纳米球帽结构铁磁/反铁磁双层膜的交换偏置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的交换偏置系统,其磁学特性与结构的尺寸、纵横比、形状等因素有很大关联。然而到目前为止,特定研究体系中的参数(如铁磁结构尺寸、反铁磁材料、铁磁/反铁磁结构类型、形状等)的多变性使得人们对交换偏置的尺度效应的研究很难得出一个统一性的结论。真正理解纳米尺度下的交换偏置效应仍是一个巨大的挑战。
     我们选择了球帽型纳米结构的FeNi/FeMn双层膜磁体阵列作为交换偏置研究系统,观察了这种纳米球帽的几何构型、维度尺寸等微观结构因素对交换偏置特性的影响。
     利用胶体模板法,以自组织的单层密排列聚苯乙烯(Polystyrene,PS)微球阵列为形貌模板,采用磁控溅射制备了Cu/FeNi/FeMn/Cu成分的纳米球帽阵列。用扫描电子显微镜(SEM)直接观察到了制备出的有序纳米球帽结构,并利用振动样品磁强计(VSM)研究了样品的磁特性。
     首先,在适当的铁磁/反铁磁厚度比条件下,纳米球帽结构的磁滞回线其下降支与上升支出现不对称性。
     其次,纳米球帽结构导致交换偏置效应的减弱。但是,纳米球帽结构和连续膜结构的H_E对反铁磁厚度的依赖关系有着明显区别。随着反铁磁厚度的递增,连续膜H_E在某一临界厚度时出现一个极陡的上升,随后进入一个相对平坦的平台缓增区间。而对于纳米球帽结构,在我们的实验中的反铁磁厚度范围内,其交换偏置始终保持一个稳定渐增的趋势。
     同样,对于矫顽力H_C的反铁磁厚度响应关系,连续膜和纳米球帽结构也表现出了不同的变化趋势。连续膜的H_C在特定临界厚度达到峰值,然后随着反铁磁厚度继续匀?H_C开始下降。而纳米球帽的H_C在整个反铁磁厚度范围内基本保持增加的趋势,但是其增加率不断减小。
     而对于H_E与铁磁层厚度的变化趋势,两种结构都符合了H_E∝1/t_(FM)的经典规律。
     我们认为系统的交换偏置展现出的一系列新性状,都是由于纳米球帽的构型和尺寸因素而产生的,但是通过运用交换偏置的基本物理图像,我们能对这些新的特性做出合理的解释。这说明了纳米结构的各种条件参数导致人们对交换偏置的尺寸效应的出许多不同的结论,但究其内禀机理,纳米结构中和连续膜中的交换偏置都是有相同的物理原理所主宰的。
The magnetic properties of nano-structured exchange bias systems are closely related to their lateral size,aspect ratio or shape.Due to the complicated system parameters, it is still hard to give a general description of the size effects of exchange bias nanostructures.
     We chose the sphere cap-shaped ferromagnetic/antiferromagnetic(FM/AFM) nanomagnets arrays as the study system,investigated the influence of nanostructure morphology in Exchange Bias effect.
     Close-packed 2 dimensional(2D) Polystyrene(Ps) beads arrays were used as the templates to fabricate the nanocap Exchange Bias Cu/FeNi/FeMn/Cu structures. Scanning Electron Microscope(SEM) gives us direct view of the nanocap structure. Vibrating sample magnetometer(VSM) are used to collect the magnetic information of the samples.
     Pronounce asymmetry evolution of the hysteresis loops was observed through tailoring the thickness ratio of AFM to FM in nanocap EB structures.
     The hysteresis loop shift of nanocap structures is smaller than that of continuous films with the same composition,whereas the exchange bias field(H_E) evolution trends depending on AFM thickness are different for the two kinds of samples.The nanocap structures can cont??te to either a reduction or an enhancement of the coercivity (H_c),depending on the AFM layer thickness.
     H_E of both nanocap structures and the continuous films samples follows the 1/t_(FM) law with different slopes.
     Tne effects different from those of continuous films are ascribed to the influences of nanocap morphology.
引文
[1] M. N. Baibich, J. M. Broto, and A. Fert, F. Nguyen van Dau, F. Petroff, P.Eitenne, G Creuzet, A. Friederich, and J. Chazelas. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Phys. Rev. Lett, 1988, 61(1): 2472-2475.
    [2] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B, 1989,39(3): 4828-4831.
    
