594
    [56] Wiesenfeld JM, Glance B, Perino J, et al. Wavelength conversion at10Gb/s using asemiconductor optical amplifier. IEEE Photonics Technology Letters,1993,5(11):1300-1303
    [57] Zhang X, Sun J, Liu D. A novel scheme for XGM wavelength conversion based onsingle-port-coupled SOA. Chinese Physics,2001,10(2):124-127
    [58] Lee H, Yoon H, Kim Y, et al. Theoretical study of frequency chirping and extinctionratio of wavelength-converted optical signals by XGM and XPM using SOA's. IEEEJournal of Quantum Electronics,1999,35(8):1213-1219
    [59] Tang J, Sun J, Zhao L, et al. Tunable multiwavelength generation based onBrillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes.Optics Express,2011,19(15):14682-14689
    [60] Chow K, Lin C. Photonic Crystal Fibers for Nonlinear Signal Processing. In: OpticalFiber Communication Conference,(OFC'2008),2008. OMP6
    [61] Zhang J, Chen Y, Lu F, et al. Flexible wavelength conversion via cascaded secondorder nonlinearity using broadband SHG in MgO-doped PPLN. Optics Express,2008,16(10):6957-6962
    [62] Wang J, Sun J, Sun Q, et al. All-optical format conversion using a periodically poledlithium niobate waveguide and a reflective semiconductor optical amplifier. AppliedPhysics Letters,2007,91(5):0511071-3
    [63] Wang J, Sun Q, Sun J, Zhang W. All-optical UWB pulse generation usingsum-frequency generation in a PPLN waveguide. Optics Express,2009,17(5):3521-3530
    [64] Wang J, Sun J. All-Optical Ultrawideband Monocycle Generation Using QuadraticNonlinear Interaction Seeded by Dark Pulses. IEEE Photonics Technology Letters,2010,22(3):140-142
    [65] Wang J, Sun J, Zhang X, et al. All-optical ultrawideband pulse generation usingcascaded periodically poled lithium niobate waveguides. IEEE Journal of QuantumElectronics,2009,45(3):292-299
    [66]王健.基于铌酸锂光波导的高速全光信号处理技术研究:[博士学位论文].武汉:华中科技大学,2008
    [67] Christen L, Fazal I, Yilmaz O, et al. Tunable105-ns optical delay for80-Gbit/sRZ-DQPSK,40-Gbit/s RZ-DPSK, and40-Gbit/s RZ-OOK signals using wavelengthconversion and chromatic dispersion. In: Optical Fiber Communication Conference,(OFC'2008),2008.1-3
    [68] Oxenlowe L, Agis FG, Ware C, et al.640Gbit/s clock recovery using periodicallypoled lithium niobate. Electronics Letters,2008,44(5):370-371
    [69] Stephens M, Nesset D, Williams K, et al. Wavelength conversion at40Gbit/s viacross-gain modulation in distributed feedback laser integrated with semiconductoroptical amplifier. Electronics Letters,1999,35(20):1762-1764
    [70] Sharaiha A, Li H, Marchese F, et al. All-optical logic NOR gate using asemiconductor laser amplifier. Electronics Letters,1997,33(4):323-325
    [71] Fjelde T, Wolfson D, Kloch A, et al. Demonstration of20Gbit/s all-optical logicXOR in integrated SOA-based interferometric wavelength converter. ElectronicsLetters,2000,36(22):1863-1864
    [72] Dong J, Zhang X, Huang D. A proposal for two-input arbitrary Boolean logic gatesusing single semiconductor optical amplifier by picosecond pulse injection. OpticsExpress,2009,17(10):7725-7730
    [73] Dong J, Zhang X, Fu S, et al. Ultrafast all-optical signal processing based on singlesemiconductor optical amplifier and optical filtering. IEEE Journal of SelectedTopics in Quantum Electronics,2008,14(3):770-778
    [74] Dong J, Zhang X, Xu J, et al.40Gb/s all-optical NRZ to RZ format conversion usingsingle SOA assisted by optical bandpass filter. Optics Express,2007,15(6):2907-2914
