构筑具有各向异性性质的纳微米仿生结构表面
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体中特殊的微米结构、纳米结构可赋予其特殊的表面性能。例如,在自然界中某些植物叶与昆虫翅膀表面的自清洁性,超疏水性,以及定向水滴传输性质,减反射性质,特殊的固体界面之间的粘附力以及定向粘附力,等等。这些都与它们表面的特殊微观结构与材料性质密切相关。
     我们利用双亲性的CTAB疏水化处理亲水的二氧化硅微球,并通过气液界面组装法在聚合物基底上制备了大面积有序的单层二氧化硅微球阵列。通过两步法氧等离子体刻蚀(RTE),将紧密堆积的微球刻蚀成非紧密堆积阵列,再以微球为模板倾斜刻蚀聚合物,制备了倾斜聚合物纳米柱结构。
     我们首先测试了该结构对于对水滴浸润性的各向异性性质。我们发现了条带图案化的纳米柱阵列在沿着条带和垂直于条带方向的静态接触角有差别,并且非图案化的纳米柱阵列在沿着刻蚀方向和逆着刻蚀方向的水滴的动态接触角(滚动角)具有差别。此外,我们还发现随着刻蚀聚合物时间的增加,得到的聚合物纳米柱阵列由于长径比的增加,水滴的滚动角减小,证明了可以通过控制刻蚀的条件,控制表面对于水滴的粘附力,这对于水滴的粘附力在微流体等领域具有潜在应用。
     我们还研究了该结构对于固体界面之间粘附力的各向异性。对于聚合物干态胶带而言,聚合物的弹性模量,柱结构的长径比和倾斜角是影响粘附力的重要因素。我们改变了这三种主要的参数,制备了一系列聚合物纳米柱阵列。经过微摩擦测试,发现该结构确实在沿着刻蚀方向和逆着刻蚀方向具有不同的摩擦系数,证明了该结构具有一定的各向异性粘附力的性质。具有各向异性粘附力的表面在爬行机器人,生物医药领域具有重要应用前景。
Specific micro/nano-scale structure endows special properties to biological surfaces in nature, for example, self-cleaning phenomenon, superhydrophobic surfaces, anisotropic water transportation, anti-reflection, anisotropic adhesion, etc. All those special properties are closely related to materials properties and microstructures.
     We hydrophobic treated hydrophilic silica nanospheres with amphiphilic CTAB, and self-assembled silica nanospheres via water/air interface self-assembly into large are monolayer on polymer substrate. Through two steps Reactive Ionic Etching (RIE), we first etched close-packed nanosphere arrays into non-close-packed ones. Next, we utilized smaller silica nanospheres as mask, etched polymer substrate, which led to inclined polymer nanopillar arrays.
     We first examined the anisotropic properties related to wetting phenomena. It was found that static contact angle was different between the directions along the patterned strip microstructure and perpendicular to it. It was also found that dynamic contact angle (sliding angle) was different between the directions along the RIE etching and against it. Moreover, we found that by increasing polymer RIE treatment time, we obtained nanopillar arrays with higher aspect ratio, as long as smaller dynamic contact angle. This finding illustrated that the adhesion to water of the fabricated surfaces could be controlled by RIE treatment parameters. Such surfaces with controllable adhesion to water had potential in microfluid fields.
     Secondly, we also study the anisotropic solid-solid interface adhesion properties of the polymer nanopillar arrays. As for dry polymer adhesives, polymer elastic modulus, pillar aspect ratio, and inclined angle are three most important parameters which impact adhesion behavior. We modulated these three parameters, and prepared a series of polymer nanopillar arrays. After micro-scale adhesion test, it was found that the prepared microstructures had anisotropic adhesion properties to some extent. Such surfaces with anisotropic adhesion had potential in climbing robots, biomedical applications, etc.
引文
[1]Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry a chemical strategy for the synthesis of nanostructures [J]. Science,1991,254:1312-1319.
    [2]Levenson M D. Extending optical lithography to the gigabit era [J]. Solid State Technol.,1995,38(2):57-66.
