蚯蚓活动对农田土壤有机碳转化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚯蚓作为陆地生态系统最重要的大型土壤动物,在物质循环及能量流动过程中起极其重要的作用。蚯蚓通过影响土壤结构、土壤通气保水性能等物理性质而影响土壤有机碳的呼吸与淋失等,通过改变土壤中养分的供应状况及组成而影响土壤有机碳的含量与组成,通过改变土壤微生物的组成、结构、活性等而影响土壤有机碳的循环和转化。目前国际上有关蚯蚓影响土壤养分及物质循环、微生物活性等的研究很多,但多数均涉及单一方面,没有综合性地开展蚯蚓对土壤有机碳循环及转化的研究,特别是全面考虑蚯蚓对光合产物、植物残体、有机碳呼吸、植物生长、微生物群落动态、土壤团聚作用等信息的综合。据此,为了进一步明确蚯蚓与土壤有机碳间的关系,选取在农田中常见的成廉腔环蚓(Metaphire guillelmi),设置了一系列的小区、盆钵及培养试验,主要研究目标如下:(1)长期小区试验下蚯蚓活动对土壤有机碳更新的影响;(2)长期小区试验下蚯蚓对土壤活性有机碳的影响;(3)秸秆施用下接种蚯蚓对农田土壤微生物特性的影响;(4)不同植物残体施用下接种蚯蚓对土壤团聚体及有机碳分布的影响;(5)蚯蚓对结构破坏土壤恢复过程中微生物群落的影响;(6)新鲜蚓粪与老化蚓粪的有机碳呼吸动态特征;(7)蚯蚓在植物-土壤系统中对水稻光合产物分布的影响。研究结果表明:
     通过小区长期试验6年后,施用秸秆增加了土壤中来自玉米秸秆碳的含量,而减少了来自原土壤与植物碳的含量;表施秸秆更利于秸秆有机碳向土壤有机碳的转化,同时减少来自原土壤与植物碳的比例。在两种秸秆施用下接种蚯蚓均使土壤中来源于秸秆的碳含量增加,而使来源于原土壤与植物的碳含量下降。
     在施用秸秆条件下接种蚯蚓使不同活性有机碳的响应各异,秸秆的施用方式是影响土壤有机碳与活性有机碳的主要因素,而蚯蚓活动则并非对所有的土壤活性有机碳有显著影响。
     在连续六年稻麦轮作后,不同秸秆施用下接种蚯蚓均对土壤微生物生物量、微生物生物活性和群落碳源利用能力产生显著影响:两种秸秆施用方式下接种蚯蚓均增加微生物生物量;秸秆表施并接种蚯蚓导致微生物活性、碳源利用丰富度和多样性指数均降低,而在秸秆混施下则均升高;BIOLOG碳源测定表明在秸秆施用下接种蚯蚓后土壤的微生物群落组成发生明显变化。
     不同土壤、不同植物残体施用下,蚯蚓对土壤水稳性团聚体的分布、微团聚体分散性及土壤有机碳分布的作用不同;在潮土中,接种蚯蚓使微团聚体分散性降低,但不对水稳性团聚体分布产生影响,而在红壤中,接种蚯蚓使微团聚体分散性降低,同时使水稳性大团聚体的比例增加,而且使更多的土壤有机碳分布于大团聚体中。两种土壤在施用植物残体且接种蚯蚓时均可显著增加土壤有机碳的含量。
     在不同土壤不同植物残体施用下,接种蚯蚓均对土壤基础呼吸(Basil Respiration,BR)和微生物代谢熵(qCO_2)产生显著影响,二者均趋于增大,特别是在潮土中不施植物残体与施用三叶草接种蚯蚓时的作用最显著;与上述不同,接种蚯蚓对微生物生物量碳(MBC)影响不大。接种蚯蚓时,Biolog测定中表征微生物对碳源利用能力的平均吸光值(average well color development,AWCD)在接种蚯蚓时均增大,同时接种蚯蚓也使微生物群落的基质利用丰富度(S)与多样性指数(H)增大;主成分分析(PCA)也表明接种蚯蚓后土壤微生物群落组成与结构发生了明显变化。进一步分析表明蚯蚓的作用与土壤类型及不同植物残体间有交互作用。
     新鲜蚓粪中有机碳的呼吸量均大于相应土壤中的,特别是施用玉米残体形成的蚓粪;老化蚓粪中,除红壤不施植物残体形成的老化蚓粪的呼吸量低于相应土壤外,其它老化蚓粪的呼吸量均大于相应土壤的。蚓粪的呼吸量与土壤质地、有机碳含量、植物残体及蚓粪老化程度等均有关。
     蚯蚓抑制早期水稻的生长,在后期抑制消失。分蘖期光合的~(14)C在15天后分布于植株根中的比例由于蚯蚓活动而显著增加,该效应在收获时消失。抽穗期光合的~(14)C在15天后分布于植株根中的比例也因蚯蚓活动而显著增加,同时收获时也可观察到土壤中~(14)C比例的增加。在所有采样期,接种蚯蚓均使土壤微生物量~(14)C与总有机~(14)C的比值下降,而使可溶性有机~(14)C与总有机~(14)C的比值增大。蚯蚓可能影响植物光合产物在植-土系统中的分布,并影响土壤活性碳库。
     总之,蚯蚓活动可加快土壤有机碳的更新,显著影响土壤活性有机碳的含量,使土壤团聚作用增强,促使土壤微生物群落发生变化,影响光合产物在植物-土壤系统中的分布。在农田及退化土地中接种蚯蚓对于保持与扩大土壤有机碳库有重要的生态意义。
Earthworms are the most important macro-animal in soil and they play an important role on the substance cycling and the energy flow in terrestrial ecosystem.Earthworms affect the mineralization and leaching of soil organic carbon through modifying the structure,aeration,moisture of soil.Earthworms affect the content and composition of soil organic carbon through modifying the nutrition supply and component of soil.Earthworms affect the cycling and turnover of soil oranic carbon through modifying soil microbial structure and activity.Most works of earthworm effects on the soil nutrition cyclying, microbial activity were simplex.The all-around information of earthworm effects on soil organic carbon cycling and turnover are essential,especially take into account the synthesis of knowledge about earthworms and photosynthate,straw residue,organic carbon mineralization,plant growth,microbial community dynamic,soil aggregation.In order to confirm the relation between earthworms and soil organic carbon,a series of experiments were conducted and Metaphire guillelmi was chosen to focus on.The main objectives of these experiments are as follows:(1) Earthworm effects on the renewal of soil oranic carbon in a long-term plot experiment.