用户名: 密码: 验证码:
新型超支化和树枝状聚合物的合成与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类重要的非线形聚合物,具有传统线形聚合物所没有的低粘度、高流变性、良好的溶解性及大量末端官能团等一系列独特的物理和化学特性,在医药载体、非线性光学、能量存储和传递、电子器件、传感器、纳米材料、催化剂等诸多领域获得广泛应用。因此,这一领域引起了高分子科学家极大的研究兴趣,各种新型的超支化聚合物不断被合成出来。超支化聚合物的合成方法可以分为三大类:(1)多官能团单体的逐步聚合;(2)自缩合乙烯基聚合和(3)自缩合开环聚合。
     树枝状聚合物是一类具有完美支化结构的聚合物,与超支化聚合物相比,它们具有更加优良的性能,但缺点是合成的难度和成本太高。除了传统的树枝状聚合物外,近十年来,一种以聚合物链为结构单元的新型的树枝状聚合物也引起了高分子科学界的关注,它们具有独特的物理和化学性质,在药物载体和催化剂等方面有潜在的应用前景。树枝状-线形嵌段共聚物是另外一类包含树枝状聚合物结构单元的聚合物类型,这种复合结构结合了嵌段和树枝状聚合物的优点,表现出独特的熔融和溶液性质,在理论研究和实际应用方面都具有重要的研究价值。
     据此,本论文针对以下几个问题进行研究,并取得初步成果:
     1.为了解决A_3+B_3体系超支化聚合过程中的凝胶化问题,我们针对一种非等活性A_3+B_3单体聚合体系,三羟甲基丙烷三丙烯酸酯(A_3)和1-(2-氨乙基)哌嗪(B_3)的迈克尔加成反应进行了研究,用~(13)C核磁谱原位跟踪反应过程,研究聚合反应机理。结果表明在两种单体比例为1/2或2/1时聚合反应不会产生凝胶,聚合过程按照先生成AB_2或AB_4型中间体,然后继续聚合得到超支化聚酯胺的反应路线进行。由于反应生成的仲胺在低温下不能继续反应,两种单体在-15℃可以按1/1的投料比反应,此时1-(2-氨乙基)哌嗪相当于B_2单体。另外,我们用DSC测试了得到超支化聚合物的玻璃化转变温度(T_g),不同单体投料比得到的聚合物中三种胺的比例不同,是影响聚合物T_g最主要的因素。
     2.为了利用甲基丙烯酸缩水甘油酯(GMA)制备超支化聚合物,我们把Cp_2Ti(Ⅲ)Cl催化环氧开环引发自由基聚合和自缩合乙烯基聚合(SCVP)结合起来,同时用Cu(Ⅱ)X_2(X=Br,Cl)稳定自由基,控制聚合反应,研究了GMA的均聚及GMA与苯乙烯共聚的结果。单体转化率达到约60%以前,体系中没有凝胶产生,在此之后会逐渐生成部分凝胶。聚合物分子量快速增长,GPC显示多重峰,表明仍然存在偶合终止等副反应。我们通过~1H NMR谱和水解实验验证了聚合物的支化结构,支化度与Cp_2TiCl/GMA,GMA/St和聚合时间等条件有关。另外,我们用超支化PGMA作为大分子引发剂引发苯乙烯的原子转移自由基聚合(ATRP),得到以超支化PGMA为核,聚苯乙烯为臂的超支化星形聚合物。最后,我们还研究了这些超支化聚合物用羧酸和胺类化合物改性的情况。
     3.为了利用点击化学合成“HyperMacs”结构的聚合物,我们通过两种途径分别合成了带有一个炔基和两个叠氮基的AB_2型PSt大分子单体以及带有两个炔基和一个叠氮基的A_2B型PSt大分子单体。这两种大分子单体都可以通过点击化学反应聚合,得到带有不同末端基团的超支化聚合物。聚合物的结构用核磁共振氢谱和GPC进行表征,GPC曲线为宽分布的多重峰,分子量分布随反应时间增加而降低,在60℃反应60小时以上,聚合度可以达到15以上。
     4.为了利用含有可降解链段的树枝状聚合物(dendrimer-like polymer)制备纳米空心球,我们结合ATRP和开环反应合成了两种苯乙烯和L-丙交酯的三代树枝状共聚物C(PSt(PLLA(PSt-PNAS)_2)_2)_3和C(PSt(PLLA(PSt-PNAS)_2)_2)_4。在合成第二代和第三代时,分别用二乙醇胺和2,2-二异溴丁酸甲酯基丙酰氯(BMBIBPC)作为分叉试剂,得到的聚合物用核磁共振氢谱和GPC进行表征。树枝状共聚物最外层PSt-PNAS链段利用乙二胺和NAS活性酯的取代反应交联,同时,中间的聚丙交酯段被降解,得到纳米空心球,用SEM和DLS进行观测和表征。
     5.为了得到两亲性哑铃形聚合物,我们合成了含有线形聚苯乙烯和树枝状聚酰胺胺的ABA型三嵌段共聚物。首先用对二溴苄作为引发剂通过ATRP得到分子量为13000的线形聚苯乙烯,然后两个末端溴用哌嗪(PZ)的一个亚胺基取代,再和过量的1,3,5-三丙酰氧基-六氢1,3,5-三嗪(TT)进行迈克尔加成反应,得到第一代(G1)三嵌段共聚物。随后,聚合物链末端反复用过量的哌嗪和TT进行迈克尔加成反应,使树枝状聚酰胺胺嵌段不断增长,得到G1.5到G4的嵌段共聚物。聚合物的结构用核磁共振氢谱和GPC进行了表征。不同代数的聚合物T_g受末端官能团的影响,具有PZ末端的聚合物由于氢键作用T_g较高。
Hyperbranched polymer is an important nonlinear polymer. They have many novel physical and chemical properties, such as low viscosity, high fluidity, good solubility and a large number of terminal groups, and are broadly applied in medicine carriers, nonlinear optics, nanometer materials and catalysis. Therefore, they have attracted polymer scientists' considerable attention. Various novel hyperbranched polymers have been synthesized successfully. Generally, there are three main synthetic approaches of hyperbranched polymers: (1) step-growth polycondensation of multifunctional groups monomers; (2) self-condensing vinyl (co)polymerization (SCV(C)P) and (3) self-condensing ring opening polymerization (SCROP).
     Dendrimers are structurally perfectly branched macromolecules. They have better qualities than hyperbranched polymers, but are more difficult to be synthesized. In the past decade, a novel type of molecular architecture, named dendrimer-like polymer, has been synthesized and studied by polymer scientists, in which polymer chains are used as structural units of dendrimer. They have potential applications, such as in drug delivery and catalysis, due to their unique physical and chemical properties. Dendritic-linear block copolymers are also a type of structurally novel polymers, which have a flexible linear chain and one or two semirigid dendritic blocks. The copolymers have many unique melt and solution properties, their basic theory and practical applications have been studied.
     All these facts are the origin and impetus of this thesis. The main results obtained in this thesis are as follows:
     1. To solve the problem of gelation in A3+B3 type hyperbranched polymerization systems, hyperbranched poly(ester amine)s were synthesized by Michael addition polymerization of trimethylol propane triacrylate (A_3) and 1-(2-aminoethyl) piperazine (B3). The mechanisms of the polymerizations were investigated by using ~(13)C NMR to in situ monitor the polymerization process. When the feed ratios of TMPTA and AEPZ are 1/2 or 2/1, gelation didn't occur. All of the polymers are considered forming by polymerization of AB_2 or AB_4 intermediates. Due to low reactivity of 2°amines (formed) at -15℃, TMPTA and AEPZ can be reacted on 1/1 feed ratio. Glass transition temperatures of the obtained hyperbranched polymers were characterized by DSC measurements, and the proportions of three kinds of amine in the polymers are main influencing factor on T_g of the polymers.
     2. To synthesize hyperbranched polymer using glycidyl methacrylate(GMA), we studied the homopolymerization of GMA and the copolymerization of GMA and St by combining Cp_2Ti(III)Cl catalyzed the epoxide radical ring opening and self-condensing vinyl polymerization(SCVP), and using Cu(II)X_2 (X = Br or Cl) to control the polymerization. Before the conversion of monomers reached 60%, no gel was generated. The GPC traces show multi-peaks and rapid increasing of molecular weights of the polymers. It indicates that coupling termination may exist. We confirmed the branching structure of the polymers by ~1H NMR spectra and hydrolysis test. The degrees of branching (DBs) of the polymers were decided by the feed ratios of Cp_2TiCl/GMA and GMA/St and polymerization time. The hyperbranched star (hyperstar) polymers with HPGMA as cores and PSt as arms were synthesized by atom transfer radical polymerization of St using HPGMA as macroinitiator. At last we studied the modifications of the hyperbranched polymers with various acids and amines.
     3. To synthesize "HyperMacs" of PSt using click chemistry method, we synthesized AB_2 type of PSt macromonomers with a propargyl group and two azide groups and A_2B type of PSt macromonomers with two propargyl groups and an azide group, respectively. The two macromonomers were polymerized by click reaction, and the obtained hyperbranched polymers were characterized by GPC and ~1H NMR. GPC curves show multi-peaks and broad distributions of molecular weights. M_W/M_ns gradually decrease with proceeding of the reactions. After 60 h polymerization at 60°C, the degrees of polymerization (DPs) are over 15.
     4. To prepare nanometer hollow sphere using dendrimer-like copolymer containing degradable polymer chains, we synthesized the three generations dendrimer-like copolymers C(PSt(PLLA(PSt-PNAS)_2)_2)_3 and C(PSt(PLLA(PSt-PNAS)_2)_2)_4 by combination of ATRP and ROP. Diethanol amine and 2,2-bis(methylene-2-bromoisobutyrate) propionyl chloride (BMBIBPC) were used as divergent reagents respectively before preparations of the second and the third generations. The resultant polymers were characterized by GPC and ~1H NMR. Then the outermost PSt-PNAS in the dendrimer-like copolymers was cross-linked via substitution reaction of NAS with ethylene diamine, and at the same time, the PLLA segments in the second generation were decomposed in dilute THF or CHCl_3 solution, forming hollow particles. The morphologies formed were characterized by SEM and DLS methods, and spherical particles with various sizes were observed.