    [3]Khang D, Yoon H, Lee H H. Room-temperature imprint lithography [J]. Adv. Mater.,2001,13:749-752.
    [4]Xia Y N, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures[J]. Chem. Rev.,1999,99:1823-1848.
    [5]Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292:1897-1899.
    [6]Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres:sonochemical preparation, characterization, and optical properties [J]. Chem. Mater.,1999,11(3):806-813.
    [7]Zhang J H, Bai L, Zhang K, et al. A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres [J]. J. Mater. Chem.,2003,13:514-517.
    [8]Dhas N A, Gedanken A. A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica [J]. Appl. Phys. Lett.1998, 72 (20):2514-2516.
    [9]Ramesh S, Minti H, Reisfeld R, et al. Synthesis and optical properties of europium oxide nanoparticles immobilized on amorphous silica microspheres [J].Opt. Mater.,1999,13(1):67-70.
    [10]Charlier J C. Defects in carbon nanotubes [J]. Acc. Chem. Res.,2002,35(12): 1063-1069.
    [11]Dresselhaus MS, Dresselhaus, G, Jorio A, et al. Single Nanotube Raman Spectroscopy [J]. Acc. Chem. Res.,2002,35(12):1070-1078.
    [12]Fischer J E. Chemical doping of single-wall carbon nanotubes [J]. Acc. Chem. Res.,2002,35(12):1079-1086.
    [13]Mayoral R, Requena J, Moya J S, et al.3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure [J]. Adv. Mater.,1997,9:257-260.
    [14]Donselaar L N, Philipse A P, Suurmond J. Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions [J]. Langmuir,1997,13:6018-6025.
    [15]Miguez H, Meseguer F, Lopez C, et al. Evidence of fcc crystallization of SiO2 nanospheres [J]. Langmuir,1997,13:6009-6011.
    [16]Ise N. Ordering of ionic solutes in dilute solutions through attraction of similarly charged solutes a change of paradigm in colloid and polymer chemistry [J]. Angew. Chem. Int. Ed. Engl.,1986,25:323-334.
    [17]Sunkara H B, Jethmalani J M, Ford W T. Composite of colloidal crystals of silica in poly(methyl methacrylate) [J]. Chem. Mater.,1994,6:362-364.
    [18]Larsen A E, Grier D G. Like-charge attractions in metastable colloidal crystallites [J]. Nature,1997,385:230-233.
    [19]Denkov N D, Velev 0 D, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates [J]. Langmuir,1992,8:3183-3190.
    [20]Dushkin C D, Nagayama K, Miwa T, et al. Colored multilayers from transparent submicrometer spheres [J]. Langmuir,1993,9:3695-3701.
    [21]Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J]. Langmuir,1996,12: 1303-1311.
    [22]Rakers S, Chi L F, Fuchs H. Influence of the evaporation rate on the packing order of polydisperse latex monofilms [J]. Langmuir,1997,13:7121-7124.
    [23]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett.,1987,58:2059-2062.
    [24]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58:2486-2489.
    [25]Park S H, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters [J]. Langmuir,1999,15: 266-273.
    [26]Chang S Y, Liu L, Asher S A. Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites [J]. J. Am. Chem. Soc.,1994,116:6739-6744.
    [27]Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature,1997,389:829-832.
    [28]Holtz JH, Holtz JSW, Munro CH, et al. Intelligent polymerized crystalline colloidal arrays:novel chemical sensor materials [J]. Anal. Chem.,1998,70: 780-791.
    [29]Velev O D, Kaler E W. In situ assembly of colloidal particles into miniaturized biosensors [J]. Langmuir,1999,15:3693-3698.
    [30]van Blaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization [J]. Nature,1997,385:321-324.
    [31]Sun S, Murray B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287: 1989-1992.
    [32]Gasser U, Reeks E, Schofield A, et al. Real-space imaging of nucleation and growth in colloidal crystallization [J]. Science,2001,292:258-262.