    [75] Dong J, Fu S, Zhang X, et al. Analytical solution for SOA-based all-opticalwavelength conversion using transient cross-phase modulation. IEEE PhotonicsTechnology Letters,2006,18(24):2554-2556
    [76]董建绩.基于半导体光放大器和光学滤波器的高速全光信号处理:[博士学位论文]:武汉:华中科技大学,2008
    [77] Dolgaleva K, Ng WC, Qian L, et al. Broadband self-phase modulation, cross-phasemodulation, and four-wave mixing in9-mm-long AlGaAs waveguides. OpticsLetters,2010,35(24):4093-4095
    [78] Jiang S, Dagenais M. Observation of nearly degenerate and cavity‐enhanced highlynondegenerate four‐w ave mixing in semiconductor lasers. AppliedPhysics Letters,1993,62(22):2757-2759
    [79] Rafailov EU, Loza-Alvarez P, Brown CTA, et al. Second-harmonic generation from afirst-order quasi-phase-matched GaAs/AlGaAs waveguide crystal. Optics Letters,2001,26(24):1984-1986
    [80] Yang Z, Chak P, Bristow AD, et al. Enhanced second-harmonic generation inAlGaAs microring resonators. Optics Letters,2007,32(7):826-828
    [81] Tomonori M, Takashi K. Hybrid modal-phase-matched and bent-quasi-phase-matched wavelength conversion in AlGaAs/SiO2rib-type zigzag waveguides. In:Optical Fiber Communication Conference,(OFC'2011),2011. JThB90
    [82] Savanier M, Andronico A, Lema tre A, et al. Nearly-degenerate three-wave mixing at1.55um in oxidized AlGaAs waveguides. Optics Express,2011,19(23):22582-22587
    [83] Mok JT, Ibsen M, de Sterke CM, et al. Slow Light Generation Using Fibre BraggGratings. In: Optical Fiber Communication Conference,(OFC'2008),2008.OWD6
    [84] Reid DA, Maguire PJ, Barry LP, et al. All-optical sampling in a multiple quantumwell saturable absorber. In: Optical Fiber Communication Conference,(OFC'2008),2008. OThG4
    [85] Qiu J, Si J, Hirao K. Photoinduced stable second-harmonic generation inchalcogenide glasses. Optics Letters,2001,26(12):914-916
    [86] Singer K, King L. Relaxation phenomena in polymer nonlinear optical materials.Journal of Applied Physics,1991,70(6):3251-3255
    [87] Astar W, Driscoll JB, Liu X, et al. Conversion of10Gb/s NRZ-OOK to RZ-OOKutilizing XPM in a Si nanowire. Optics Express,2009,17(15):12987-12999
    [88] Yoo S, Caneau C, Bhat R, et al. Wavelength conversion by difference frequencygeneration in AlGaAs waveguides with periodic domain inversion achieved by waferbonding. Applied Physics Letters,1996,68(19):2609-2611
    [89] Astar W, Apiratikul P, Murphy T, et al. Wavelength conversion of10-Gb/s RZ-OOKusing filtered XPM in a passive GaAs–AlGaAs waveguide. IEEE PhotonicsTechnology Letters,2010,22(9):637-639
    [90] Duchesne D, Morandotti R, Siviloglou GA, et al. Nonlinear photonics in AlGaAsphotonics nanowires: Self phase and cross phase modulation. in: Signals, Systemsand Electronics, ISSSE '07.2007:475-478
    [91] Nietzke R, Panknin P, Elsasser W, et al. Four-wave mixing in GaAs/AlGaAssemiconductor lasers. IEEE Journal of Quantum Electronics,1989,25(6):1399-1406
    [92] Maguire PJ, Barry LP, Krug T, et al. Optical signal processing via two-photonabsorption in a semiconductor microcavity for the next generation of high-speedoptical communications network. Journal of Lightwave Technology,2006,24(7):2683-2692
    [93] Duchesne D, Rutkowska KA, Volatier M, et al. Continuous-wave second harmonicgeneration in sub-micron AlGaAs waveguides. in: Lasers and Electro-Optics(CLEO2011),2011.1-2
    [94] Aitchison J, Hutchings D, Kang J, et al. The nonlinear optical properties of AlGaAsat the half band gap. IEEE Journal of Quantum Electronics,1997,33(3):341-348
    [95] Modotto D, Mondia J, Linden S, et al. Asymmetric spectrum evolution of high powershort pulses in AlGaAs waveguides. Optics Communications,2005,249(1):201-208