(2) Earthworm effects on soil labile organic carbon in a long-term plot experiment.(3) Earthworm effects on soil microbial properties under straw application.(4) Earthworm effects on soil aggregation and organic carbon distribution under different straw residue input.(5) Earthoworm effects on soil microbial properties during the renewal of structure-degenerated soil.(6) The mineraliztion dynamics of organic carbon of fresh cast and ageing cast.(7) Earthworm effects on rice photysynthates distribution in plant-soil system.The main results as follows:
     After six years straw input in plots,soil organic carbon originating from maize straw increased,meanwihile,soil oranic carbon originating from original soil and plant decreased Compared with straw incorporated,straw mulching was more beneficial to the transfer of straw carbon to soil carbon and decreased the proportion of carbon originating from original soil and plant.Earthworm activities increased the content of soil organic carbon originating from straw,and decresed the content of soil organic carbon originating from original soil and plant.
     Earthworm inoculation showed different effects on diverse soil labile organic carbon under two straw application methods.Straw application method was the major factor on affecting soil organic carbon and labile organic carbon,and earthworms didn't show significant effects on all soil labile organic carbon.
     The presence of earthworms had significant effects on soil microbial biomass, microbial activity and the microbial ability of carbon source utilization.Microbial biomass increased in the presence of earthworms irrespective of the way of straw application.Soil microbial activity,richness and biodiversity all decreased in the presence of earthworms under straw mulching method,and the reverse was true under straw incorporation method. It was indicated that soil microbial community composition changed significantly under straw application using BIOLOG carbon utilization analysis.
     The experiment of earthworms and aggregates stability indicated that earthworms affected water-stable aggregates distribution and micro-aggregate dispersion and soil organic carbon distribution differently under different soil substrate and straw residue input. Earthworms decreased the dispersion of micro-aggregate and didn't affect the distribution of water-stable aggregates in silt soil.Meanwhile,earthworms decreased the dispersion of micro-aggregate and increased the percentage of water-stable macro-aggregate and the distribution of soil organic carbon in macro-aggregate in silt clay loam soil.Earthworm inoculation with straw residue input increased soil organic carbon content in the two soils.