     5. To obtain a amphiphilic dumbbell-shaped copolymer, we successfully synthesized dendritic-linear-dendritic triblock copolymers composed of linear polystyrene (PSt) and poly(amido amine) dendrons. Two bromines-terminated PSt with M_n=13,000 was prepared by atom transfer radical polymerization (ATRP) usingα,α'-dibromo-p-xylene as initiator. Then the terminal bromines at both ends of PSt chains were replaced by one imine group of piperazine (PZ), and further Michael addition reaction of terminal PZ with excess 1,3,5-triacryloylhexahydro-1,3,5-triazine (TT) produced the first generation (G_1) of the triblock copolymer. Continuous growth of dendrons from G1.5 to G4 at the both ends of PSt chains was carried out by the iterative Michael addition reactions with excess PZ and following TT. Structures of the triblock polymers were characterized by GPC and ~1H NMR spectra. Thermal phase transitions of the polymers were studied by DSC measurements. The triblock copolymers with terminal PZ groups have higher T_gs due to hydrogen bonding interaction.
引文
[1] Kitajyo Y, Nawa Y, Tamaki M, et al. 2007. A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol[J]. Polymer 48:4683-4690.
    [2] Hoque MA, Cho YH, Kawakami Y. 2007. High performance holographic gratings formed with novel photopolymer films containing hyper-branched silsesquioxane[J]. React. Funct. Polym. 67: 1192-1199.
    [3] Gao Q, Liu PS. 2007. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage[J]. J. Mater. Sci. 42: 5661-5665.
    [4] Xu RL, Liu HW, Liu SY, et al. 2008. Effect of core structure on the fluorescence properties of hyperbranched poly(phenylene sulfide)[J]. J. Appl. Polym. Sci. 107:1857-1864.
    [5] Taranekar P, Qiao QQ, Jiang H, et al. 2007. Hyperbranched conjugated polyelectrolyte bilayers for solar-cell applications[J]. J. Am. Chem. Soc. 129: 8958-8959.
    [6] Lee TW, Kwon Y, Park JJ, et al. 2007. Novel hyperbranched phthalocyanine as a hole injection nanolayer in organic light-emitting diodes[J]. Macromol. Rapid Commun. 28: 1657-1662.
    [7] Thompson CH, Keeley DL, Voit B, et al. 2008. Hyperbranched polyesters with internal and exo-presented hydrogen-bond acidic sensor groups for surface acoustic wave sensors[J]. J. Appl. Polym. Sci. 107: 1401-1406.
    [8] Deng LB, Wang L, Yu HJ, et al. 2008. Synthesis and electrochemical properties of phloroglucin-based ferrocenyl compounds and their application in anion recognition[J]. J. Appl. Polym. Sci. 107: 1539-1546.
    [9] Yang YK, Xie XL, Yang ZF, et al. 2007. Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethane)-functionalized multiwalled carbon nanotubes[J]. Macromolecules 40: 5858-5867.
    [10] Mao J, Yao JN, Wang LN, et al. 2008. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier[J]. J. Colloid Interface Sci. 319: 353-356.
    [11] Sun YY, Liu YQ, Zhao GZ, et al. 2008. Effects of hyperbranched poly(amido-amine)s structures on synthesis of Ag particles[J]. J. Appl. Polym. Sci. 107: 9-13.
    [12] Xue YH, Xu TW, Fu RQ, et al. 2007. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltom(?) series) as the interface of a bipolar membrane[J]. J. Colloid Interface Sci. 316: 604-611.
    [13] Flory PJ, 1952. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-B_(f-1) type units[J]. J. Am. Chem. Soc. 74:2718-2723.
    [14]Kim YH, Webster OW, 1988. Hyperbranched polyphenylenes[J]. Polym. Prepr. 29(2): 310-311.
    [15] Walczak M, Lechowicz JB, Galina H. 2007. Hyperbranched aromatic polyesters[J]. Macromol. Symp. 256:112-119.
    [16] Galina H, Lechowicz JB, Walczak M. 2005. Methods of narrowing the molecular size distribution in hyperbranched polymerization involving AB_2 and B_2 monomers[J]. J. Macromol. Sci. Part B: Phys. 44: 925-940.
    [17]Liu MH, Shen GY, Xu WJ,et al. 2007. Synthesis of a novel aromatic - aliphatic hyperbranched polyamide and its application in piezoelectric immunosensors[J]. Polym. Int. 56: 1432-1439.
    [18] Feng QP, Xie XM, Liu YT, et al. 2007. Synthesis of hyperbranched aromatic polyamide-imide and its grafting onto multiwalled carbon nanotubes[J]. J. Appl. Polym. Sci. 106: 2413-2421.
    [19] Jeon IY, Tan LS, Baek JB, 2007. Synthesis of linear and hyperbranched poly(etherketone)s containing flexible oxyethylene spacers[J]. J. Polym. Sci. Part A: Polym. Chem. 45:5112-5122.
    [20] Vanjinathan M, Shanavas A, Raghavan A, et al. 2007. Synthesis and properties of hyperbranched polyurethanes, hyperbranched polyurethane Copolymers with and without ether and ester groups using blocked isocyanate monomers[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 3877-3893.
    [21] Scholl M, Nguyen TQ, Bruchmann B, et al. 2007. The thermal polymerization of amino acids revisited; synthesis and structural characterization of hyperbranched polymers from L-Lysine[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 5494-5508.
    [22] Scholl M, Nguyen TQ, Bruchmann B, et al. 2007. Controlling polymer architecture in the thermal hyperbranched polymerization of L-Lysine[J]. Macromolecules 40: 5726-5734.
    [23] Kou YX, Wan AJ, Tong SY, et al. 2007. Preparation, characterization and modification of hyperbranched polyester-amide with core molecules[J]. React. Funct. Polym. 67:955-965.
    [24] Lin Y, Dong ZM, Liu XH, et al. 2007. Facile synthesis and characterization of hyperbranched poly(ether amide)s generated from Michael addition polymerization of in situ created AB_2 monomers[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 4309-4321.
    [25] Luston J, Kronek J. 2007. Synthesis and polymerization reactions of cyclic imino ethers. II. Preparation of novel hyperbranched polymers from AB_2 monomers of 2-oxazoline type with nonequivalent B units[J]. Polym. Eng. Sci. 47:1272-1280.
    [26] Tsai LR, Chen Yun. 2008. Hyperbranched and thermally cross-linkable oligomer from a new 2,5,7-tri-functional fluorene monomer[J]. J. Polym. Sci. Part A: Polym. Chem. 46: 70-84.
    [27] Jikei M, Chon SH, Kakimoto M, et al. 1999. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid[J]. Macromolecules 32:2061-2064.
    [28] Emrick T, Chang HT, Frechet JMJ. 1999. An A_2 + B_2 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents[J]. Macromolecules 32:6380-6382.
    [29] Emrick T, Chang HT, Frechet JMJ. 2000. The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from AB_n and A_2 + B_3 monomers[J]. J. Polym. Sci. Part A: Polym. Chem. 38:4850-4869.
    [30] Dai L, Winkler B, Dong L, et al. 2001. Conjugated polymers for light-emitting applications[J]. Adv. Mater. 13: 915-925.
    [31] Lin T, He Q, Bai F, et al. 2000. Design, synthesis and photophysical properties of a hyperbranched conjugated polymer[J]. Thin Solid Films 363:122-125.
    [32] Tanaka S, Takeuchi K, Asai M, et al. 2001. Preparation of hyperbranched Copolymers constituted of triphenylamine and phenylene units[J]. Synth. Met. 119:139-140.
    [33] Fang J, Kita H, Okamoto K. 2000. Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization[J]. Macromolecules 33: 4639-4646.
    [34] Chen H, Yin J. 2002. Synthesis and characterization of hyperbranched polyimides with good organosolubility and thermal properties based on a new triamine and conventional dianhydrides[J]. J. Polym. Sci. Part A: Polym. Chem. 40: 3804-3814.
    [35] Unal S, Lin Q, Mourey TH, 2005. Tailoring the degree of branching: Preparation of poly(ether ester)s via copolymerization of poly(ethylene glycol) oligomers (A_2) and 1,3,5-benzenetricarbonyl trichloride (B_3) [J]. Macromolecules 38:3246-3254.
    [36] Smet M, Fu Y, Zhang X, et al. 2005. A convenient A_2+B_3 approach to hyperbranched poly(arylene oxindole)s[J]. Macromol. Rapid Commun. 26: 1458-1463.
    [37] Kricheldorf HR, Bornhorst K. 2007. Cyclic and multicyclic poly(ether sulfone)s by polycondensation of 5,5',6,6'-tetrahydroxy-3,3,3', 3'-tetramethyl spirobisindane and 4,4'-difluorodiphenylsulfone[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 5597-5605.
    [38] Rao, V. S.; Samui, A. B., 2008. Effect of molecular architecture and size of mesogen on phase behavior and photoactive properties of photoactive liquid crystalline hyperbranched polyester epoxies containing benzylidene moiety[J]. J. Polym. Sci. Part A: Polym. Chem. 46: 552-563.
    [39] Tsai LR, Chen Y. 2007. Hyperbranched copolyfluorene from a 2,4,7-trifunctional fluorene monomer[J]. J. Polym. Sci. Part A: Polym. Chem. 45,5541-5551.
    [40] Tsai LR, Chen Y. 2007. Hyperbranched luminescent polyfluorenes containing aromatic triazole branching units[J]. J. Polym. Sci. Part A: Polym. Chem. 45:4465-4476.
    [41] Mendez JD, Schroeter M, Weder C. 2007. Hyperbranched polyphenylene ethynylene)s[J]. Macromol. Chem. Phys. 208:1625-1636.
    [42] Huo J, Wang L, Yu HJ, et al. 2007. Synthesis and electrochemical behavior of linear oligo(ferrocenylsilane) and hyperbranched poly(ferrocenylsilane) [J]. J. Polym. Sci. Part B: Polym. Phys. 45: 2880-2889.
    [43] Liu YH, Qiang JP, Jing XL. 2007. Synthesis and properties of a novel hyperbranched borate[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 3473-3476.
    [44] Yan DY, Gao C. 2000. Hyperbranched polymers made from A_2 and BB'_2 type monomers. 1. Polyaddition of l-(2-aminoethyl)piperazine to divinyl sulfone[J]. Macromolecules 33: 7693-7699.