    [3] B. Dieny, V. S. Speriosu, and S. S. P. Parkin et al. Giant magnetoresistive in soft ferromagneticmultilayers[J]. Phys, Rev. B, 1991,43(1): 1297-1300.
    
    [4] G. A. Prinz, Magnetoelectonics[J]. Science, 1998,282(1): 1660-1663.
    
    [5] I. Zutic, J. Fabian, S.D.Sarma. Spintronics: Fudamentals and applications [J].Rev. Mod. Phys, 2004, 76(2): 323-410.
    
    [6] S. A. Wolf, D. D. Awschalom, R. A. Buhrman et al. Spintronics- A spin-based electronics vision for the future[J]. Science, 2001, 294(1): 1488-1495.
    
    [7] G. A. Prinz. Magnetoelectronics applications[J]. J. Magn. Magn. Mater., 1999,200(1-3): 57-68.
    
    [8] M. Vopalensky, P. Ripka, J. Kubik, et al. Improved GMR sensor biasing design[J]. Sensors and actuators A-Physical, 2004,110(1-3): 254-258.
    
    [9] J. M. Daughton. GMR and SDT sensor applications[J]. IEEE Trans. Magn.,2000, 36(5): 2773-2778.
    
    [10] S. Araki, M. Sano, S. Li, et al. Which spin valve for next giant magnetoresistance head generation? [J]. J. Appl. Phys., 2000, 87(9): 5377-5382.
    
    [11] J. Nogu(?)s, I. K. Schuller. Exchange bias[J]. J. Magn. Magn. Mater., 1999,192(2): 203-232.
    
    [12] T. Kim, Y. K. Kim, W. Park. Technological issues for high-density MRAM development[J]. J. Magn. Magn. Mater., 2004,282: 232-236.
    
    [13] B. G. Levi. Magnetoresistive tunnel junctions look ever more promising for magnetic random access memory[J]. Physics today, 2004, 57(12): 24-27.
    
    [14] J. M. Slaughter, R. W. Dave, DeHerrera M, et al. Fundamentals of MRAM technology[J]. Journal of superconductivity, 2002,15(1): 19-25.
    
    [15] A. Schul, D. Lacour. Spin dependent transport GMR & TMR[J], C. R.Physique, 2005, 6(1): 945-955.
    
    [16] M. Johnson. Bipolar spin switch[J]. Science, 1993, 260(5106): 320-323.
    [17] A. Fert, S. F. Lee. Theory of the bipolar spin switch[J]. Phys. Rev. B, 1996,53(10): 6554-6565.
    
    [18] D. J. Monsma, J. C. Lodder, Th. J. A. Popma, et al. Electronic analog of the electro-optic modulator[J]. Phys. Rev. Lett., 1995, 74(26): 5260-5263.
    
    [19] D. J. Monsma, et al. Room temperature-operating spin-valve transistors formed by vacuum bonding[J]. Science, 1998,281(5375): 407-409.
    
    [20] W. H. Meiklejohn, and C. P. Bean. New magnetic anisotropy[J]. Phys. Rev,1956,102(1): 1413-1414.
    
    [21] W. H. Meiklejohn, and C. P. Bean. New magnetic anisotropy [J]. Phys. Rev,1957,105(1): 904-913.
    
    [22] A. E. Berkowitz, and K. Takano. Exchange anisotropy - a review[J]. J. Magn.Magn. Mater, 1999,200(1): 552-570.
    
    [23] B. Dieny. Giant magnetoresistance in spin-valve multilayers[J]. J. Magn. Magn.Mater, 1994,136(3): 335-359.
    