     Earthworms significantly affected soil basil respiration(BR) and qCO_2,both of them increased under earthworm activities,especially under no straw residue input and white clover straw input in silt soil.Differently,earthworms had less effect on soil microbial biomass carbon.The AWCD(average well color development) and substrate richness(S) and biodiversity index(H) all increased with earthworm activities through Biolog test.It was indicated that the composition and structure of soil microbial community changed significantly under earthworm activities through principal component analysis(PCA). Earthworms had interactive effects with soil and straw residue types.
     The mineralization in fresh cast was more than those in corresponding soil,especially the cast originating form soil with maize residue input.The mineralization of ageing casts was more than those in corresponding soil except that the cast originating from clayed soil with no straw residue input.The mineralization of cast was related to soil texture,soil oranic carbon content,straw residue,and the ageing degree of cast.
     The ~(14)C pulse-labelling experiment indicated that rice growth was inhibited by earthworms(Metaphire guillelmi) at early stage,but the inhibition disappeared at later stage. Earthworms significantly increased the ~(14)C percentages in root at day 15 after tillering stage labelling,but the effect disappeared at harvest.Earthworms(Metaphire guillelmi) significantly increased the ~(14)C percentages in root at day 15 after heading stage labelling, and increased ~(14)C percentage in soil at harvest.Earthworms decreased the ratios of microbial biomass ~(14)C(MB~(14)C) to total organic ~(14)C(TO~(14)C) and increased the ratios of dissolved organic ~(14)C(DO~(14)C) to total organic ~(14)C(TO~(14)C) at all sampling times.It is suggested that earthworms might alter the transfer of plant photosynthates from the aboveground to the belowground and thus soil active C pool.
     In general,earthworm activities accelerated the turnover of soil organic carbon,and affected the content of soil labile organic carbon significantly.Earthworms enhanced the soil aggregation and induced the change of soil microbial community.Earthwoms increased the transfer of photosynthate from aboveground to belowground.It is indicated that earthworm inoculation in cropland and degenerate field to maintain and enlarge soil organic carbon pool are of ecological significance.
引文
1 蔡晓布,钱成,张永青,等,2003.秸秆还田对西藏中部退化土壤环境的影响.植物营养与肥料学报,9(4):411-415.
    2 蔡晓布,钱成,张元,普琼,2004.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响.应用生态学报,15(3):463-468.
    3 窦森,张晋京,Lichtfouse E,曹亚澄,2003.用δ~(13)C方法研究玉米秸秆分解期间土壤有机质数量动态变化.土壤学报,40(3):328-334.
    4 胡锋,王霞,李辉信,于建光,王丹丹,2005.蚯蚓活动对稻麦轮作系统中土壤微生物量碳的影响.土壤学报,42(6):965-969.
    5 胡佩,刘德辉,胡锋,沈其荣,2002.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用.生态学报,22:1211-1214.
    6 胡艳霞,孙振钧,周法永,刘小秧,曹坳程.2002.蚯蚓粪对黄瓜苗期土传病害的抑制作用.生态学报,22(7):1106-1115.
    7 黄福珍,1964.论蚯蚓在土壤肥力中的作用.土壤通报,4:40-42.
    8 李小刚,崔志军,王玲英,2002.施用秸秆对土壤有机碳组成和结构稳定性的影响.土壤学报,2002,39(3):421-428.
    9 鲁如坤,1999.土壤农业化学分析方法.北京:中国农业科技出版社,107-149.
    10 强学彩,袁红莉,高旺,2004.秸秆还田量对土壤CO_2释放和土壤微生物量的影响.应用生态学报,15(3):469-472.
    11 宋述尧,1997.玉米秸秆还田对塑料大棚蔬菜连作土壤改良效果研究(初报).农业工程学报,13(1):135-139.
    12 吴建国,张小全,徐德应,2004.六盘山林区几种土地利用方式下土壤活性有机碳的比较.植物生态学报,28(5):657-664.
    13 吴景贵,徐岩,王明辉,等,2005.水稻土壤有机培肥后生物性状变化研究.中国农学通报,21(12):241-247.
    14 武志杰,张海军,许广山,张玉华,刘春萍,2002.玉米秸秆还田培肥土壤的效果.应用生态学报,13(5):539-542.
    15 张成娥,王栓全,2000.作物秸秆腐解过程中土壤微生物量的研究.水土保护学报,14(3):96-99.
    16 张电学,韩志卿,李东坡,等,2005.不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响.应用生态学报,16(10):1903-1908.
    17 赵劲松,张旭东,袁星,王星,2003.土壤溶解性有机质的特性与环境意义.应用生态学报,14(1):126-130.