    [45] Gao C, Yan DY. 2001. Hyperbranched polymers made from commercially available A_2 and BB'_2 type monomers[J]. Chem. Commun. (1): 107-108.
    [46] Froehling P, Brackman J. 2000. Properties and applications of poly(propylene imine) dendrimers and poly(esteramide) hyperbranched polymers[J]. Macromol. Symp. 151: 581-589.
    [47] van Benthem RATM, Meijerink N, Gelade E, et al. 2001. Synthesis and characterization of bis(2-hydroxypropyl)amide-based hyperbranched polyesteramides[J]. Macromolecules 34: 3559-3566.
    [48] Liu Y, Chung TS. 2002. Facile synthesis of hyperbranched polyimides from A_2 + BB'_2 monomers[J]. J. Polym. Sci. Part A: Polym. Chem. 40:4563-4569.
    [49] Chang YT, Shu QF. 2003. Synthesis of hyperbranched aromatic poly(amide-imide): Copolymerization of B'B_2 monomer with A_2 monomer[J]. Macromolecules 36: 661-666.
    [50] Gao C, Yan DY. 2003. "A_2 + CB_n" approach to hyperbranched polymers with alternating ureido and urethano units[J]. Macromolecules 36:613-620.
    [51] Li XR, Lu XF, Lin Y, et al. 2006. Synthesis and characterization of hyperbranched poly(ester-amide)s from commercially available dicarboxylic acids and multihydroxyl primary amines[J]. Macromolecules 39: 7889-7899.
    [52] Gao C, Xu YM, Yan DY, et al. 2003. Water-soluble degradable hyperbranched polyesters: Novel candidates for drug delivery[J]? Biomacromolecules 4:704-712.
    [53] Gao C, Xu YM, Zhang HM, et al. 2003. AB + C_n approach to aliphatic hyperbranched polyamides[J]. Polym. Prep. 44(1): 845-846.
    [54] Li XR, Zhan J, Li YS. 2004. Facile syntheses and characterization of hyperbranched poly(ester-amide)s from commercially available aliphatic carboxylic anhydride and multihydroxyl primary amine[J]. Macromolecules 37: 7584-7594.
    [55] Li XR, Zhan J, Lin Y, et al. 2005. Facile synthesis and characterization of aromatic and semiaromatic hyperbranched poly(ester-amide)s[J]. Macromolecules 38: 8235-8243.
    [56] Wu DC, Liu Y, He CB, et al. 2004. Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates[J]. Macromolecules 37: 6763-6770.
    [57] Wu DC, Liu Y, Chen L, et al. 2005. 2A_2 + BB'B" approach to hyperbranched poly(amino ester)s[J]. Macromolecules 38: 5519-5525.
    [58] Wang D, Liu Y, Hu ZC, et al. 2005. Michael addition polymerizations of trifunctional amines with diacrylamides[J]. Polymer 46: 3507-3514.
    [59] Gao C, Yan DY. 2004. Hyperbranched polymers: from synthesis to applications[J]. Prog. Polym. Sci. 29: 183-275.
    [60] Frechet JMJ, Henmi M, Gitsov I, et al. 1995. Self-condensing vinyl polymerization: An approach to dendritic materials[J]. Science 269:1080-1083.
    [61] Foreman EA, Puskas JE, Kaszas G. 2007. Synthesis and characterization of arborescent (hyperbranched) polyisobutylenes from the 4-(1,2-oxirane-isopropyl)styrene inimer[J]. J. Polym. Sci., Part A: Polym. Chem., 45: 5847-5856.
    [62] Baskaran D. 2001. Synthesis of hyperbranched polymers by anionic self-condensing vinyl polymerization[J]. Macromol. Chem. Phys. 202:1569-1575.
    [63] Baskaran D. 2003. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization[J]. Polymer 44: 2213-2220.
    [64] Jia ZF, Yan DY. 2005. Hyperbranched polymers generated from oxyanionic vinyl polymerization of commercially available methacrylate inimers[J]. J. Polym. Sci., Part A: Polym. Chem., 43: 3502-3509.
    [65] Simon PFW, Muller AHE, Pakula T. 2001. Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy[J]. Macromolecule 34: 1677-1684.
    [66] Simon PFW, Muller AHE. 2001. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules 34: 6206-6213.
    [67] Simon PFW, Muller AHE. 2004. Kinetic Investigation of self-condensing group transfer polymerization[J]. Macromolecules 37: 7548-7558.
    [68] Hawker CJ, Frechet JMJ, Grubbs RB, et al. 1995. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. J. Am. Chem. Soc. 117: 10763-10764.
    [69] Li CM, He JP, Li L, et al. 1999. Controlled radical polymerization of styrene in the presence of a polymerizable nitroxide compound[J]. Macromolecules, 32:7012-7014.
    [70] Tao YF, He JP, Wang ZM, et al. 2001. Synthesis of branched polystyrene and poly(styrene-b-4-methoxystyrene) by nitroxyl stable radical controlled polymerization[J]. Macromolecules 34: 4742-4748.
    [71] Gaynor SG, Edelman S, Matyjaszewski K. 1996. Synthesis of branched and hyperbranched polystyrenes[J]. Macromolecules 29:1079-1081.
    [72] Weimer MW, Frechet JMJ, Gitsov I. 1998. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly[4-(chloromethyl) styrene] by metal-catalyzed "living" radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 36: 955-970.
    [73] Hua FJ, Ruckenstein E. 2005. Hyperbranched sulfonated polydiphenylamine as a novel self-doped conducting polymer and its pH response[J]. Macromolecules 38: 888-898.
    [74] Matyjaszewski K, Gaynor SG, Kulfan A, et al. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in "living" radical polymerizations[J]. Macromolecules 30: 5192-5194.
    [75] Matyjaszewski K, Gaynor SG, Muller AHE. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules 30:7034-7041.
    [76] Matyjaszewski K, Gaynor SG. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules 30: 7042-7049.
    [77] Matyjaszewski K, Pyun J, Gaynor SG. 1998. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4 the use of zero-valent copper[J]. Macromol. Rapid Commun. 19:665-670.
    [78] Jiang BB, Yang Y, Jin X, et al. 2001. Preparation of hyperbranched polymers by self-condensing vinyl polymerization[J]. Eur. Polym. J. 37: 1975-1983.
    [79] Jiang BB, Yang Y, Deng J, et al. 2002. Preparation of hyperbranched polymers by atom transfer radical polymerization[J]. J. Appl. Polym. Sci. 83:2114-2123.
    [80] Hong CY, Pan CY. 2002. Preparation and characterization of hyperbranched polyacrylate Copolymers by self-condensing vinyl copolymerization (SCVP) [J]. Polym. Int. 51: 785-791.
    [81] Mori H, Seng DC, Lechner H, et al. 2002. Synthesis and characterization of branched polyelectrolytes. 1. Preparation of hyperbranched poly(acrylic acid) via self-condensing atom transfer radical copolymerization[J]. Macromolecules 35:9270-9281.
    [82] Mori H, Walther A, Andre X, et al. 2004. Synthesis of highly branched cationic polyelectrolytes via self-condensing atom transfer radical copolymerization with 2-(diethylamino)ethyl methacrylate[J]. Macromolecules 37: 2054-2066.
    [83] Muthukrishnan S, Jutz G, Andre X, et al. 2005. Synthesis of hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization of a sugar-carrying acrylate[J]. Macromolecule 38: 9-18.
    [84] Muthukrishnan S, Mori H, Muller AHE. 2005. Synthesis and characterization of methacrylate-type hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization[J]. Macromolecule 38: 3108-3119.
    [85] He XH, Yan DY. 2004. Branched azobenzene side-chain liquid-crystalline Copolymers obtained by self-condensing ATR copolymerization[J]. Macromol. Rapid Commun. 25: 949-953.
    [86] Jin M, Lu R, Bao CY, et al. 2004. Synthesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization[J]. Polymer 45: 1125-1131.
    [87] Ren Q, Gong FH, Jiang BB, et al. 2006. Preparation of hyperbranched Copolymers of maleimide inimer and styrene by ATRP[J]. Polymer 47: 3382-3389.
    [88] Gong FH, Tang HL, Liu CL, et al. 2006. Preparation of hyperbranched polymers through ATRP of in situ formed AB* monomer[J]. J. Appl. Polym. Sci. 101: 850-856.
    [89] Wang ZM, He JP, Tao YF, et al. 2003. Controlled chain branching by RAFT-based radical polymerization[J]. Macromolecules 36: 7446-7452.
    [90] Zhang X, Liu WH, Chen YM, et al. 1999. Self-condensing vinyl polymerization of acrylamide[J]. Polym. Bull. 43: 29-34.
    [91] Liu HW, Wilen CE. 2001. Hyperbranched poly[allyl ether-alt-maleic anhydride] produced by the self-condensing alternating copolymerization approach[J]. Macromolecules 34: 5067-5070.
    [92] Nomura R, Matsuno T, Endo T. 1999. Synthesis and polymerization of a self-condensable macromonomer[J]. Polym. Bull. 42: 251-256.
    [93] Cheng GL, Simon PFW, Hartenstein M, et al. 2000. Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer[J]. Macromol. Rapid Commun. 21: 846-852.
    [94] Peleshanko S, Gunawidjaja R, Petrash S, et al. 2006. Synthesis and interfacial behavior of amphiphilic hyperbranched polymers: Poly(ethylene oxide)-polystyrene hyperbranches[J]. Macromolecules 39:4756-4766.
    [95] Suzuki M, Ii A, Saegusa T. 1992. Multibranching polymerization: Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine[J]. Macromolecules 25:7071 -7072.
    [96] Suzuki M, Yoshida S, Shiraga K, et al. 1998. New ring-opening polymerization via a π-allylpalladium complex. 5. Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine[J]. Macromolecules 31: 1716-1719.
    [97] Bergbreiter DE, Kippenberger AM, Lackowski WM. 2005. New syntheses of hyperbranched polyamine grafts[J]. Macromolecules 38:47-52.
    [98] Tokar R, Kubisa P, Penczek S, et al. 1994. Cationic polymerization of glycidol: Coexistence of the activated monomer and active chain end mechanism[J]. Macromolecules 27: 320-322.
    [99] Sunder A, Hanselmann R, Frey H, et al. 1999. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization[J]. Macromolecules 32:4240-4246.