    [33]Pusey P N, Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres [J]. Nature,1986,320:340-342.
    [34]Skjeltorp A T, Meakin P. Fracture in microsphere monolayers studied by experiment and computer simulation [J]. Nature,1988,335:424-426.
    [35]Hulteen J C, Treichel D A, Smith M T, et al. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays [J]. J. Phys. Chem. B., 1999,103:3854-3863.
    [36]Hulteen J C, Van Duyne R P. Nanosphere lithography:A materials general fabrication process for periodic particle array surfaces [J]. J. Vac. Sci. Technol. A, 1995,13:1553-1558.
    [37]Deckman H W, Dunsmuir J H. Natural lithography [J]. Appl. Phys. Lett.,1982,41: 377-379.
    [38]Fischer U Ch, Zingsheim H P. Submicroscopic pattern replication with visible light [J]. J. Vac. Sci. Technol.,1981,19:881-885.
    [39]Kulak A, Lee Y, Park Y S, et al. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups [J]. Angew. Chem. Int. Ed.,2000,39(5):950-953.
    [40]Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness [J]. Chem. Mater.,1999,11:2132-2140.
    [41]Yi G R, Moon J H, Yang S M. Macrocrystalline colloidal assemblies in an electric field [J]. Adv. Mater.,2001,13:1185-1188.
    [42]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature,2000,404:56-59.
    [43]Vickreva O, Kalinina O, Kumacheva E. Colloid crystal growth under oscillatory shear [J]. Adv. Mater.,2000,12(2):110-112.
    [44]Lin K, Crocker J C, Prasad V, et al. Entropically driven colloidal crystallization on patterned surfaces [J]. Phys. Rev. Lett.,2000,85:1770-1773.
    [45]Xu X, Friedman G, Humfeld K D, et al. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals [J]. Chem. Mater.,2002,14:1249-1256.
    [46]Grzybowski B A, Stone H A, Whitesides G M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface [J]. Nature, 2000,405:1033-1036.
    [47]Bwoden N B, Weck M, Choi I S, et al. Molecule-mimetic chemistry and mesoscale self-assembly [J]. Acc. Chem. Res.,2001,34:231-238.
    [48]Chen K M, Jiang X, Kimerling L C, et al. Selective self-organization of colloids on patterned polyelectrolyte templates [J]. Langmuir,2000,16(20):7825-7834.
    [49]Aizenberg J, Braun PV, Wiltzius P. Patterned colloidal deposition controlled by electrostatic and capillary forces [J]. Phys. Rev. Lett.,2000,84:2997-3000.
    [50]Yeh S R, Seul M, Shraiman B I. Assembly of ordered colloidal aggregates by electric-field-induced fluid flow [J]. Nature,1997,386:57-59.
    [51]Gu Z Z, Fujishima A, Sato O. Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface [J]. Angew. Chem. Int. Ed.,2002,41(12): 2067-2670.
    [52]Fustin C A, Glasser G, Spiess H, et al. Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces [J]. Adv. Mater., 2003,15:1025-1028.
    [53]Yao J M, Yan X, Lu G, et al. Patterning colloidal crystals by lift-up soft lithography [J]. Adv. Mater.,2004,16:81-84.
    [54]Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography [J]. Adv. Mater.,2007,19:2213-2217.
    [55]Ruchhoeft P, Colburn M, Choi B, et al. Patterning curved surfaces:template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography [J]. J. Vac. Sci. Technol. B,1999,17:2965-2969.
    [56]Paul K E, Prentiss M, Whitesides G M. Patterning spherical surfaces at the two-hundred- nanometer scale using soft lithography [J]. Adv. Funct. Mater., 2003,13:259-263.
    [57]Yan X, Yao J M, Lu G, et al. Microcontact printing of colloidal crystals [J]. J. Am. Chem. Soc.,2004,126:10510-10511.
    [58]Kulinowski K M, Jiang P, Vaswani H, et al. Porous metals from colloidal templates[J]. Adv. Mater.,2000,12:833-838.