    [96] Van V, Ibrahim T, Absil P, et al. Optical signal processing using nonlinearsemiconductor microring resonators. IEEE Journal of Selected Topics in QuantumElectronics,2002,8(3):705-713
    [97] Absil P, Hryniewicz J, Little B, et al. Wavelength conversion in GaAs micro-ringresonators. Optics Letters,2000,25(8):554-556
    [98] Scaccabarozzi L, Fejer M, Huo Y, et al. Enhanced second-harmonic generation inAlGaAs/Al x O y tightly confining waveguides andresonant cavities. Optics Letters,2006,31(24):3626-3628
    [99] Yoo S, Bhat R, Caneau C, et al. Quasi phase matched second harmonic generation inAlGaAs waveguides with periodic domain inversion achieved by wafer bonding.Applied Physics Letters,1995,66(25):3410-3412
    [100] Ducci S, Lanco L, Berger V, et al. Continuous-wave second-harmonic generation inmodal phase matched semiconductor waveguides. Applied Physics Letters,2004,84(16):2974-2976
    [101] Li L, Sun J, Chen T. Second Harmonic Generation in AlGaAs/AlxOy ArtificialBirefringent Microring Resonators. IEEE Photonics Technology Letters,2011,23(8):465-467
    [102] Ibrahim T. Nonlinear optical semiconductor micro-ring resonators:[Ph.D paper]. MD:University of Maryland,2003
    [103] Wagner SJ. Wavelength Conversion in Domain-Disordered Quasi-Phase MatchingSuperlattice Waveguides:[Ph.D paper]. Toronto: University of Toronto,2011
    [104] Abolghasem P. Phase-Matching Second-Order Optical Nonlinear Interactions usingBragg Reflection Waveguides: A Platform for Integrated Parametric Devices.[Ph.Dpaper]. Toronto: University of Toronto,2011
    [105]刘恩科,朱秉升,罗晋生.半导体物理学.北京:国防工业出版社,1994.31-35
    [106]施敏,赵鹤鸣.半导体器件物理与工艺.苏州:苏州大学出版社,2004.333-338
    [107] Seeger K. Semiconductor physics: an introduction: Springer Verlag,2004.70-85
    [108] Neamen DA. Semiconductor physics and devices: basic principles: Irwin,1992.40-55
    [109] Lee CH. Picosecond optoelectronic switching in GaAs. Applied Physics Letters,1977,30(2):84-86
    [110] Xu Z, Tang C. Picosecond relaxation of hot carriers in highly photoexcited bulkGaAs and GaAs‐AlGaAs multiple quantum wells. Applied Physics Letters,1984,44(7):692-694
    [111] Groeneveld R, Grischkowsky D. Picosecond time-resolved far-infrared experimentson carriers and excitons in GaAs-AlGaAs multiple quantum wells. J Opt Soc Am B,1994,11(12):2502-2507
    [112] Adachi S. GaAs, AlAs, and AlxGa1-xAs material parameters for use in research anddevice applications. Journal of Applied Physics,1985,58(3):R1-R29
    [113] Kim J, Sarangan A. Temperature-dependent Sellmeier equation for the refractiveindex of AlxGa1-xAs. Optics Letters,2007,32(5):536-538
    [114]石顺祥,陈国夫,赵卫.非线性光学.西安:西安电子科技大学出版社,2003.139-176
    [115]李淳飞.非线性光学.哈尔滨:哈尔滨工业大学出版社,2005.13-77
    [116] Armstrong JA, Bloembergen N, Ducuing J, et al. Interactions between Light Wavesin a Nonlinear Dielectric. Physical Review,1962,127(6):1918-1939
    [117] Franken P, Ward J. Optical harmonics and nonlinear phenomena. Reviews of ModernPhysics,1963,35(1):23-39
    [118] Moutzouris K, Rao S, Ebrahimzadeh M, et al. Efficient second-harmonic generationin birefringently phase-matched GaAs/Al2O3waveguides. Optics letters,2001,26(22):1785-1787
    [119] Ravaro M, Le D M, Likforman JP, et al. Estimation of parametric gain inGaAs/AlOx waveguides by fluorescence and second harmonic generationmeasurements. Applied Physics Letters,2007,91(19):191110-191110-3
    [120] Moutzouris K, Rao SV, Ebrahimzadeh M, et al. Second-harmonic generation throughoptimized modal phase matching in semiconductor waveguides. Applied PhysicsLetters,2003,83(4):620-622