    [24] M. J. Kiwi. Exchange bias theory[J]. J. Magn. Magn. Mater, 2001, 234(3):584-595.
    
    [25] R. Coehoorn, J. T. Kohlhepp, and R. M. Jungblt et al. Mesoscopic magnetism and the phenomenon of exchange anisotropy: mbe grown Cu(110)/Ni80Fe20/Fe50Mn50 bilayers with corrugated interfaces[J]. Physica B, 2002,319(1): 141-167.
    
    [26] J. L. Dormann, D. Fiorani and E. Tronc. Magnetic Relaxation in Fine-Particle Systems[J]. Adv. Chem. Phys., 1997,98: 283-494.
    
    [27] D. L. Leslie-Pelecky and R. D. Rieke. Magnetic properties of nanostructured materials[J]. Chem. Mater., 1996, 8(8): 1770-1783.
    
    [28] R.H. Kodama. Magnetic nanoparticles[J]. J. Magn. Magn. Mater., 1999, 200(1): 359-372.
    
    [29] R. Skomski. Nanomagnetics[J]. J. Phys., Condens. Mater., 2003, 15(20):R841-R896.
    
    [30] J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, J.P. Bucher, J.Dorantes-D(?)vila, V. Dupuis, L. Fabre, D. Kechrakos, A. Kleibert, K.H. Meiwes-Broer,GM. Pastor, A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon and Y. Xie.Magnetic and structural properties of isolated and assembled clusters[J]. Surf. Sci.Rep., 2005, 56(6-7): 189-275.
    
    [31] S. M. Zhou, and C. L. Chien. Dependence of exchange coupling on magnetization in Co-Ni-FeMn bilayers [J], Phys. Rev. B, 2001, 63(10): 4406-4409.
    
    [32] R. Jungblut, R. Coehoom, and M. T. Johnson et al. Orientational and structural dependence of magnetic-anisotropy of cu/ni/cu sandwiches - misfit interface anisotropy [J]. J. Appl. Phys., 1994, 75(10): 6659-6664.
    
    [33] A. P. Malozemoff. Random-field model of exchange anisotropy at rough ferrornagnetic-antiferromangetic interfaces [J]. Phys. Rev. B, 1987, 35(1): 3679-3682.
    
    [34] S. Zhang, D. V. Dimitrov, and G. C. Hadjipanayis et al. Coercivity induced by random field at ferromagnetic and antiferromagnetic interfaces [J]. J. Magn. Magn.Mater, 1999, 199(1): 468-470.
    
    [35] J. I. Martin, J. Nogu(?)s, K. Liu, J. L. Vicent and I. K. Schuller. Ordered magnetic nanostructures: Fabrication and properties[J]. J. Magn. Magn. Mater, 2003,256(1-3): 449-501.
    
    [36] R. P. Cowburn. Property variation with shape in magnetic nanoelements[J]. J.Phys. D: Appl. Phys, 2000, 33(1): R1-R16.
    
    [37] S. Y. Chou. Patterned magnetic nanostructures and quantized magnetic disks[J].Proc. IEEE, 1997, 85(4): p. 652-671.
    
    [38] C. A. Ross. Patterned magnetic recording media[J]. Annu. Rev. Mater. Sci, 2001,31:203-235.
    
    [39] S. D. Bader. Magnetism in low dimensionality[J]. Surf. Sci, 2002, 500(1-3):172-188.
    
    [40] J. Shen and J. Krishner. Tailoring magnetism in artificially structured materials: The new frontier[J]. Surf. Sci, 2002, 500(1-3): 300-322.
    
    [41] M. R. Fitzsimmons, S. D. Bader, J. A. Borchers, G. P. Felcher, J. K. Furdyna, A.Hoffmann, J. B. Kortright, I. K. Schuller, T. C. Schulthess, S. K. Sinha, M. F. Toney,D. Weller and S. Wolf. Neutron scattering studies of nanomagnetism and artificially structured materials[J]. J. Magn. Magn. Mater, 2004,271(1): 103-146.
    