    [59]Haynes C L, Duyne R P V. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. J. Phys. Chem. B,2001, 105:5599-5611.
    [60]Yang S M, Jang S G, Choi D G., et al. Nanomachining by colloidal lithography [J]. Small,2006,2:458-475.
    [61]Okuyama S, Matsushita SI, Fujishima A. Periodic Submicrocylinder diamond surfaces using two-dimensional fine particle arrays [J]. Langmuir,2002,18: 8282-8287.
    [62]Wang B, Zhao W, Chen A, et al. Formation of nanoimprinting mould through use of nanosphere lithography [J].J. Cryst. Growth,2006,288:200-204.
    [63]Finkel N H, Prevo B G, Velev O D, et al. Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry [J]. Anal. Chem., 2005,77:1088-1095.
    [64]Haynes C L, McFarland A D, Smith M T, et al. Angle-resolved nanosphere lithography:manipulation of nanoparticle size, shape, and interparticle spacing [J]. J. Phys. Chem. B,2002,106:1898-1902.
    [65]Moon J H, Jang S G, Lim J M, et al. Multiscale Nanopatterns Templated from Two- Dimensional Assemblies of Photoresist Particles [J]. Adv. Mater.,2005,17: 2559-2562.
    [66]Yi D K, Kim D Y. Polymer nanosphere lithography:fabrication of an ordered trigonal polymeric nanostructure [J]. Chem. Comm.,2003,982-983.
    [67]Zhang G, Wang D, Mohwald H. Ordered binary arrays of Au nanoparticles derived from colloidal lithography [J]. Nano Lett.,2007,7:127-132.
    [68]Zhang G, Wang D, Mohwald H. Fabrication of multiplex quasi-three-dimensional grids of one-dimensional nanostructures via stepwise colloidal lithography [J]. Nano Lett.,2007,7:3410-3413.
    [69]Wang X D, Graugnard E, King J S, et al. Large-scale fabrication of ordered nanobowl arrays [J]. Nano Lett.,2004,4:2223-2226.
    [70]Wang X D, Lao C, Graugnard E, et al. Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography [J]. Nano Lett.2005,5(9): 1784-1788.
    [71]Jun Jie Niu and Jian Nong Wang, A Novel Self-Cleaning Coating with Silicon Carbide Nanowires [J]. J. Phys. Chem. B,2009,113 (9)
    [72]Kim, D.; Park, H.; Lee, K.; Park, K.; Choi, K.; Hwang, W., Overcoming of nanoscale adhesion by electrostatic induction [J]. Current Applied Physics 9(2009) 703-706
    [73]Dinesh Chandra, Shu Yang Andre A. Soshinsky and Robert J. Gambogi, Biomimetic Ultrathin Whitening by Capillary-Force-Induced Random Clustering of Hydrogel Micropillar Arrays [J]. ACS Appl. Mater. Interfaces,2009,1 (8), pp 1698-1704
    [74]Magdalena M. Dudek, R. P. Gandhiraman, C. Volcke, Stephen Daniels, Anthony J. Killard [J]. Plasma Processes and Polymers 6(10),620-630
    [75]Magdalena M. Dudek, R. P. Gandhiraman, C. Volcke, Attilio A. Cafolla, Stephen Daniels and Anthony J. Killard, Plasma Surface Modification of Cyclo-olefin Polymers and Its Application to Lateral Flow Bioassays [J]. Langmuir,2009,25 (18), pp 11155-11161
    [76]Jiadao Wang, Fengbin Liu, Haosheng Chen, and Darong Chen, Superhydrophobic behavior achieved from hydrophilic surfaces [J]. Appl. Phys. Lett.95,084104 (2009)
    [77]Yudi Rahmawan, Myoung-Woon Moon, Kyung-Suk Kim, Kwang-Ryeol Lee and Kahp-Yang Suh, Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for Superhydrophobicity [J]. Langmuir,2010,26 (1), pp 484-491
    [78]Hoon Eui Jeong, Kahp Y. Suh, Nanohairs and nanotubes:Efficient structural elements for gecko-inspired artificial dry adhesives [J]. Nano Today (2009) 4,335-346