    [121] Bijlani B, Abolghasem P, Helmy A. Second harmonic generation in ridge Braggreflection waveguides. Applied Physics Letters,2008,92(10):1011241-3
    [122] Abolghasem P, Han J, Bijlani BJ, et al. Highly Efficient Second-HarmonicGeneration in Monolithic Matching Layer Enhanced AlxGa1-xAs Bragg ReflectionWaveguides. IEEE Photonics Technology Letters,2009,21(19):1462-1464
    [123] Yu X. MBE growth of III-V materials with orientation-patterned structures fornonlinear optics:[Ph.D paper]. Stanford: Stanford University,2006
    [124] Yu X, Scaccabarozzi L, Levi O, et al. Template design and fabrication for low-lossorientation-patterned nonlinear AlGaAs waveguides pumped at1.55μm. Journal ofcrystal growth,2003,251(1-4):794-799
    [125] Skauli T, Vodopyanov K, Pinguet T, et al. Measurement of the nonlinear coefficientof orientation-patterned GaAs and demonstration of highly efficient second-harmonicgeneration. Optics Letters,2002,27(8):628-630
    [126] Artigas D, Rafailov EU, Loza-Alvarez P, et al. Periodically switched nonlinearstructures for frequency conversion: theory and experimental demonstration. IEEEJournal of Quantum Electronics,2004,40(8):1122-1130
    [127] Helmy AS, Hutchings D, Kleckner T, et al. Quasi-phase-matching in GaAs-AlAssuperlattice waveguides via bandgap tuning using quantum well intermixing. in:Nonlinear Optics: Materials, Fundamentals, and Applications,2000.159-161
    [128] Zeaiter K, Hutchings D, Gwilliam R, et al. Quasi-phase-matched second-harmonicgeneration in a GaAs AlAs superlattice waveguide by ion-implantation-inducedintermixing. Optics Letters,2003,28(11):911-913
    [129] Hutchings DC, Sorel M, Zeaiter K, et al. Quasi-phase-matched second harmonicgeneration with picosecond pulses in GaAs/AlAs superlattice waveguides. In:Nonlinear Guided Waves and Their Applications (NLGW),2004. TuA5
    [130]阿戈沃,贾东方.非线性光纤光学原理及应用.北京:电子工业出版社,2010.170-189
    [131]丁运鸿.微环谐振器及其在全光信号处理中的应用研究:[博士学位论文].武汉:华中科技大学,2011
    [132] Chin M, Ho S. Design and modeling of waveguide-coupled single-mode microringresonators. Journal of Lightwave Technology,1998,16(8):1433-1446
    [133] Van V, Absil PP, Hryniewicz JV, et al. Propagation loss in single-modeGaAs-AlGaAs microring resonators: measurement and model. Journal of LightwaveTechnology,2001,19(11):1734-1739
    [134] Blair S, Heebner J, Boyd R. Beyond the absorption-limited nonlinear phase shift withmicroring resonators. Optics Letters,2002,27(5):357-359
    [135] Ding Y, Zhang X, Zhang X, et al. Active microring optical integrator associated withelectroabsorption modulators for high speed low light power loadable and erasableoptical memory unit. Optics Express,2009,17(15):12835-12848
    [136] Zhang L, Ji R, Jia L, et al. Demonstration of directed XOR/XNOR logic gates usingtwo cascaded microring resonators. Optics Letters,2010,35(10):1620-1622
    [137] Ibrahim TA, Cao W, Kim Y, et al. All-optical switching in a laterally coupledmicroring resonator by carrier injection. IEEE Photonics Technology Letters,2003,15(1):36-38
    [138] Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator.Nature,2005,435(7040):325-327
    [139] Almeida VR, Barrios CA, Panepucci RR, et al. All-optical control of light on asilicon chip. Nature,2004,431(7012):1081-1084
    [140] Heebner J, Wong V, Schweinsberg A, et al. Optical transmission characteristics offiber ring resonators. IEEE Journal of Quantum Electronics,2004,40(6):726-730