    [42] Z. B. Guo, K. B. Li, G. C. Han, Z. Y. Liu, P. Luo and Y. H. Wu. Exchange bias in patterned FeMn/NiFe bilayers[J]. J. Magn. Magn. Mater, 2002,251: 323-326.
    
    [43] T. Kimura, G. Mozumi, F. Wakaya and K. Gamo. Effects of shape anisotropy in CoO/Co/Cu/NiFe/Cu/Co wires[J]. Jpn. J. Appl. Phys, 2001,40: 2241-2244.
    
    [44] S. Mao, J. Giusti, N. Amin, J. van Ek and E. Murdock. Giant magnetoresistance properties of patterned IrMn exchange biased spin valves[J]. J. Appl. Phys, 1999, 85:6112-6114.
    
    [45] Y. Otani, A. Nemoto, S.G. Kim, K. Fukamichi, O. Kitakami and Y. Shimada. Magnetotransport properties of submicron exchange coupled Fel9Ni81/NiO wires[J].J. Magn. Magn. Mater., 1999,198-199(1): 434-436.
    
    [46] A. Nemoto, Y. Otani, S.G Kim, K. Fukamichi, O. Kitakami and Y. Shimada. Magnetoresistance and planar Hall effects in submicron exchange-coupled NiO/Fe19Ni81 wires[J]. Appl. Phys. Lett., 1999, 74(26): 4026-4028.
    
    [47] J. Grisolia, C. Martin, L. Ressier, F. Carcenac, C. Vieu and J.F. Bobo. Patterning of sub-micrometric Co/NiO dots by hot embossing lithography and study of their magnetic properties[J]. J. Magn. Magn. Mater., 2004, 272-276(SUPPL. 1):e1293-e1295.
    
    [48] V. Baltz, J. Sort, S. Landis, B. Rodmacq and B. Dieny. Tailoring Size Effects on the Exchange Bias in Ferromagnetic-Antiferromagnetic <100 tun Nanostructures[J].Phys. Rev. Lett., 2005, 94: 117201.
    
    [49] Z. P. Li, O. Petracic, J. Eisenmenger and I. K. Schuller. Reversal behavior of exchange-biased submicron dots[J]. Appl. Phys. Lett., 2005, 86(7): 072501.
    
    [50] A. Hoffmann, M. Grimsditch, J.E. Pearson, J. Nogu(?)s, W.W.A. Macedo and I.K.Schuller. Tailoring the exchange bias via shape anisotropy in ferromagnetic/antiferromagnetic exchange-coupled systems[J]. Phys. Rev. B, 2003,67(2): 2204061-2204064.
    
    [51] A. Maeda, T. Tanuma and M. Kume. Magnetoresistive characteristics of multilayered wire arrays[J]. Mater. Sci. Eng., 1996, A 217-218: 203-206.
    
    [52] V. Baltz, J. Sort, S. Landis, B. Rodmaq and B. Dieny. Size effects on exchange bias in sub-100 nm ferromagnetic-antiferromagnetic dots deposited on prepatterned substrates[J]. Appl. Phys. Lett., 2004, 84(24): 4923-4925.
    
    [53] M. Fraune, U. R(?)diger, G. G(?)ntherodt, C. Cardoso and P. Freitas. Size dependence of the exchange bias field in NiO/Ni nanostructures[J]. Appl. Phys. Lett.,2000, 77(21): 3815-3817.
    
    [54] Y. Shen, Y. Wu, H. Xie, K. Li, J. Qiu and Z. Guo. Exchange bias of patterned NiFe/IrMn film[J]. J. Appl. Phys., 2002, 91(10 III): 8001.
    
    [55] J. Yu, A.D. Kent and S.S.P. Parkin. Exchange biasing in polycrystalline thin film microstructures[J]. J. Appl. Phys., 2000, 87(9 II): 5049-5051.
    
    [56] S. E. Russek, J. O. Oti and Y. K. Kim. Switching characteristics of spin valve devices designed for MRAM applications[J]. J. Magn. Magn. Mater., 1999, 198-199:6-8.
    