    [100] Sunder A, Frey H, Mulhaupt R. 2000. Hyperbranched polyglycerols by ring-opening multibranching polymerization[J]. Macromol. Symp. 153:187-196.
    [101] Kainthan RK, Muliawan EB, Hatzikiriakos SG, et al. 2006. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols[J]. Macromolecules 39:7708-7717.
    [102] Yan DY, Hou J, Zhu XY, et al. 2000. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization[J]. Macromol. Rapid Commun. 21:557-561.
    [103] Magnusson H, Malmstrom E, Hult A. 2001. Influence of reaction conditions on degree of branching in hyperbranched aliphatic polyethers from 3-ethyl-3-(hydroxymethyl)oxetane[J]. Macromolecules 34: 5786-5791.
    [104] Bednarek M. 2003. Multihydroxy branched polyethers by cationic copolymerization of hydroxymethyloxetanes: copolymerization of 3-ethyl-3-(hydroxymethyl)-oxetane with difunctional oxetane[J]. Polym. Int. 52:1595-1599.
    [105] Imai T, Satoh T, Kaga H, et al. 2004. Synthesis of hyperbranched carbohydrate polymer by ring-opening multibranching polymerization of 1,4-anhydroerythritol and 1,4-Anhydro-L-threitol[J]. Macromolecules 37: 3113-3119.
    [106] Imai T, Nawa Y, Kitajyo Y, et al. 2005. Synthesis of hyperbranched polytetritol by ring-opening multibranching polymerizations of 2,3-anhydroerythritol and 2,3-Anhydro-DL-threitol[J]. Macromolecules 38: 1648-1654.
    [107] Satoh T, Imai T, Ishihara H, et al. 2003. Synthesis of hyperbranched polysaccharide by thermally induced cationic polymerization of 1,6-anhydro-β-D-mannopyranose[J]. Macromolecules 36: 6364-6370.
    [108] Satoh T, Imai T, Ishihara H, et al. 2005. Synthesis, branched structure, and solution property of hyperbranched D-glucan and D-galactan[J]. Macromolecules 38:4202-4210.
    [109] Rokichi G, Rakoczy P, Parzuchowski P, et al. 2005. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate[J]. Green Chem. 7: 529-539.
    [110] Liu MJ, Vladimirov N, Frechet JMJ. 1999. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-ε-caprolactone[J]. Macromolecules 32: 6881-6884.
    [111] Trollsas M, Lowenhielm P, Lee VY, et al. 1999. New approach to hyperbranched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted e-caprolactone[J]. Macromolecules 32: 9062-9066.
    [112] Yu XH, Feng J, Zhuo RX. 2005. Preparation of hyperbranched aliphatic polyester derived from functionalized l,4-dioxan-2-one[J]. Macromolecules 38: 6244-6247.
    [113] Parzuchowski PG, Grabowska M, Tryznowski M, et al. 2006. Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups[J]. Macromolecules 39: 7181-7186.
    [114] Buhleier E, Wehner W, Vogtle F. 1978. "Cascade" and "nonskid-chain-like" syntheses of molecular cavity topologies[J]. Synthesis: 155-158.
    [115] Tomalia DA, Dewald JR. May 6, 1986. Dense star polymer and dendrimers. U.S. 4587329 (P).
    [116] Hawker CJ, Frechet JMJ. 1990. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules[J]. J. Am. Chem. Soc. 112: 7638-7647.
    [117] Cho BK, Jain A, Nieberle J, et al. 2004. Synthesis and self-assembly of amphiphilic dendrimers based on aliphatic polyether-type dendritic cores[J]. Macromolecules 37: 4227-4234.
    [118] Shi ZF, Zhou ZL, Cao XP. 2006. An efficient synthesis of new polyether dendrimers based on the A_2B type monomer from 5-hydroxyisophthalic acid[J]. Chin. J. Chem. 24: 103-108.
    [119] Ihre H, De Jesus OLP, Frechet JMJ. 2001. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling[J]. J. Am. Chem. Soc. 123: 5908-5917.
    [120] Malkoch M, Claesson H, Lowenhieim P, et al. 2004. Synthesis and characterization of 2,2-bis(methylol)propionic acid dendrimers with different cores and terminal groups[J]. J. Polym. Sci., Part A: Polym. Chem. 42:1758-1767.
    [121] Hirayama Y, Sakamoto Y, Yamaguchi K, et al. 2005. Synthesis of polyester dendrimers and dendrons starting from Michael reaction of acrylates with 3-hydroxyacetophenone[J]. Tetrahedron Lett. 46:1027-1030.
    [122] Koc F, Eilbracht P. 2004. Syntheses of new polyamine dendrimer units via a tandem hydroformylation/reductive amination sequences[J]. Tetrahedron 60: 8465-8476.
    [123] Steffensen MB, Hollink E, Kuschel F, et al. 2006. Dendrimers based on [l,3,5]-triazines[J]. J. Polym. Sci., Part A: Polym. Chem., 44: 3411-3433.
    [124] Moreno KX, Simanek EE. 2008. Identification of diamine linkers with differing reactivity and their application in the synthesis of melamine dendrimers[J]. Tetrahedron Lett. 49: 1152-1154.
    [125] Washio I, Shibasaki Y, Ueda M. 2005. Facile synthesis of polyamide dendrimers from unprotected AB_2 building blocks: Dumbbell-shaped dendrimer, star-shaped dendrimer, and dendrimer with a carboxylic acid at the core[J]. Macromolecules 38:2237-2246.
    [126] Rannard S, Davis N, McFarland H. 2000. Synthesis of dendritic polyamides using novel selective chemistry[J]. Polym. Int. 49: 1002-1006.
    [127] Ashton PR, Anderson DW, Brown CL, et al. 1998. The synthesis and characterization of a new family of polyamide dendrimers[J]. Chem. Eur. J. 4: 781-795.
    [128] Yamakawa Y, Ueda M, Takeuchi K, et al. 1999. One-pot synthesis of dendritic polyamide[J]. J. Polym. Sci., Part A: Polym. Chem., 37:3638-3645.
    [129] Aulenta F, Drew MGB, Foster A, et al. 2005. Synthesis and characterization of fluorescent poly(aromatic amide) dendrimers[J]. J. Org. Chem. 70:63-78.
    [130] Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules[J].1985. Polym. J. 17:117-132. .
    [131] Tomalia DA, Baker H, Dewald J, et al. 1986. Dendritic macromolecules: Synthesis of starburst dendrimers[J]. Macromolecules 19: 2466-2468.
    [132] Morgenroth F, Berresheim AJ, Wagner M, et al. 1998. Spherical polyphenylene dendrimers via Diels-Alder reactions: the first example of an A_4B building block in dendrimer chemistry [J]. Chem. Commun.: 1139.
    [133] Wang F, Kon AB, Rauh RD. 2000. Synthesis of a terminally functionalized bromothiophene polyphenylene dendrimer by a divergent method[J]. Macromolecules 33: 5300-5302.
    [134] Weil T, Weisler UM, Herrmann A, et al. 2001. Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery[J]. J. Am. Chem. Soc. 123: 8101-8108.
    [135] Weisler UM, Berresheim AJ, Morgenroth F, et al. 2001. Divergent synthesis of polyphenylene dendrimers: The role of core and branching reagents upon size and shape[J]. Macromolecules 34: 187-199.
    [136] Waybright SM, McAlpine K, Laskoski M, et al. 2002. Organometallic dendrimers based on (tetraphenylcyclobutadiene)cyclopentadienylcobalt modules[J]. J. Am. Chem. Soc. 124: 8661-8666.
    [137] Shen XF, Ho DM, Pascal RA. 2004. Synthesis of polyphenylene dendrimers related to "cubic graphite"[J]. J. Am. Chem. Soc. 126: 5798-5805.
    [138] Shifrina ZB, Rajadurai MS, Firsova NV, et al. 2005. Poly(phenylene-pyridyl) dendrimers: Synthesis and templating of metal nanoparticles[J]. Macromolecules 38:9920-9932.
    [139] Shao J, Tarn JP. 1995. Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages[J]. J. Am. Chem. Soc. 117: 3893-3899.
    [140] Baigude H, Katsuraya K, Okuyama K, et al. 2003. Synthesis of sphere-type monodispersed oligosaccharide-polypeptide dendrimers[J]. Macromolecules 36: 7100-7106.
    [141] Okuda T, Kawakami S, Maeie T, et al. 2006. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration[J]. J. Control. Release 114: 69-77.
    [142] Bruchmann B. 2007. Dendritic polymers based on urethane chemistry - syntheses and applications[J]. Macromol. Mater. Eng. 292: 981-992.
    [143] Joralemon MJ, O'Reilly RK, Matson JB, et al. 2005. Dendrimers clicked together divergently[J]. Macromolecules 38: 5436-5443.
    [144] Ornelas C, Aranzaes JR, Salmon L, et al. 2008. "Click" dendrimers: Synthesis, redox sensing of Pd(OAc)_2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers[J]. Chem. Eur. J. 14: 50-64.
    [145] Trollsas M, Hedrick JL. 1998, Dendrimer-like star polymers[J]. J. Am. Chem. Soc. 120: 4644-4651.
    [146] Trollsas M, Kelly MA, Claesson H, et al. 1999. Highly branched block Copolymers: design, synthesis, and morphology[J]. Macromolecules 32: 4917-4924.
    [147] Trollsas M, Atthof B, Wursch A, et al. 2000. Constitutional isomers of dendrimer-like star polymers: Design, synthesis, and conformational and structural Properties [J]. Macromolecules 33: 6423-6438.
    [148] Hedrick JL, Trollsas M, Hawker CJ, et al. 1998. Dendrimer-like star block and amphiphilic Copolymers by combination of ring opening and atom transfer radical polymerization[J]. Macromolecules 31: 8691-8705.
    [149] Angot S, Taton D, Gnanou Y. 2000. Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene[J]. Macromolecules 33: 5418-5426.
    [150] Gnanou Y, Taton D. 2001. Stars and dendrimer-like architectures by the divergent method using controlled radical polymerization[J]. Macromol. Symp. 174: 333-341.
    [151] Hou SJ, Chaikof EL, Taton D, et al. 2003. Synthesis of water-soluble star-block and dendrimer-like Copolymers based on poly(ethylene oxide) and poly(acrylic acid)[J]. Macromolecules 36: 3874-3881.