    18 赵勇,李武,周志华,等,2005.秸秆还田后土壤微生物群落结构变化的初步研究.农业环境科学学报,24(6):1114-1118.
    19 Aira M,Monroy F,Dominguez J,Mato S,2002.How earthworm density affects microbial biomass and activity in pig manure.European Journal of Soil Biology,38:7-10.
    20 Albanell E,Plaixats J,Cabrero T,1988.Chemical changes during vermicomposting(Eisenia fetida)of sheep manure mixed with cotton industrial wastes.Biology and Fertility of Soils,6:266-269.
    21 Amador JA,Gorres JH,2005.Role of the anecic earthworm Lumbricus terrestris L.in the distribution of plant residue nitrogen in a corn(Zea mays)-soil system.Applied Soil Ecology,30:203-214.
    22 Amato M,1983.Determination of carbon ~(12)C and ~(14)C in plant and soil.Soil Biology and Biochemistry,15:611-612.
    23 Anderson JM,1987.Interactions between invertebrates and microorganisms:noise or necessity for soil processes,in:Anderson JM,Rayner ADM,Walton DWH(Eds.),Ecology of Microbial Communities,Cambridge University Press,Cambridge,1987,pp.125-145.
    24 Anderson TH,Domsch KH,1993.The metabolic quotient for CO_2(qCO_2) as a specific activity parameter to assess the effects of environmental conditions,such as pH,on the microbial biomass of forest soils.Soil Biology and Biochemistry,25:393-395.
    25 Andrew v.Gallagher,Nyle CW,1997.Surface alfalfa residue removal by earthworms Lumbricus terrestris L.In a notill agroecosystcm,Soil Biology and Biochemistry,29:471-419.
    26 Angers DA,Mehuys GR,1990.Barley and alfalfa cropping effects on carbohydrate contents of a clay soil and its size fractions.Soil Biology and Biochemistry,22:285-288.
    27 Angers DA,Recous S,1997.Decomposition of wheat straw and rye residues as affected by particle size.Plant and Soil,189:197-203.
    28 Araujo Y,Luizao FJ,Barros E,2004.Effects of earthworm addition on soil nitrogen availability,microbial biomass and litter decomposition in mesocosms.Biology and Fertility of Soils,39:146-152.
    29 Barley,KR,1959.The influence of earthworms on soil fertility Ⅱ.Consumption of soil and organic matter by the earthworm Allolobophora Caliginosa(Gavigny).Austrilian Journal of Agriculture Research,10:179-185.
    30 Barois I,Lavelle P,1986.Changes in respiration rate and some physico-chemical properties of a tropical soil during transit through Pontoscolex corethrurus(Glossoscolecidae,Oligochaeta).Soil Biology and Biochemistry, 18: 539-541.
    
    31 Bending GD, Turner MK, 1999. Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil. Biology and Fertility of Soils, 29:319-327.
    32 Bending GD, Turner MK, Jones JE, 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 34:1073-1082.
    33 Blair GJ, Lefroy RDB, Lisle L, 1995. Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agricultural systems. Australian Journal Agricultural Research, 46:1456-1466.
    34 Blair JM, Parmelee RW, Allen MF, McCartney DA, Stinner BR, 1997. Changes in soil N pools in response to earthworm population manipulations in agroecosystems with different N sources. Soil Biology and Biochemistry, 29:361-367.
    35 Blakemore RJ, 1997. Agronomic potential of earthworms in brigalow soils of south-east Queensland. Soil Biology and Biochemistry, 29:603-608.
    36 Blouin M, Barot S, Lavelle P, 2006. Earthworms (Millsonia anomala, Megascolecidae) do not increase rice growth through enhanced nitrogen mineralization. Soil Biology and Biochemistry, 38: 2063-2068.
    37 Bohlen PJ, Edwards CA, 1995. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biology and Biochemistry, 27(3): 341-348.
    38 Bohlen PJ, Pelletier DM, Groffman PM, et al. 2004. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems, 7: 13-27.
    39 Bossuyt H, Six J, Hendrix PF, 2005. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 37: 251-258.
    40 Bossuyt H, Six J, Hendrix PF, 2006. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma, 130: 14-25.
    41 Boyer J, Michellon R, Chabanne A, Reversat G, Tibere R. 1999. Effects of trefoil cover crop and earthworm inoculation on maize crop and soil organisms in Reunion Island. Biology and Fertility of Soils, 28: 364-370.
    42 Bremer E, van Houtum W, van Kessel C, 1991. Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen, and the absende of soil. Biology and Fertility of Soils,11:221-227.