    [57] L. V. Melo, L. M. Rodrigues and P. P. Freitas. Novel spin-valve memory architecture[J]. IEEE Trans. Magn., 1997, 33(5 part 1): 3295-3297.
    
    [58] K. Liu, J. Nogues, C. Leighton, H. Masuda, K. Nishio, I.V. Roshchin and I.K.Schuller. Fabrication and thermal stability of arrays of Fe nanodots[J]. Appl. Phys.Lett., 2002, 81(23): 4434-4436.
    
    [59] E. Girgis, R. D. Portugal, M. J. Van Bael, K. Temst and C. Van Haesendonck.Asymmetric magnetization reversal in exchange-biased NiFe/CoO submicron-sized structures[J]. J. Appl. Phys., 2005, 97(10): 103911.
    
    [60] S. H. Chung, A. Hoffmann and M. Grimsditch. Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system[J]. Phys. Rev. B, 2005, 71: 214430.
    
    [61] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, M. D.Baro. Exchange bias in nanostructures[J]. Physics Reports, 2005,422(3): 65-117.
    
    [62] L. Sun, Y. Ding, C. L. Chien and P. C. Searson. Exchange coupling in nanostructured CoO/NiFe networks[J]. Phys. Rev. B, 2001, 64(18):1844301-1844304.
    
    [63] L. Wang, W. T. Sheng, B. You, J. Du, A. Hu, M. Lu and S. M. Zhou. Effect of capping layer on coercivity of permalloy thin films with interconnected network[J].Phys. Status Solidi (a), 2004,201(9): 2099-2104.
    
    [644] I. N. Krivorotov, H. Yan, E. D. Dahlberg and A. Stein. Exchange bias in macroporous Co/CoO[J]. J. Magn. Magn. Mater., 2003,226-230(part 2): 1800-1802.
    
    [65] T. Umemoto, A. Maeda, S. Oikawa and K. Yoshioka. CoFe/IrMn spin-valves prepared on Cu islands[J]. IEEE Trans. Magn., 1998, 34(4): 960-962.
    
    [66] S. Dubourg, N. Negre, B. Warot, E. Snoeck, M. Goiran, J. C. Ousset and J. F.Bobo. Exchange anisotropy in epitaxial NiO(001)-fcc Co bilayers[J]. J. Appl. Phys.,2000, 87(9 II): 4936-4938.
    
    [67] J. F. Bobo, S. Dubourg, E. Snoeck, B. Warot, P. Baules and J. C. Ousset.Exchange anisotropy in epitaxial NiO(001)-FCC Co bilayers[J]. J. Magn. Magn.Mater., 1999,206(3): 118-126.
    
    [68] S. Dubourg, J. F. Bobo, J. C. Ousset, B. Warot and E. Snoeck. Correlations between coercivity and exchange bias in epitaxial NiO-Co(110) bilayers[J]. J. Appl.Phys., 2002, 91(10 II): 7757.
    
    [69] J. F. Bobo, R. Many, D. Martrou and S. Dubourg. Growth and magnetism of cobalt nanowires, and continuous films on nanofaceted NiO (110)[J]. J. Magn. Magn.Mater., 2004, 272-276: 1192-1193.
    [70] V. Skumryev, S. Stoyanov, Y. Zhang, G Hadjipanayis, D. Givord and J. Nogues.Beating the superparamagnetic limit with exchange bias[J]. Nature (London), 2003,423(6942): 850-853.
    
    [71] S. Gangopadhyay, G C. Hadjipanayis, C. M. Sorensen and K. J. Klabunde.Magnetic properties of ultrafine Co particles[J]. IEEE Trans. Magn., 1992, 28(5):3174-3176.
    
    [72] D. L. Peng, K. Sumiyama, T. J. Konno, T. Hihara and S. Yamamuro.Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies[J]. Phys. Rev. B, 1999, 60(3): 2093-2100.
    
    [73] D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro and T. J. Konno. Magnetic properties of monodispersed Co/CoO clusters[J]. Phys. Rev. B, 2000, 61(4):3103-3109.
    