    [79]Hyunsik Yoona, Hoon Eui Jeongb, Tae-il Kimb, Tae June Kangb, Dongha Tahka, Kookheon Chara and Kahp Y. Suh, Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition [J]. Nano Today (2009) 4,385-392
    [80]Metin Sitti, Brian Cusick, Burak Aksak, Alper Nese, Hyung-il Lee, Hongchen Dong, Tomasz Kowalewski and Krzysztof Matyjaszewski, Dangling Chain Elastomers as Repeatable Fibrillar Adhesives [J]. ACS Appl. Mater. Interfaces, 2009,1 (10), pp 2277-2287
    [81]K. Autumn, Y.A. Liang, ST. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full [J]. Adhesive force of a single gecko foot-hair, Nature 405 (2000) 681-685
    [82]K, Autumn, M. Sitti, Y.C.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachivili, R.J. Full, Evidence for van der Waals adhesion in gecko setae [J]. Proc. Natl. Acad. Sci. U.S.A.99 (2002) 12252
    [83]A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y.Shapoval, Microfabricated adhesive mimicking gecko foot-hair [J]. Nat. Mater.2 (2003) 461
    [84]H.E. Jeong, S.H. Lee, P.Kim, K.Y. Suh, Streched Polymer Nanohairs by Nanodrawing [J]. Nano Lett.6 (2006) 1508
    [85]H.E. Jeong, S.H. Lee, P. Kim, K.Y. Suh, High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force [J]. Colloids Surf., A 313 (2008) 359
    [86]C. Majidi, R.E. Groff, Y. Maeno, B. Schubert, S. Baek, B. Bush, R. Maboudian, N. Gravish, M. Wilkinson, K. Autumn, R.S. Fearing, High Friction from a Stiff Polymer Using Microfiber Arrays [J]. Phys. Rev. Lett.97 (2006)
    [87]T. Kim, H.E. Jeong, K.Y. Suh, H.H. Lee, Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive [J]. Adv. Mater 21 (2009) 2276
    [88]B. Aksak, M.P. Murphy, M. Sitti, Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays [J]. Langmuir 23 (2007) 3322
    [89]S.Reddy, E. Arzt, A. Del Campo, Bioinspired Surfaces with Switchable Adhesion [J]. Adv. Mater.19 (2007) 3833
    [90]C. Greiner, A. Del Campo, E. Arzt, Adhesion of Bioinspired Micropatterned Surfaces:Effects of Pillar Radius, Aspect Ratio, and Preload [J]. Langmuir 23 (2007)3495
    [91]S. Kim, M. Sitti, Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives [J]. Appl. Phys. Lett.89 (2006) 261911
    [92]A. Del Campo, C. Greiner I. Alvarez, E. Arzt, Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices [J]. Adv. Mater. 19 (2007)1973
    [93]S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure [J]. J. R. Soc. Interface 4 (2007) 271
    [94]H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet-dry adhesive inspired by mussels and geckos [J]. Nature 448 (2007) 338
    [95]E.P. Chan, E.J. Smith, R.C. Hayward, A.J.Crosby, Surface Wrinkles for Smart Adhesion [J]. Adv. Mater.20 (2008) 711
    [96]M.T. Northen, C. Greiner, E. Arzt, K.L. Turner, A Gecko-Inspired Reversible Adhesive [J]. Adv. Mater.20 (2008) 3905
    [97]C. Greiner, E. Arzt, A. Del Campo, Hierarchical Gecko-Like Adhesives [J]. Adv. Mater.21 (2009) 479
    [98]H.E. Jeong, J.K. Lee, H.N. Kim, S.H. Moon, K.Y. Suh, A nanotransferring dry adhesive with hierarchical polymer nanohairs [J]. Proc. Natl, Acad, Sci. U.S.A. 106 (2009)5639
    [99]B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes [J]. Chem. Commun. (2005) 3799