    [152] Francis R, Taton D, Logan JL, et al. 2003. Synthesis and surface properties of amphiphilic star-shaped and dendrimer-like Copolymers based on polystyrene core and poly(ethylene oxide) corona[J]. Macromolecules 36: 8253-8259.
    [153] Feng XS, Taton D, Chaikof EL, et al. 2005. Toward an easy access to dendrimer-like poly(ethylene oxide)s[J]. J. Am. Chem. Soc. 127:10956-10966.
    [154] Feng XS, Taton D, Borsali R, et al. 2006. pH responsiveness of dendrimer-like poly(ethylene oxide)s[J]. J. Am. Chem. Soc. 128:11551-11562.
    [155] Lepoittevin B, Matmour R, Francis R, et al. 2005. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior[J]. Macromolecules 38: 3120-3128.
    [156] Matmour R, Lepoittevin B, Joncheray TJ, et al. 2005. Synthesis and investigation of surface properties of dendrimer-like Copolymers based on polystyrene and poly(tert-butylacrylate)[J]. Macromolecules 38: 5459-5467.
    [157] Joncheray TJ, Bernard SA, Matmour R, et al. 2007. Polystyrene-b-poly(tert-butyl acrylate) and polystyrene-b-poly(acrylic acid) dendrimer-Like Copolymers: Two-dimensional self-assembly at the air-water interface[J]. Langmuir 23: 2531-2538.
    [158] Liu QC, Zhao P, Chen YM. 2007. Divergent synthesis of dendrimer-like macromolecules through a combination of atom transfer radical polymerization and click reaction[J]. J. Polym. Sci., Part A: Polym. Chem., 45:3330-3341.
    [159] Matmour R, Gnanou Y. 2008. Combination of an anionic terminator multifunctional initiator and divergent carbanionic polymerization; Application to the synthesis of dendrimer-like polymers and of asymmetric and miktoarm stars[J]. J. Am. Chem. Soc. 130:1350-1361.
    [160] Percec V, Barboiu B, Grigoras C, et al. 2003. Universal iterative strategy for the divergent synthesis of dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible TERminator Multifunctional INItiator (TERMINI)[J]. J. Am. Chem. Soc. 125: 6503-6516.
    [161] Percec V, Grigoras C, Kim HJ. 2004. Toward self-assembling dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible terminator multifunctional initiator[J]. J. Polym. Sci., Part A: Polym. Chem. 42: 505-513.
    [162] Matsuo A, Watanabe T, Hirao A. 2004. Macromolecules synthesis of well-defined dendrimer-like branched polymers and block copolymer by the iterative approach involving coupling reaction of living anionic polymer and functionalization[J]. Macromolecules 37: 6283-6290.
    [163] Hirao A, Matsuo A, Watanabe T. 2005. Precise synthesis of dendrimer-like star-branched poly(methyl methacrylate)s up to seventh generation by an iterative divergent approach involving coupling and transformation reactions[J]. Macromolecules 38: 8701-8711.
    [164] Watanabe T, Tsunoda Y, Matsuo A, et al. 2006. Synthesis of dendrimer-like star-branched poly(methyl methacrylate)s of generations consisting of four branched polymer chains at each junction by iterative methodology involving coupling and transformation reactions[J]. Macromol. Symp. 240: 23-30.
    [165] Leduc MR, Hawker CJ, Dao JL, et al. 1996. Dendritic initiators for "living" radical polymerizations: A versatile approach to the synthesis of dendritic-linear block copolymers[J]. J. Am. Chem. Soc. 118: 11111-11118.
    [166] Leduc MR, Hayes W, Frechet JMJ. 1998. Controlling surfaces and interfaces with functional polymers: Preparation and functionalization of dendritic-linear block Copolymers via metal catalyzed "living" free radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 36: 1-10.
    [167] Mecerreyes D, Dubois Ph, Jerome R, et al. 1999. Synthesis of dendritic-linear block Copolymers by living ring-opening polymerization of lactones and lactides using dendritic initiators[J]. J. Polym. Sci., Part A: Polym. Chem. 37: 1923-1930.
    [168] Jiang GH, Wang L, Chen T, et al. 2005. Synthesis and self-assembly of poly(benzyl ether)-b-poly(methyl methacrylate) dendritic-linear polymers[J]. Polymer 46: 81-87.
    [169] Ge ZS, Luo SZ, Liu SY. 2006. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock Copolymers. J. Polym. Sci., Part A: Polym. Chem. 44: 1357-1371.
    [170] Gitsov I, Frechet JMJ. 1994. Novel nanoscopic architectures. Linear-globular ABA Copolymers with polyether dendrimers as A blocks and polystyrene as B block[J]. Macromolecules 27: 7309-7315.
    [171] Gitsov I, Simonyan A, Vladimirov NG. 2007. Synthesis of novel asymmetric dendritic-linear-dendritic block Copolymers via "living" anionic polymerization of ethylene oxide initiated by dendritic macroinitiators[J]. J. Polym. Sci., Part A: Polym. Chem. 45:5136-5148.
    [172] Emrick T, Hayes W, Frechet JMJ. 1999. A TEMPO-mediated "living" free-radical approach to ABA triblock dendritic linear hybrid copolymers[J]. J. Polym. Sci. Part A: Polym. Chem. 37: 3748-3755.
    [173] Sill K, Emrick T. 2005. Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents[J]. J. Polym. Sci. Part A: Polym. Chem. 43: 5429-5439.
    [174] Ge ZS, Chen DY, Zhang JY, et al. 2007. Facile synthesis of dumbbell-shaped dendritic-linear-dendritic triblock copolymer via reversible addition-fragmentation chain transfer polymerization[J]. J. Polym. Sci. Part A: Polym. Chem. 45:1432-1445.
    [175] Chang Y, Kim C. 2001. Synthesis and photophysical characterization of amphiphilic dendritic-linear-dendritic block copolymersfj]. J. Polym. Sci. Part A: Polym. Chem. 39: 918-926.
    [176] Grinstaff MW. 2002. Biodendrimers: New polymeric biomaterials for tissue engineering[J]. Chem. Eur. J. 8: 2838-2846.
    [177] Carnahan MA, Middleton C, Kim J, et al. 2002. Hybrid dendritic-linear polyester-ethers for in situ photopolymerization[J]. J. Am. Chem. Soc. 124: 5291-5293.
    [178] Namazi H, Adeli M. 2003. Novel linear-globular thermoreversible hydrogel ABA type Copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block[J], Eur. Polym. 139:1491-1500.
    [179] Lambrych KR, Gitsov I., 2003. Linear-dendritic poly(ester)-block-poly(ether)-block-poly(ester) ABA Copolymers constructed by a divergent growth method[J]. Macromolecules 36: 1068-1074.
    [180] Kim T, Seo HJ, Choi JS, et al. 2004. PAMAM-PEG-PAMAM: Novel triblock copolymer as a biocompatible and efficient gene delivery carrier[J]. Biomacromolecules 5: 2487-2492.
    [181] Nguyen PM, Hammond PT. 2006. Amphiphilic linear-dendritic triblock Copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties[J]. Langmuir 22: 7825-7832.
    [182] Namazi H, Adeli M. 2005. Synthesis of barbell-like triblock Copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors[J]. Polymer 46: 10788-10799.
    [183] Namazi H, Adeli M. 2005. Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers[J]. J. Polym. Sci. Part A: Polym. Chem. 43:28-41.
    [184] Asandei AD, Moran IW. 2004. TiCp2Cl-catalyzed living radical polymerization of styrene initiated by oxirane radical ring opening[J]. J. Am. Chem. Soc. 126:15932-15933.
    [185] Asandei AD, Saha G. 2004. Ti(III) catalyzed self condensing vinyl polymerization of glycidyl methacrylate[J]. Polym. Prep. 45(1): 999-1000.
    [186] Luan B, Pan CY. 2006. Synthesis and characterizations of well-defined dendrimer-like Copolymers with the second and third generation based on polystyrene and poly(L-lactide)[J]. Eur. Polym. J. 42: 1467-1478.
    [1] Flory PJ, 1952. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-B_(f-1) type units[J], J. Am. Chem. Soc. 74:2718-2723.
    [2] Jikei M, Chon SH, Kakimoto M, et al. 1999. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid[J]. Macromolecules 32:2061-2064.
    [3] Fang J, Kita H, Okamoto K. 2000. Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization[J]. Macromolecules 33: 4639-4646.
    [4] Tsat LR, Chen Y. 2007. Hyperbranched luminescent polyfluorenes containing aromatic triazole branching units[J]. J. Polym. Sci. Part A: Polym. Chem. 45:4465-4476.
    [5] Dai L, Winkler B, Dong L, et al. 2001. Conjugated polymers for light-emitting applications[J]. Adv. Mater. 13:915-925.
    [6] Unal S, Lin Q, Mourey TH, 2005. Tailoring the degree of branching: Preparation of poly(ether ester)s via copolymerization of poly(ethylene glycol) oligomers (A_2) and 1,3,5-benzenetricarbonyl trichloride (B3) [J]. Macromolecules 38:3246-3254.
    [7] Smet M, Fu Y, Zhang X, et al. 2005. A convenient A_2+B_3 approach to hyperbranched poly(arylene oxindole)s[J]. Macromol. Rapid Commun. 26:1458-1463.
    [8] Liu Y, Chung TS. 2002. Facile synthesis of hyperbranched polyimides from A_2 + BB'_2 monomers[J]. J. Polym. Sci. Part A: Polym. Chem. 40:4563-4569.
    [9] Chang YT, Shu QF. 2003. Synthesis of hyperbranched aromatic poly(amide-imide): Copolymerization of B'B_2 monomer with A_2 monomer[J]. Macromolecules 36:661-666.
    [10] Gao C, Yan DY, Tang W. 2001. Hyperbranched polymers made from A_2 and BB'_2 type monomers. 3. Polyaddition of N-methyl-1, 3-propanediamine to divinyl sulfone[J]. Macromol. Chem. Phys. 202: 2623-2629.
    [11] Gao C, Yan DY. 2001. Synthesis of hyperbranched polymers from commercially available A2 and BBA2 type monomers[J]. Chem. Commun. 1: 107-108.