    [74] H. M. Lin, C. M. Hsu, Y. D. Yao, Y. Y. Chen, T. T. Kuan, F. A. Yang and C. Y.Tung. Magnetic study of both nitrided and oxidized Co particles[J]. Nanostruct.Mater, 1995, 6(5-8): 977-980.
    
    [75] C. M. Hsu, H. M. Lin, K. R. Tsai and P. Y. Lee.Ferromagnetic-Antiferromagnetic Interaction in Fe-FeS[J]. J. Appl. Phys, 1994,76(12): 4793-4795.
    
    [76] J. H. Greiner, I. M. Croll and M. Sulich. Ferromagnetic-Antiferromagnetic Interaction in Fe-FeS[J]. J. Appl. Phys, 1960, 31(12): 2316-2319.
    
    [77] M. H. Yu, P.S. Devi, L. H. Lewis, P. Oouma, J. B. Parise and R. J. Gambino.Towards a magnetic core-shell nanostructure: A novel composite made by a citrate-nitrate auto-ignition process[J]. Mater. Sci. Eng. B, 2003, 103(3): 262-270.
    
    [78] R. K. Zheng, H. Liu, Y. Wang and X. X. Zhang. Cr2O3 surface layer and exchange bias in an acicular CrO2 particle[J]. Appl. Phys. Lett, 2004, 84(5): 702-704.
    
    [79] H. Gomonay and V.M. Loktev. Magnetostriction and magnetoelastic domains in antiferromagnets[J]. J. Phys.: Condens. Matter, 2002,14(15): 3959-3971.
    
    [80] M. Fiebig, D. Froehlich, S. Leute and R.V. Pisarev. Topography of antiferromagnetic domains using second harmonic generation with an external reference[J]. Appl. Phys. B, 1998 66(3): 265-270.
    
    [81] A. Scholl, J. St(?)hr, J. Liming, J. W. Seo, J. Fompeyrine, H. Siegwart, J. P.Locquet, F. Nolting, S. Anders, E. E. Fullerton, M. R. Scheinfein and H. A. Padmore.Observation of antiferromagnetic domains in epitaxial thin films[J]. Science, 2000,287(5455): 1014-1016.
    [82]P.E.G.Assis,V.L.L(?)bero and K.Capelle.Impurity and boundary effects in one-and two-dimensional inhomogeneous Heisenberg antiferromagnets[J].Phys.Rev.B,2005,71:052402.
    [83]H.W.Deckman,J.H.Dunsmuir.NATURAL LITHOGRAPHY[J].Appl.Phys.Lea.,1982,41(4):377-379.
    [84]E.Kim,Y.Xia,and G.M.Whitesides.Micromolding in Capillaries:Applications in Materials Science[J].J.Am.Chem.Soc.,1996,118(24):5722-5731.
    [85]Sang Hyun Park,Dong Qin,Younan Xia.Crystallization of Mesoscale Particles over Large Areas[J].Adv.Mater.,1998,10(13):1028-1032.
    [86]过璧君.磁性薄膜与磁性粉体[M].北京:高等教育出版社,1994:115.
    [87]L.埃克托瓦.薄膜物理学[M].北京:高等教育出版社,1986:345.
    [88]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:203.
    [89]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991:309.
    [90]杨邦朝,王文生.薄膜物理与技术[M].北京:电子科技大学出版社,1994:208.
    [91]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991:563.
    [92]王华馥,吴自勤.固体物理实验方法[M].北京:高等教育出版社,1997:128.
    [93]X.M.Ding,X.Yang,and W.Xun.Surface physics and surface analysis[M].ShangHai:Fudan University,2007:279.
    [94]周玉,武高辉,材料分析测试技术[M].哈尔滨工业大学出版社.1997.10.
    [95]S.A.Wolf,D.D.Awschalom,R.A.Buhrman,J.M.Daughton,S.Von Moln(?)r,M.L.Roukes,A.Y.Chtchelkanova and D.M.Treger,Science 294,1488(2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700