    [100]Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive [J]. J. Vac. Sci. Technol., B 24 (2006) 331
    [101]L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes [J]. Proc. Natl. Acad, Sci. U.S.A.104 (2007) 10792
    [102]L.T. Qu, L.M. Dai, M. Stone, Z.H. Xia, Z.L. Wang, Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off [J]. Science 322 (2008) 238
    [103]Y. Maeno, Y. Nakayama, Geckolike high shear strength by carbon nanotube fiber adhesives [J]. Appl. Phys. Lett.94 (2009)
    [104]M. Sitti, R.S. Fearing, Synthetic Gecko Foot-Hair Micro/Nano-Structures as Dry Adhesives [J]. J. Adhes. Sci. Technol.17 (2003) 1055
    [105]D. Santos, M. Spenko, A. Parness, S. Kim, M. Cutkosky, Directional adhesion for climbing:theoretical and practical considerations [J]. J. Adhes. Sci. Technol.21 (2007)1317
    [106]S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M.R. Cutkosky, Smooth Vertical Surface Climbing With Directional Adhesion [J]. IEEE Tran. Robotics 24 (2008)65
    [107]M.P. Murphy, M. Sitti, Waalbot:An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives [J]. IEEE-ASME Trans. Mechatron.12 (2007) 330
    [108]K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, R. Fearing, Effective elastic modulus of isolated gecko setal arrays [J]. J. Exp. Biol.209 (2006) 3558
    [109]E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices [J]. Proc. Natl. Acad. Sci. U.S.A.100 (2003) 10603
    [110]K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, Frictional adhesion: a new angle on gecko attachment [J]. J. Exp. Biol.209 (2006) 3569
    [111]S. Kim, B. Aksak, M. Sitti, Enhanced friction of elastomer microfiber adhesives with spatulate tips [J]. Appl. Phys.Lett.91 (2007) 221913
    [112]B. Bhushan, A.G. Peressadko, T.W. Kim, Adhesion analysis of two-level hierarchical morphology in natural attachment systems for'smart adhesion'[J]. J. Adhes, Sci. Technol.20 (2006) 1475
    [113]H. Yao, H. Gao, Mehanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures fo gecko [J]. J. Mech. Phys. Solids 54 (2006)1120
    [114]D.S. Kim, H.S. Lee, J. Lee, S. Kim, K.H. Lee, W. Moon, T.H. Kwon [J]. Microsys. Technol.13 (2007) 601
    [115]S. Kim, M. Sitti, C. Y. Hui, R. Long, A. Jagota, Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays [J]. Appl. Phys. Lett.91 (2007)
    [116]N. J. Glassmaker, A. Jagota, C. Y. Hui, J. Kim, Design of biomimetic fibrillar interfaces:1. Making contact [J]. J. R. Soc. Interface 1 (2004) 23
    [117]C.Y. Hui, A. Jagota, Y.Y. Lin, E.J. Kramer, Constraints on Microcontact Printing Imposed by Stamp Deformation [J]. Langmuir 18 (2002) 1394
    [118]M.P. Murphy, B. Aksak, M. Sitti, Gecko-Inspired Directional and Controllable Adhesion [J]. Small 5 (2009) 170
    [119]E.A.A.D.S. Reddy, Bioinspred Surfaces with Switchable Adesion [J]. Adv. Maer. 19 (2007)3833
    [120]N.M. Pugno, E. Lepore, Observation of optimal gecko's adhesion on nanorough surfaces [J]. Biosystems 94 (2008) 218
    [121]J.H. Lee, R.S. Fearing, K. Komnopoulos [J]. Appl. Phys. Lett.93 (2008)
    [122]J.K. Lee, G.R. Lee, J.H. Min, S.H. Moon, Angular distribution of particles sputtered from Si bottom in a CHF3 plasma [J]. J. Vac. Sci. Technol., A 24 (2006) 1807