    [12] Yan D, Gao C. 2000. Hyperbranched polymers made from A_2 and BB'_2 type monomers. 1. Polyaddition of l-(2-aminoethyl)piperazine to divinyl sulfone[J]. Macromolecules 33: 7693-7699.
    [13] Wu DC, Liu Y, He C, et al. 2004. Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates[J]. Macromolecules 37:
    6763-6770.
    [14] Wang D, Liu Y, Hong CY, et al. 2005. Preparation and characterization of novel hyperbranched poly(amido amine)s from Michael addition polymerizations of trifunctional amines with diacrylamides[J]. J. Polym. Sci. Part A: Polym. Chem. 43: 5127-5137.
    [15] Wu DC, Liu Y, Chen L, et al. 2005. 2A_2 + BB'B" approach to hyperbranched poly(amino ester)s[J]. Macromolecules 38: 5519-5525.
    [16] Li XR, Zhan J, Li YS. 2004. Facile syntheses and characterization of hyperbranched poly(ester-amide)s from commercially available aliphatic carboxylic anhydride and multihydroxyl primary amine[J]. Macromolecules 37: 7584-7594.
    [17] Li XR, Zhan J, Lin Y, et al. 2005. Facile synthesis and characterization of aromatic and semiaromatic hyperbranched poly(ester-amide)s[J]. Macromolecules 38: 8235-8243.
    [18] Cosulich ME, Russo S, Pasquale S, et al. 2000. Performance evaluation of hyperbranched aramids as potential supports for protein immobilization[J]. Polymer 41: 4951-4956.
    [19] Wu DC, Liu Y, Jiang X, et al. 2005. Evaluation of Hyperbranched Poly(amino ester)s of Amine Constitutions Similar to Polyethylenimine for DNA Delivery[J], Biomacromolecules 6: 3166-3173.
    [20] Kobayashi N, Kijima M. 2007. Microporous materials derived from two- and three-dimensional hyperbranched conjugated polymers by thermal elimination of substituents[J]. J. Mater. Chem. 17:4289-4296.
    [21] Odian G. 1991. Principles of Polymerization[M], 3rd ed, John Wiley & Sons, Inc. 110-115.
    [22] Hawker CJ, Lee R, Frechet JMJ. 1991. One-step synthesis of hyperbranched dendritic polyesters[J]. J. Am. Chem. Soc. 113:4583-4588.
    [1] Jikei M, Kakimoto M. 2001. Hyperbranched polymers: a promising new class of materials[J]. Prog. Polym. Sci. 26: 1233-1285.
    [2] Gao C, Yan DY. 2004. Hyperbranched polymers: from synthesis to applications[J]. Prog. Polym. Sci. 29: 183-275.
    [3] Yates CR, Hayes W. 2004. Synthesis and applications of hyperbranched polymers[J]. Eur. Polym. J. 40: 1257-1281.
    [4] Flory PJ, 1952. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-B_(f-1), type units[J]. J. Am. Chem. Soc. 74: 2718-2723.
    [5] Kim YH, Webster OW. 1990. Water-soluble hyperbranched polyphenylene: "A unimolecular micelle"?[J] J. Am. Chem. Soc. 112:4592-4593.
    [6] Hawker CJ, Lee R, Frechet JMJ. 1991. One-step synthesis of hyperbranched dendritic polyesters[J]. J. Am. Chem. Soc. 113:4583-4588.
    [7] Smet M, Fu Y, Zhang X, et al. 2005. A convenient A_2+B_3 approach to hyperbranched poly(arylene oxindole)s[J]. Macromol. Rapid Commun. 26:1458-1463.
    [8] Tanaka S, Iso T, Sugiyama J, et al. 2005. Preparation of hyperbranched Copolymers containing triphenylamine and divinylbenzene units[J]. Synth. Met. 154:125-128.
    [9] Frechet JMJ, Henmi M, Gitsov I, et al. 1995. Self-condensing vinyl polymerization: An approach to dendritic materials[J]. Science 269:1080-1083.
    [10] Baskaran D. 2001. Synthesis of hyperbranched polymers by anionic self-condensing vinyl po!ymerization[J]. Macromol. Chem. Phys. 202:1569-1575.
    [11] Baskaran D. 2003. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization[J]. Polymer 44: 2213-2220.
    [12] Jia ZF, Yan DY. 2005. Hyperbranched polymers generated from oxyanionic vinyl polymerization of commercially available methacrylate inimers[J]. J. Polym. Sci., Part A: Polym. Chem., 43: 3502-3509.
    [13] Simon PFW, Muller AHE, Pakula T. 2001. Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy [J]. Macromolecule 34: 1677-1684.
    [14] Simon PFW, Muller AHE. 2001. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules 34: 6206-6213.
    [15] Simon PFW, Muller AHE. 2004. Kinetic Investigation of self-condensing group transfer polymerization[J]. Macromolecules 37: 7548-7558.
    [16] Hawker CJ, Frechet JMJ, Grubbs RB, et al. 1995. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. J. Am. Chem. Soc. 117: 10763-10764.
    [17] Weimer MW, Frechet JMJ, Gitsov I. 1998. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly[4-(chloromethyl) styrene] by metal-catalyzed "living" radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 36:955-970.
    [18] Matyjaszewski K, Gaynor SG, Kulfan A, et al. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in "living" radical polymerizations [J]. Macromolecules 30: 5192-5194.
    [19] Matyjaszewski K, Gaynor SG, Muller AHE. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules 30: 7034-7041.
    [20] Matyjaszewski K, Gaynor SG. 1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules 30: 7042-7049.
    [21] Matyjaszewski K, Pyun J, Gaynor SG. 1998. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4 the use of zero-valent copper[J]. Macromol. Rapid Commun. 19: 665-670.
    [22] Hong CY, Pan CY. 2002. Preparation and characterization of hyperbranched polyacrylate Copolymers by self-condensing vinyl copolymerization (SCVP) [J]. Polym. Int. 51: 785-791.
    [23] Jiang BB, Yang Y, Jin X, et al. 2001. Preparation of hyperbranched polymers by self-condensing vinyl polymerization[J]. Eur. Polym. J. 37:1975-1983.
    [24] Jiang BB, Yang Y, Deng J, et al. 2002. Preparation of hyperbranched polymers by atom transfer radical polymerization[J]. J. Appl. Polym. Sci. 83:2114-2123.
    [25] Ren Q, Gong FH, Jiang BB, et al. 2006. Preparation of hyperbranched Copolymers of maleimide inimer and styrene by ATRP[J]. Polymer 47:3382-3389.
    [26] Wang ZM, He JP, Tao YF, et al. 2003. Controlled chain branching by RAFT-based radical polymerization[J]. Macromolecules 36: 7446-7452.
    [27] Yan DY, Hou J, Zhu XY, et al. 2000. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization[J]. Macromol. Rapid Commun. 21: 557-561.
    [28] Trollsas M, Lowenhielm P, Lee VY, et al. 1999. New approach to hyperbranched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted e-caprolactone[J]. Macromolecules 32: 9062-9066.
    [29] Parzuchowski PG, Grabowska M, Tryznowski M, et al. 2006. Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups[J]. Macromolecules 39: 7181-7186.
    [30] Mori H, Seng DC, Lechner H, et al. 2002. Synthesis and characterization of branched polyelectrolytes. 1. Preparation of hyperbranched poly(acrylic acid) via self-condensing atom transfer radical copolymerization[J]. Macromolecules 35: 9270-9281.
    [31] Mori H, Walther A, Andre X, et al. 2004. Synthesis of highly branched cationic polyelectrolytes via self-condensing atom transfer radical copolymerization with 2-(diethylamino)ethyl methacrylate[J]. Macromolecules 37:2054-2066.
    [32] Muthukrishnan S, Mori H, Muller AHE. 2005. Synthesis and characterization of methacrylate-type hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization[J]. Macromolecule 38:3108-3119.
    [33] Hua FJ, Ruckenstein E. 2005. Hyperbranched sulfonated polydiphenylamine as a novel self-doped conducting polymer and its pH response[J]. Macromolecules 38: 888-898.
    [34] Jin M, Lu R, Bao CY, et al. 2004. Synthesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization[J]. Polymer 45: 1125-1131.
    [35] Nomura R, Matsuno T, Endo T. 1999. Synthesis and polymerization of a self-condensable macromonomer[J]. Polym. Bull. 42:251-256.
    [36] Cheng GL, Simon PFW, Hartenstein M, et al. 2000. Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer[J]. Macromol. Rapid Commun. 21: 846-852.
    [37] Peleshanko S, Gunawidjaja R, Petrash S, et al. 2006. Synthesis and interfacial behavior of amphiphilic hyperbranched polymers: Poly(ethylene oxide)-polystyrene hyperbranches[J]. Macromolecules 39: 4756-4766.
    [38] Asandei AD, Moran IW. 2004. TiCp2Cl-catalyzed living radical polymerization of styrene initiated by oxirane radical ring opening[J]. J. Am. Chem. Soc. 126:15932-15933.
    [39] Asandei AD, Moran IW. 2005. The Ligand Effect in Ti-Mediated Living Radical Styrene Polymerizations Initiated by Epoxide Radical Ring Opening. 1. Alkoxide and Bisketonate Ti Complexes[J]. J. Polym. Sci., Part A: Polym. Chem. 43:6028-6038.
    [40] Asandei AD, Moran IW. 2005. The ligand effect in Ti-mediated living radical styrene polymerizations initiated by epoxide radical ring opening. 2. Scorpionate and half-sandwich LTiCl_3 complexes[J]. J. Polym. Sci., Part A: Polym. Chem. 43: 6039-6047.
    [41] Asandei AD, Moran IW. 2006. Ligand effect in Ti-mediated living radical styrene polymerizations initiated by epoxide radical ring opening. III. Substituted sandwich metallocenes[J]. J. Polym. Sci., Part A: Polym. Chem. 44:1060-1070.
    [42] Asandei AD, Moran IW, Saha G, et al. 2006. Titanium-mediated living radical styrene polymerizations. VI. Cp_2TiCl-catalyzed initiation by epoxide radical ring opening: Effect of the reducing agents, temperature, and titanium/epoxide and titanium/zinc ratios[J]. J. Polym. Sci., Part A: Polym. Chem. 44: 2156-2165.