    [141] Heebner J, Lepeshkin N, Schweinsberg A, et al. Enhanced linear and nonlinearoptical phase response of AlGaAs microring resonators. Optics Letters,2004,29(7):769-771
    [142] Heebner J, Boyd R. Enhanced all-optical switching by use of a nonlinear fiber ringresonator. Optics Letters,1999,24(12):847-849
    [143] Pu M, Liu L, Xue W, et al. Widely tunable microwave phase shifter based onsilicon-on-insulator dual-microring resonator. Optics Express,2010,18(6):6172-6182
    [144] Minhao P, Liu L, Weiqi X, et al. Tunable Microwave Phase Shifter Based onSilicon-on-Insulator Microring Resonator. IEEE Photonics Technology Letters,2010,22(12):869-871
    [145] Chang Q, Li Q, Zhang Z, et al. A tunable broadband photonic RF phase shifter basedon a silicon microring resonator. IEEE Photonics Technology Letters,2009,21(1):60-62
    [146] Totsuka K, Tomita M. Slow and fast light in a microsphere-optical fiber system. JOpt Soc Am B,2006,23(10):2194-2199
    [147] Liu F, Li Q, Zhang Z,et al. Optically tunable delay line in silicon microring resonatorbased on thermal nonlinear effect. IEEE Journal of Selected Topics in QuantumElectronics,2008,14(3):706-712
    [148] Yariv A. Universal relations for coupling of optical power between microresonatorsand dielectric waveguides. Electronics Letters,2000,36(4):321-322
    [149] Dumeige Y, eacute, ron P. Whispering-gallery-mode analysis of phase-matcheddoubly resonant second-harmonic generation. Physical Review A,2006,74(6):0638041-7
    [150] Dumeige Y. Quasi-phase-matching and second-harmonic generation enhancement ina semiconductor microresonator array using slow-light effects. Physical Review A,2011,83(4):0458021-4
    [151] Horn RT, Weihs G. Directional Quasi-Phase Matching in Curved Waveguides. Arxivpreprint arXiv:10082190,2010.1-10
    [152] Subramaniam V, De Brabander GN, Naghski DH, et al. Measurement of mode fieldprofiles and bending and transition losses in curved optical channel waveguides.Journal of Lightwave Technology,1997,15(6):990-997
    [153] Rahman BMA, Leung DMH, Obayya SSA, et al. Numerical analysis of bentwaveguides: bending loss, transmission loss, mode coupling, and polarizationcoupling. Applied Optics,2008,47(16):2961-2970
    [154] Gambling WA, Matsumura H, Ragdale CM. Field deformation in a curvedsingle-mode fibre. Electronics Letters,1978,14(5):130-132
    [155] Fjelde T, Kloch A, Wolfson D, et al. Novel scheme for simple label-swappingemploying XOR logic in an integrated interferometric wavelength converter. IEEEPhotonics Technology Letters,2001,13(7):750-752
    [156] Bintjas C, Pleros N, Yiannopoulos K, et al. All-optical packet address and payloadseparation. IEEE Photonics Technology Letters,2002,14(12):1728-1730
    [157] Poustie A, Blow K, Manning R. All-optical regenerative memory for long term datastorage. Optics Communications,1997,140(4-6):184-186
    [158] Martinez J, Ramos F, Marti J. All-optical packet header processor based on cascadedSOA-MZIs. Electronics Letters,2004,40(14):894-895
    [159] Tangdiongga E, Liu Y, De Waardt H, et al. All-optical demultiplexing of640to40Gbits/s using filtered chirp of a semiconductor optical amplifier. Optics Letters,2007,32(7):835-837
    [160] Nakamura S, Tajima K. Ultrafast all-optical gate switch based on frequency shiftaccompanied by semiconductor band-filling effect. Applied Physics Letters,1997,70(26):3498-3500
    [161] Zhang X, Wang Y, Sun J, et al. All-optical AND gate at10Gbit/s based on cascadedsingle-port-couple SOAs. Optics Express,2004,12(3):361-366