    [123]J.H. Min, J.K. Lee, S.H. Moon, Deep etching of silicon with smooth sidewalls by an improved gas-chopping process using a Faraday cage and a high bias voltage [J]. J. Vac. Sci. Technol., B 23 (2005) 1405
    [124]D. Suh, S.J. Choi, H.H. Lee, Rigiflex Lithography for Nanostructure Transfer [J]. Adv. Mater.17 (2005) 1554
    [125]P.J. Yoo, S.J. Choi, J.H. Kim, D. Suh, S.J. Baek, T.W. Kim, H.H. Lee, Unconventional Patterning with A Modulus-Tunable Mold:From Imprinting to Microcontact Printing [J]. Chem. Mater.16 (2004) 5000
    [126]R. Spolenak, S. Gorb, H.J. Gao, E. Arzt, Effects of contact shape on the scalling of biological attachments [J]. Proc. R. Soc. A 461 (2005) 305
    [127]A. del Campo, C. Greiner, E. Arzt, Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces [J]. Langmuir 23 (2007) 10235
    [128]J. Davies, S. Haq, T. Hawke, J.P. Sargent, A practical approach to the development of a synthetic Gecko tape [J]. Int. J. Adhes. Adhes.29 (2009) 380
    [129]H.E. Heong, R. Kwak, J.K. Kim, K. Y. Suh, Generation and Self-Replication of Monolithic, Dual-Scale Polymer Structures by Two-Step Capillary-Force Lithography [J]. Small 4 (2008) 1913
    [130]T.L. Sun, L. Feng, X.F. Gao, L. Jaing, Bioinspired Surfaces with Special Wettability [J]. Acc. Chem. Res.2005,38,644
    [131]X.J. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces [J]. Adv. Mater.2006,18,3063
    [132]L. Feng, S. H. Li, Y.S.Li, H.J. Li, L. J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L. Jiang, D.B. Zhu, Super-Hydrophobic Surfaces:From Natural to Artificial [J]. Adv. Mater. 2002,14,1857
    [133]F. Xia, L. Jiang, Bio-Inspired, Smart, Nultiscale Interfacial Materials [J]. Adv. Mater.2008,20,2842
    [134]M.J. Liu, S.T. Wang, Z.X. Wei, Y. L. Song, L. Jiang, Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface [J]. Adv. Mater.2009, 21,665
    [135]B. Bhushan, M. Nosonovsky, Y.C. Jung, Towards optimization of patterned superhydrophobic surfaces [J]. J. R. Soc. Interface 2007,4,643
    [136]M.J. Lliu, Y. M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid-solid adhesion [J]. Acc. Chem. Res.2010,43,368
    [137]R. Blossey, Self-cleaning surfaces [J]. Nat. Mater.2003,2,301
    [138]W. Barthlott, C. Neinhuis, The purity of sacred lotus or escape from contamination in biological surfaces [J]. Planta 1997,202,1
    [139]X. Zhang, F. Shi, J. Niu, Y.G. Jiang, Z.Q. Wang, Superhydrophobic surfaces:from structural control to functional application [J]. J. Mater. Chem.2008,28,621
    [140]J. Genzer, A. Marnur. Biological Synthetic Self-Cleaning Surfaces [J]. MRS Bull. 2008,33,742
    [141]X. F. Gao, L. Jiang, Biophysics:Water-repellent legs of water striders [J]. Nature 2004,432,36
    [142]Y.M. Zheng, D. Han, J. Zhai, L. Jiang, In-situ Investigation on Dynamic Suspending of Micro-droplet on Lotus Leaf and Gradient of Wettable Micro-and Nanostructure from Water Condensation [J]. Appl. Phys. Lett.2008,92, 084106
    [143]P. P. Chen, L. Chen, D. Han, J. Zhai, Y.M. Zheng, L. Jiang, Wetting Behavior at Micro-/Nanoscales:Direct Imaging of A Three-Phase Interface [J]. Small 2009,5, 908
    [144]M. H. Sun, C. X. Luo, L.P. Xu, H. Ji, O.Y. Qi, D.P. Yu, Y. Chen, Artificial lotus leaf by nanocasting [J]. Langmuir 2005,21,8978