    [43] Asandei AD, Moran IW, Saha G, et al. 2006. Titanium-mediated living radical styrene polymerizations. V. Cp_2TiCl-catalyzed initiation by epoxide radical ring opening: Effect of solvents and additives[J]. J. Polym. Sci., Part A: Polym. Chem. 44:2015-2026.
    [44] Asandei AD, Saha G. 2006, Cp2TiCl-catalyzed epoxide radical ring opening: A new initiating methodology for graft copolymer synthesis[J]. Macromolecules 39: 8999-9009.
    [45] Asandei AD, Saha G. 2004. Ti(III) catalyzed self condensing vinyl polymerization of glycidyl methacrylate[J]. Polym. Prep. 45(1): 999-1000.
    [46] Yan DY, Muller AHE, Matyjaszewski K. 1997. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching[J]. Macromolecules 30: 7024-7033.
    [1] Kitajyo Y, Nawa Y, Tamaki M, et al. 2007. A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol[J]. Polymer 48: 4683-4690.
    [2] Gao Q, Liu PS. 2007. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage[J]. J. Mater. Sci. 42: 5661-5665.
    [3] Yang YK, Xie XL, Yang ZF, et al. 2007. Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethane)-functionalized multiwalled carbon nanotubes[J]. Macromolecules 40: 5858-5867.
    [4] Xue YH, Xu TW, Fu RQ, et al. 2007. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltorn(?) series) as the interface of a bipolar membrane[J]. J. Colloid Interface Sci. 316: 604-611.
    [5] Ren Q, Gong FH, Liu CL, et al. 2006. Synthesis of branched polystyrene by ATRP exploiting divinylbenzene as branching comonomer[J]. Eur. Polym. J. 42: 2573-2580.
    [6] Bannister I, Billingham NC, Armes SP, et al. 2006. Development of branching in living radical copolymerization of vinyl and divinyl monomers[J]. Macromolecules 39: 7483-7492.
    [7] Li YT, Armes SP. 2005. Synthesis of branched water-soluble vinyl polymers via oxyanionic polymerization[J]. Macromolecules 38: 5002-5009.
    [8] Hawker CJ, Frechet JMJ, Grubbs RB, et al. 1995. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. J. Am. Chem. Soc. 117: 10763-10764.
    [9] Hong CY, Pan CY. 2002. Preparation and characterization of hyperbranched polyacrylate Copolymers by self-condensing vinyl copolymerization (SCVP) [J]. Polym. Int. 51: 785-791.
    [10] Nomura R, Matsuno T, Endo T. 1999. Synthesis and polymerization of a self-condensable macromonomer[J]. Polym. Bull. 42:251-256.
    [11] Cheng GL, Simon PFW, Hartenstein M, et al. 2000. Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer[J]. Macromol. Rapid Commun. 21: 846-852.
    [12] Peleshanko S, Gunawidjaja R, Petrash S, et al. 2006. Synthesis and interfacial behavior of amphiphilic hyperbranched polymers: Poly(ethylene oxide)-polystyrene hyperbranches[J], Macromolecules 39: 4756-4766.
    [13] Hutchings LR, Dodds JM, Roberts-Bleming SJ. 2005. HyperMacs: Highly branched polymers prepared by the polycondensation of AB_2 macromonomers, synthesis and characterization[J]. Macromolecules 38: 5970-5980.
    [14] Oguz C, Unal S, Long TE, et al. 2007. Interpretation of molecular structure and kinetics in melt condensation of A_2 oligomers, B_3 monomers, and monofunctional reagents[J]. Macromolecules 40: 6529-6534.
    [15] Trollsas M, Atthoff B, Claesson H, et al. 1998.
    [16] Trollsas M, Kelly MA, Claesson H, et al. 1999. Highly branched block Copolymers: Design, synthesis, and morphology[J]. Macromolecules 32:4917-4924.
    [17] Choi J, Kwak SY. 2003. Synthesis and Characterization of hyperbranched poly(£-caprolactone)s having different lengths of homologous backbone segments[J]. Macromolecules 36: 8630-8637.
    [18] Smet M, Gottschalk C, Skaria S, et al. 2005. Aliphatic hyperbranched copolyesters by combination of ROP and AB_2-polycondensation[J]. Macromol. Chem. Phys. 206:2421-2428.
    [19] Gottschalk C, Frey H. 2006. Hyperbranched polylactide copolymers[J]. Macromolecules 39: 1719-1723.
    [20] Lopez-Villanueva FJ, Wurm F, Kilbinger AFM, et al. 2007. A facile two-step route to branched polyisoprenes via AB_n-macromonomers[J]. Macromol. Rapid Commun. 28:704-709.
    [21] Hutchings LR, Dodds JM, Roberts-Bleming SJ. 2006. HyperMacs. Long chain branched analogues of hyperbranched polymers prepared by the polycondensation of AB_2 macromonomers[J]. Macromol. Symp. 240: 56-67.
    [22] Dodds JM, De Luca E, Hutchings LR, et al. 2007. Rheological properties of HyperMacs—long-chain branched analogues of hyperbranched polymers[J]. J. Polym. Sci. Part B: Polym. Phys. 45: 2762-2769.
    [23] Hutchings LR, Roberts-Bleming SJ. 2006. DendriMacs. Well-defined dendritically branched polymers synthesized by an iterative convergent strategy involving the coupling reaction of AB_2 macromonomers[J]. Macromolecules 39:2144-2152.
    [24] Kolb HC, Finn MG, Sharpless KB. 2001. Click chemistry: Diverse chemical function from a few good reactions[J]. Angew. Chem. Int. Ed. 40:2004-2021.
    [25] Nandivada H, Jiang XW, Lahann J. 2007. Click chemistry: Versatility and control in the hands of materials scientists[J]. Adv. Mater. 19: 2197-2208.
    [26] Thibault RJ, Takizawa K, Lowenheilm P, et al. 2006. A versatile new monomer family: Functionalized 4-vinyl-1,2,3-triazoles via click chemistry[J]. J. Am. Chem. Soc. 128: 12084-12085.
    [27] Englert BC, Bakbak S, Bunz UHF. 2005. Click Chemistry as a powerful tool for the construction of functional poly(p-phenyleneethynylene)s: Comparison of pre- and postfunctionalization schemes[J]. Macromolecules 38: 5868-5877.
    [28] Parrish B, Breitenkamp RB, Emrick T. 2005. PEG- and peptide-grafted aliphatic polyesters by click chemistry[J]. J. Am. Chem. Soc. 127: 7404-7410.
    [29] Gao HF, Matyjaszewski K. 2006. Synthesis of star polymers by a combination of ATRP and the "click" coupling method[J]. Macromolecules 39:4960-4965.
    [30] Whittaker MR, Urbani CN, Monteiro MJ. 2006. Synthesis of 3-miktoarm stars and 1st generation mikto dendritic Copolymers by "living" radical polymerization and "click" chemistry[J]. J. Am. Chem. Soc. 128: 11360-11361.
    [31] Li CM, Finn MG. 2006. Click chemistry in materials synthesis. II. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition[J]. J. Polym. Sci. Part A: Polym. Chem. 44: 5513-5518.
    [32] Johnson JA, Lewis DR, Diaz DD, et al. 2006. Synthesis of degradable model networks via ATRP and click chemistry[J]. J. Am. Chem. Soc. 128: 6564-6565.
    [33] Malkoch M, Schleicher K, Drockenmuller E, et al. 2005. Structurally diverse dendritic libraries: A highly efficient functionalization approach using click chemistry[J]. Macromolecules 38:3663-3678.
    [34] Lee JW, Kim JH, Kim BK, et al. 2006. Synthesis of Frechet type dendritic benzyl propargyl ether and Fre'chet type triazole dendrimer[J]. Tetrahedron 62: 894-900.
    [35] Laurent BA, Grayson SM. 2006. An efficient route to well-defined macrocyclic polymers via "click" cyclization[J]. J. Am. Chem. Soc. 128:4238-4239.
    [36] Matmour R, Lepoittevin B, Joncheray TJ, et al. 2005. Synthesis and investigation of surface properties of dendrimer-like Copolymers based on polystyrene and poly(tert-butylacrylate)[J]. Macromolecules 38: 5459-5467.
    [37] Tsarevsky NV, Sumerlin BS, Matyjaszewski K. 2005. Step-growth "click" coupling of telechelic polymers prepared by atom transfer radical polymerization[J]. Macromolecules 38: 3558-3561.
    [1] Dykes GMJ. 2001. Dendrimers: a review of their appeal and applications[J]. Chem Technol Biotechnol 76: 903-918.
    [2] Trollsas M, Hedrick JL. 1998, Dendrimer-like star polymers[J]. J. Am. Chem. Soc. 120: 4644-4651.
    [3] Trollsas M, Kelly MA, Claesson H, et al. 1999. Highly branched block Copolymers: design, synthesis, and morphology[J]. Macromolecules 32: 4917-4924.
    [4] Trollsas M, Atthof B, Wursch A, et al. 2000. Constitutional isomers of dendrimer-like star polymers: Design, synthesis, and conformational and structural Properties[J]. Macromolecules 33: 6423-6438.
    [5] Hedrick JL, Trollsas M, Hawker CJ, et al. 1998. Dendrimer-like star block and amphiphilic Copolymers by combination of ring opening and atom transfer radical polymerization[J]. Macromolecules 31: 8691-8705.
    [6] Angot S, Taton D, Gnanou Y. 2000. Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene[J]. Macromolecules 33:5418-5426.
    [7] Gnanou Y, Taton D. 2001. Stars and dendrimer-like architectures by the divergent method using controlled radical polymerization[J]. Macromol. Symp. 174: 333-341.
    [8] Francis R, Taton D, Logan JL, et al. 2003. Synthesis and surface properties of amphiphilic star-shaped and dendrimer-like Copolymers based on polystyrene core and poly(ethylene oxide) corona[J]. Macromolecules 36: 8253-8259.
    [9] Hou SJ, Chaikof EL, Taton D, et al. 2003. Synthesis of water-soluble star-block and dendrimer-like Copolymers based on poly(ethylene oxide) and poly(acrylic acid)[J]. Macromolecules 36: 3874-3881.
    [10] Feng XS, Taton D, Chaikof EL, et al. 2005. Toward an easy access to dendrimer-like poly(ethylene oxide)s[J]. J. Am. Chem. Soc. 127:10956-10966.