    [162] Kim SH, Kim J, Yu B, et al. All-optical NAND gate using cross-gain modulation insemiconductor optical amplifiers. Electronics Letters,2005,41(18):1027-1028
    [163] Zhang J, Wu J, Feng C, Xu K, Lin J. All-optical logic OR gate exploiting nonlinearpolarization rotation in an SOA and red-shifted sideband filtering. IEEE PhotonicsTechnology Letters,2007,19(1):33-35
    [164] Kim JY, Kang JM, Kim TY, et al. All-optical multiple logic gates with XOR, NOR,OR, and NAND functions using parallel SOA-MZI structures: theory and experiment.Journal of Lightwave Technology,2006,24(9):3392-3396
    [165] Wang J, Sun J, Sun Q, et al. PPLN-based flexible optical logic AND gate. IEEEPhotonics Technology Letters,2008,20(3):211-213
    [166] Dong J, Zhang X, Xu J, Huang D.40Gb/s all-optical logic NOR and OR gates usinga semiconductor optical amplifier: Experimental demonstration and theoreticalanalysis. Optics Communications,2008,281(6):1710-1715
    [167] Zhang Y, Chen Y, Chen X. Polarization-based all-optical logic controlled-NOT, XOR,and XNOR gates employing electro-optic effect in periodically poled lithium niobate.Applied Physics Letters,2011,99(16):1611171-4
    [168] Miyoshi Y, Ikeda K, Tobioka H, et al. Ultrafast all-optical logic gate using anonlinear optical loop mirror based multi-periodic transfer function. Optics Express,2008,16(4):2570-2577
    [169] Zoiros K, Siarkos T, Koukourlis C. Theoretical analysis of pattern effect suppressionin semiconductor optical amplifier utilizing optical delay interferometer. OpticsCommunications,2008,281(14):3648-3657
    [170] Keiser G. Optical fiber communications: Wiley Online Library,2000.25-35
    [171] Zou H, Liang GQ, Wang HZ. Efficient all-optical dual-channel switches, logic gates,half-adder, and half-subtracter in a one-dimensional photonic heterostructure. J OptSoc Am B,2008,25(3):351-360
    [172] Liu Q, Ouyang Z, Wu CJ, et al. All-optical half adder based on cross structures intwo-dimensional photonic crystals. Optics Express,2008,16(23):18992-19000
    [173] Ghelfi P, Lazzeri E, Scaffardi M, et al. All-Optical Full Adder Exploiting Cascade ofSemiconductor Optical Amplifier-Based Modular Blocks. In: Optical FiberCommunication Conference,(OFC'2008),2008. JWA76
    [174] McGeehan JE, Kumar S, Willner AE. All-optical digital half-subtracter/adder usingsemiconductor optical amplifiers and a PPLN waveguide. In: Optical FiberCommunication Conference,(OFC'2005),2005. CTuX6
    [175] Gayen DK, Pal RK, Roy JN. All-optical adder/subtractor based on terahertz opticalasymmetric demultiplexer. Chinese Optics Letters,2009,7(6):530-533
    [176] Nakarmi B, Rakib-Uddin M, Won YH. Demonstration of All-optical Half-adderUsing Single Mode Fabry-Perot Laser Diode. In: Conference on Lasers andElectro-Optics/Pacific Rim (CLEOPR),2011. C458
    [177] Fludger CRS, Duthel T, van den Borne D, et al. Coherent equalization andPOLMUX-RZ-DQPSK for robust100-GE transmission. Journal of LightwaveTechnology,2008,26(1):64-72
    [178] Jensen JB, Tokle T, Peucheret C, et al. Transmission of multilevel60Gbit/spolarization multiplexed RZ-D8PSK using only10Gbit/s equipment. In: OpticalFiber Communication Conference,(OFC'2007),2007. OWM4
    [179] Lampe LHJ, Fischer RFH. Comparison and optimization of differentially encodedtransmission on fading channels.3rd International Symposium on Power–Line,1999:107-113
    [180]樊昌信,张甫翊,徐炳祥等.通信原理.北京:国防工业出版社,2001.107-111
    [181] Yao J, Zeng F, Wang Q. Photonic Generation of Ultrawideband Signals. Journal ofLightwave Technol,2007,25(11):3219-3235