    [145]G. Zhang, D.Y. Wang, Z.Z.Gu, H. Mohwald, Fabrication of Superhydrophobic Surfaces from Binary Colloidal Assembly [J]. Langmuir 2005,21,9143
    [146]J.T. Han, X.R. Xu, K.W. Cho, Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers [J]. Langmuir 2005,216662
    [147]N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Intrinsically Superhydrophobic Organosilica Sol-Gel Foams [J]. Langmuir 2003,19,5626
    [148]X.Zhang, F.Shi, X.Yu, H. Liu, L. Jiang, X.Y. Li, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface [J]. J. Am. Chem, Soc.2004,126,3064
    [149]F. Shi, Z.Q. Wang, X. Zhang, Combing a layer-by-layer assembling technique with eletrochemical deposition of gold aggregates to mimic the legs of water striders [J]. Adv. Mater.2005,17,1005
    [150]L. Jiang, Y. Zhao, J. Zhai, A Lotus-Leaf-like Superhydrophobic Surface:A Porous... Composite Film Prepared by Electrohydrodynamics [J]. Angew. Chem. Int. Ed.2004,43,4338
    [151]M.H. Jin, X. J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Super-hydrophobic Aligned Polystyrene Nanotubes Film with High Adhesive Force [J]. Adv. Mater. 2005,17,1977
    [152]L. Feng, Y.A. Xhang, J.M. Xi, L. Jiang, Petal Effect:A Superhydrophobic State with High Adhesive Force [J]. Langmuir 2008,24,4114
    [153]W. K. Cho, I.S. Choi, Fabrication of Hairy Polymeric Films Inspired by Geckos: Wetting and High Adhesion Properties [J]. Adv. Funct. Mater.2008,18,1089
    [154]N. Zhao, Q. D. Xie, X. Kuang, S. Q. Wang, C.C. Han, A Novel Ultra-hydrophobic Surface:Statically Non-wetting but Dynamically Non-sliding [J]. Adv. Funct. Mater.2007,17,2739
    [155]A. Winkleman, G. Gotesman, A. Yoffe, R. Naaman, Immobilizing a Drop of Water:Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets [J]. Nano Lett.2008,8,1241
    [156]Z.G. Guo, W.M. Liu, Sticky superhydrophobic surface [J]. Appl. Phys. Lett.2007, 90,223111
    [157]X. Hong, X.F. Gao, L. Jiang, Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet [J]. J. Am. Chem. Soc.2007,129,1478
    [158]Y. B. Li, M.J. Zheng, L. Ma, M. Zhong, W.Z. Shen, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force [J]. Inorg. Chem.2008,47,3140
    [159]N.D. Boscher, C.J. Xarmalt, I.P. Parkin, Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces [J]. J. Mater. Chem.2006,16,122
    [160]R.E. Johnson, R. H. Dettre, Contact Angle Hysteresis [J]. J. Phys. Chem.1964,68, 1744
    [161]X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films [J]. J. Am. Chem. Soc.2004,126,62
    [162]L.B. Xu, W. Chen, A. Mulchandani, Y.S. Yan, Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic [J]. Angew. Chem. Int. Ed.2005,44,6009
    [163]T.L Sun, G.J. Wang, L. Feng, B.Q. Liu, Y.M. Ma, L. Jiang, D.B. Zhu, Reversible Switching between Superhydrophilicity and Superhydrophobicity [J]. Angew. Chem. Int. Ed.2004,43,357
    [164]J.L. Zhang, X.Y. Lu, W. H. Huang, Y.C. Han, Reversible Superhydrophobicity to Superhydrophilicity Transition by Extending and Unloading an Elastic Polyamide Film [J]. Macromol. Rapid Commun.2005,26,477
    [165]B.Zhao, W.J. Brittain, Synthesis, Characterization, and Properties of Tethered Polystyrene-b-polyacrylate Brushes on Flat Silicate Substrates [J]. Macromolecules 2000,33,8813

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700