    [11] Feng XS, Taton D, Borsali R, et al. 2006. pH responsiveness of dendrimer-like poly(ethylene oxide)s[J]. J. Am. Chem. Soc. 128:11551-11562.
    [12] Lepoittevin B, Matmour R, Francis R, et al. 2005. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior[J]. Macromolecules 38:3120-3128.
    [13] Matmour R, Lepoittevin B, Joncheray TJ, et al. 2005. Synthesis and investigation of surface properties of dendrimer-like Copolymers based on polystyrene and poly(tert-butylacrylate)[J]. Macromolecules 38: 5459-5467.
    [14] Joncheray TJ, Bernard SA, Matmour R, et al. 2007. Polystyrene-b-poly(tert-butyl acrylate) and polystyrene-b-poly(acrylic acid) dendrimer-Like Copolymers: Two-dimensional self-assembly at the air-water interface[J]. Langmuir 23: 2531-2538.
    [15] Matsuo A, Watanabe T, Hirao A. 2004. Macromolecules synthesis of well-defined dendrimer-like branched polymers and block copolymer by the iterative approach involving coupling reaction of living anionic polymer and functionalization[J]. Macromolecules 37: 6283-6290.
    [16] Hirao A, Matsuo A, Watanabe T. 2005. Precise synthesis of dendrimer-like star-branched poly(methyl methacrylate)s up to seventh generation by an iterative divergent approach involving coupling and transformation reactions[J]. Macromolecules 38: 8701-8711.
    [17] Watanabe T, Tsunoda Y, Matsuo A, et al. 2006. Synthesis of dendrimer-like star-branched poly(methyl methacrylate)s of generations consisting of four branched polymer chains at each junction by iterative methodology involving coupling and transformation reactions[J]. Macromol. Symp. 240:23-30.
    [18] Zhu YF, Shi JL, Shen WH, et al. 2005. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed. 44: 5083-5087.
    [19] Wen ZH, Wang Q, Zhang Q, et al. 2007. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells[J]. Electrochem. Commun. 9: 1867-1872.
    [20] Ding SJ, Zhang CL, Yang M, et al. 2006. Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres[J]. Polymer 47: 8360-8366.
    [21] Xu XL, Asher S. 2004. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. J. Am. Chem. Soc. 126:7940-7945.
    [22] Shi ZQ, Zhou YF, Yan DY. 2006. Preparation of robust poly(e-caprolactone) hollow spheres with controlled biodegradability[J]. Macromol. Rapid Commun. 27:1265-1270.
    [23] Shi ZQ, Zhou YF, Yan DY. 2006. Preparation of poly(b-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness[J]. Polymer 47: 8073-8079.
    [24] Zhang YJ, Guan Y, Yang SG, et al. 2003. Fabrication of hollow capsules based on hydrogen bonding[J]. Adv. Mater. 15: 832-835.
    [25] DeJugnat C, Halozan D, Sukhorukov GB. 2005. Defined picogram dose inclusion and release of macromolecules using polyelectrolyte microcapsules[J]. Macromol. Rapid Commun. 26: 961-967.
    [26] Jiang J, Ha H. 2002. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers[J]. Langmuir 18: 5613-5618.
    [27] Poux S, Meier W. 2005. Synthesis and characterization of new polymer nanocontainers[J]. Macromol. Symp. 222:157-162.
    [28] Sung BH, Choi US, Jang HG, et al. 2006. Novel approach to enhance the dispersion stability of ER fluids based on hollow polyaniline sphere particle[J]. Colloid Surf. A-Physicochem. Eng. Asp. 274: 37-42.
    [29] Huang HY, Remsen EE, Kowalewski T, et al. 1999. Nanocages derived from shell cross-linked micelle templates[J]. J. Am. Chem. Soc. 121:3805-3806.
    [30] Zhang YW, Jiang M, Zhao JX, et al. 2005. pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly [J]. Langmuir 21:1531-1538.
    [31] Dou HJ, Jiang M, Peng HS, et al. 2003. pH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers[J]. Angew. Chem. Int. Ed. 42: 1516-1519.
    [32] Yu X, Tang XZ, Pan CY. 2005. Synthesis, characterization and self-assembly behavior of six-armed star block Copolymers with triphenylene core[J]. Polymer 46:11149-11156.
    [33] Luan B, Pan CY. 2006. Synthesis and characterizations of well-defined dendrimer-like Copolymers with the second and third generation based on polystyrene and poly(L-lactide)[J]. Eur. Polym.J.42: 1467-1478.
    [34] Pollak A, Blumenfeld H, Wax M, et al. 1980. Enzyme immobilization by condensation copolymerization into cross-linked Polyacrylamide gels[J]. J. Am. Chem. Soc. 102: 6324-6336.
    [35] Narumi A, Kaga H, Miura Y, et al. 2006. Synthesis of polystyrene microgel with glucose as hydrophilic segment via controlled free-radical polymerization[J]. Polymer 47:2269-2273.
    [36] Im SH, Jeong U, Xia YN. 2005. Polymer hollow particles with controllable holes in their surfaces[J]. Nat Mater 4:671-675.
    [37] Han J, Song GP, Guo R. 2006. A facile solution route for polymeric hollow spheres with controllable size[J]. Adv Mater 18: 3140-3144.
    [1] Kim T, Seo HJ, Choi JS, et al. 2004. PAMAM-PEG-PAMAM: Novel triblock copolymer as a biocompatible and efficient gene delivery carrier[J]. Biomacromolecules 5:2487-2492.
    [2] Nguyen PM, Hammond PT. 2006. Amphiphilic linear-dendritic triblock Copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties[J]. Langmuir 22: 7825-7832.
    [3] Adeli M, Zarnegar Z, Dadkhah A, et al. 2007. Linear-dendritic ABA triblock Copolymers as nanocarriers[J]. J. Appl. Polym. Sci. 104:267-272.
    [4] Gitsov I, Lambrych KR, Remnant VA, et al. 2000. Micelles with highly branched nanoporous interior: Solution properties and binding capabilities of amphiphilic Copolymers with linear dendritic architecture[J]. J. Polym. Sci. Part A: Polym. Chem. 38:2711-2727.
    [5] Duan X, Yuan F, Wen X, et al. 2004. Alternating crystalline-amorphous layers in hybrid block Copolymers of linear poly(ethylene glycol) and dendritic poly(benzyl ether)[J]. Macromol. Chem. Phys. 205: 1410-1417.
    [6] Gitsov I, Frechet JMJ. 1994. Novel nanoscopic architectures. Linear-globular ABA Copolymers with polyether dendrimers as A blocks and polystyrene as B block[J]. Macromolecules 27: 7309-7315.
    [7] Emrick T, Hayes W, Frechet JMJ. 1999. A TEMPO-mediated "living" free-radical approach to ABA triblock dendritic linear hybrid copolymers[J]. J. Polym. Sci. Part A: Polym. Chem. 37: 3748-3755.
    [8] Sill K, Emrick T. 2005. Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents[J]. J. Polym. Sci. Part A: Polym. Chem. 43: 5429-5439.
    [9] Ge ZS, Chen DY, Zhang JY, et al. 2007. Facile synthesis of dumbbell-shaped dendritic-linear-dendritic triblock copolymer via reversible addition-fragmentation chain transfer poIymerization[J]. J. Polym. Sci. Part A: Polym. Chem. 45: 1432-1445.
    [10] Chang Y, Kim C. 2001. Synthesis and photophysical characterization of amphiphilic dendritic-linear-dendritic block Copolymers [J]. J. Polym. Sci. Part A: Polym. Chem. 39:918-926. [11] Grinstaff MW. 2002. Biodendrimers: New polymeric biomaterials for tissue engineering[J]. Chem. Eur. J. 8:2838-2846.
    [12] Namazi H, Adeli M. 2003. Novel linear-globular thermoreversible hydrogel ABA type Copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block[J]. Eur. Polym. J. 39:1491-1500.
    [13] Lambrych KR, Gitsov I. 2003. Linear-dendritic poly(ester)-block-poly(ether)-block-poly(ester) ABA Copolymers constructed by a divergent growth method[J]. Macromolecules 36: 1068-1074.
    [14] Namazi H, Adeli M. 2005. Synthesis of barbell-like triblock Copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors[J]. Polymer 46: 10788-10799.
    [15] Namazi H, Adeli M. 2005. Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers[J]. J. Polym. Sci. Part A: Polym. Chem. 43: 28-41.
    [16] Lai PS, Lou PJ, Peng CL, et al. 2007. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy[J]. J. Control. Releas. 122: 39-46.
    [17] Endo T, Yoshimura T, Esumi K, 2005. Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer[J]. J. Colliod Interface Sci. 286: 602-609.
    [18] Guo F, Zhu Y, Yang X, et al. 2007. Electrostatic layer-by-layer self-assembly of PAMAM-CdS nanocomposites on MF microspheres[J]. Mater. Chem. Phys. 105:315-319.
    [19] Shi X, Thomas TP, Myc LA, et al. 2007. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles[J]. Phys. Chem. Chem. Phys. 9: 5712-5720.
    [20] Wang D, Liu Y, Hong CY, et al. 2006. Synthesis and characterization of comb-shaped poly(amido amine)-g-PEO via Michael addition polymerization[J]. Polymer 47:3799-3806.
    [21] Wang D, Liu Y, Hu ZC, et al. 2005. Michael addition polymerizations of trifunctional amines with diacrylamides[J]. Polymer 46: 3507-3514.
    [22] Wu DC, Liu Y, He C, et al. 2004. Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates[J]. Macromolecules 37: 6763-6770.
    [23] Iyer J, Fleming K, Hammond PT. 1998. Synthesis and solution properties of new linear-dendritic diblock copolymers[J]. Macromolecules 31: 8757-8765.
    [24] Hobson LJ, Feast WJ. 1999. Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization[J]. Polymer 40:1279-1297.
    [25] Balogh L, Jallouli A, Dvornic P, et al. 1999. Architectural Copolymers of PAMAM dendrimers and ionic polyacetylenes[J]. Macromolecules 32: 1036-1042.
    [26] Wang D, Zheng ZJ, Hong CY, et al. 2006. Michael addition polymerizations of difunctional amines (AA') and triacrylamides (B_3)[J]. J. Polym. Sci. Part A: Polym. Chem. 44: 6226-6242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700