    [182] Zhao Y, Zheng X, Zhang H, et al. UWB-over-Fiber transmission system using adual-output Mach-Zehnder modulator. Chinese Optics Letters,2010,8(5):454-456
    [183] Fangzheng Z, Songnian F, Jian W, et al. UWB Impulse Radio Transmitter Using anElectrooptic Phase Modulator Together With a Delay Interferometer. IEEE PhotonicsTechnology Letters,2010,22(20):1479-1481
    [184] Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using areconfigurable photonic microwave delay-line filter. Optics Express,2007,15(22):14667-14672
    [185] Zhang MJ, Liu TG, Wang AB, et al. Photonic ultrawideband signal generator usingan optically injected chaotic semiconductor laser. Optics Letters,2011,36(6):1008-1010
    [186] Dai Y, Du J, Fu X, et al. Ultrawideband monocycle pulse generation based ondelayed interference of pi/2phase-shift keying signal. Optics Letters,2011,36(14):2695-2697
    [187] Zhou E, Xu X, Lui KS, Wong KKW. Photonic Ultrawideband Pulse Generation withHNL-DSF Based Phase and Intensity Modulator. IEEE Photonics Technology Letters,2011,23(7):396-398
    [188] Wang Q, Zeng F, Blais S, et al. Optical ultrawideband monocycle pulse generationbased on cross-gain modulation in a semiconductor optical amplifier. Optics Letters,2006,31(21):3083-3085
    [189] Zeng F, Wang Q, Yao J. All-optical UWB impulse generation based on cross-phasemodulation and frequency discrimination. Electronics Letters,2007,43(2):121-122
    [190] Wang C, Zeng F, Yao J. All-fiber ultrawideband pulse generation based on spectralshaping and dispersion-induced frequency-to-time conversion. IEEE PhotonicsTechnology Letters,2007,19(3):137-139
    [191] Chen H, Chen M, Qiu C, et al. UWB monocycle pulse generation by opticalpolarisation time delay method. Electronics Letters,2007,43(9):542-543
    [192] Li J, Xu K, Fu S, et al. Ultra-wideband pulse generation with flexible pulse shapeand polarity control using a Sagnac-interferometer-based intensity modulator. OpticsExpress,2007,15(26):18156-18161
    [193] Dong J, Zhang X, Yu Y, et al. High-Order Ultrawideband Pulse Generation fromNRZ-DPSK Signals. Chinese Physics Letters,2008,25(3):911-914
    [194] Dong J, Zhang X, Xu J, et al. Ultrawideband monocycle generation usingcross-phase modulation in a semiconductor optical amplifier. Optics Letters,2007,32(10):1223-1225
    [195] Dong J, Zhang X, Xu J, et al. All-optical ultrawideband monocycle generationutilizing gain saturation of a dark return-to-zero signal in a semiconductor opticalamplifier. Optics Letters,2007,32(15):2158-2160
    [196] Dong J, Zhang X, Xu J, et al. Filter-free ultrawideband generation based onsemiconductor optical amplifier nonlinearities. Optics Communications,2008,281(4):808-813
    [197] Ben Ezra Y, Haridim M, Lembrikov B, et al. Proposal for All-Optical Generation ofUltra-Wideband Impulse Radio Signals in Mach–Zehnder Interferometer WithQuantum-Dot Optical Amplifier. IEEE Photonics Technology Letters,2008,20(7):484-486
    [198] Manning J, Olshansky R, Chin S. The carrier-induced index change in AlGaAs and1.3μ m InGaAsP diode lasers. IEEE Journal of Quantum Electronics,1983,19(10):1525-1530
    [199] Chan MCY, Kwok PCK, Li EH. The effect of carrier-induced change on the opticalproperties of AlGaAs-GaAs intermixed quantum wells. IEEE Journal of SelectedTopics in Quantum Electronics,1998,4(4):685-694
    [200] Bennett B R, Soref RA, Del Alamo JA. Carrier-induced change in refractive index ofInP, GaAs and InGaAsP. IEEE Journal of Quantum Electronics,1990,26(1):113-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700