    43 Briones MJI,Garnett MH,Piearce TG,2005.Earthworm ecological groupings based on ~(14)C analysis.Soil Biology and Biochemistry,37:2145-2149.
    44 Bronick C J,Lal R,2005.Soil structure and management:a review.Geoderma,124:3-22.
    45 Brown GG,Barois I,Lavelle P,2000.Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains.European Journel of Soil Biology,36:177-198.
    46 Brown GG,Edwards CA,Brussaard L,2004.How earthworms affect plant growth:burrowing into the mechanisms.In:Edwards CA(ed.) Earthworm Ecology(second edition).CRC Press,Boca Raton,USA,pp 13-49.
    47 Brown PL,Dickey DD,1970.Losses of wheat straw residue under simulated residue conditions.Soil Science Society of American Proceeding,34:118-121.
    48 Buck C,Langmaack M,Sehrader S,2000.Influence of mulch and soil compaction on earthworm cast properties.Applied Soil Ecology,14:223-229.
    49 Burtelow AE,Bohlen PJ,Groffman PM,1998.Influence of exotic earthworm invasion on soil organic matter,microbial biomass and denitrification potential in forest soils of the northeastern United States.Applied Soil Ecology,9:197-202.
    50 Cambardella CA,Elliott ET,1992.Particulate soil organic matter changes across a grassland cultivation sequence.Soil Science Society of American Journal,56:777-783.
    51 Caravaca F,Pera A,Masciandaro G,Ceccanti B.Rolda A,2005.A microcosm approach to assessing the effects of earthworm inoculation and oat cover cropping on CO_2 fluxes and biological properties in an amended semiarid soil.Chemosphere,59:1625-1631.
    52 Chan KY,2001.An overview of some tillage impacts on earthworm population abundance and diversity-implications for functioning in soils.Soil and Tillage Research,57:179-191.
    53 Chan KY,Heenan DP,1999.Microbial-induced soil aggregate stability under different crop rotations.Biology and Fertility of Soils,30:29-32.
    54 Chevallier T,Blanchart E,Girardin C,et al,2001.The role of biological activity(roots,earthworms)in medium-term C dynamics in vertisol under a Digitaria decumbens(Gramineae) pasture.Applied Soil Ecology,16:11-21.
    55 Chirstensen BT,1986.Barley straw decomposition under field conditions:Effects of placement and initial nitrogen contens on weight loss and nitrogen dynamics.Soil Biology and Biochemistry,18:523-529.
    56 Choi KH,Dobbs FC,1999.Comparison of two kinds of Biolog microplates(GN and ECO) in their ability to distinguish among aquatic microbial communities.Journal of Microbiological Methods,36:203-213.
    57 Coleman DC,1973.Soil carbon balance in a successional grassland.Oikos,24:195-199.
    58 Cook FC,Valdes GSB,Lee HC,2006.Mulch effects on rainfall interception,soil physical characteristics and temperature under Zea mays L.Soil Tillage Research,91:227-235.
    59 Cortez J,Bouche MB,1992.Do earthworms eat living root?.Soil Biology and Biochemistry,24(9):913-915.
    60 Cortez J,Hameed R,Bouche MB,1989.C and N transfer in soil with or without earthworms fed with ~(14)C- and ~(15)N-labelled wheat straw.Soil Biology and Biochemistry,21(4):491-497.
    61 Curry JP,Byrne D,1991.Role of earthworms in straw decomposition in a winter cereal field.Soil Biology and.Biochemistry,29(314):555-558.
    62 Daniel O,Anderson JM,1992.Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm lumbricus rubellus hoffmeister.Soil Biology and Biochemsitry,24(5):465-470.
    63 Caravaca F,Pera A,Masciandaro G,Ceccanti B,Rolda A,2005.A microcosm approach to assessing the effects of earthworm inoculation and oat cover cropping on CO_2 fluxes and biological properties in an amended semiarid soil.Chemosphere,59:1625-1631.
    64 Darwin C,1881.The formation of Vegetable Mould through the Action of Worms,with Observations of their Habits.Murray,London.
    65 Decaens T,2000.Degradation dynamics of surface earthworm casts in grasslands of the eastern plains of Colombia.Biology and Fertility of Soils,32:149-156.
    66 Decaens T,Rangel AF,Asakawa N,Thomas RJ,1999.Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia.Biology and Fertility of Soils,30:20-28.
    67 Derouard L,Tondoh J,Vilcosqui L,Lavelle P,1997.Effects of earthworm introduction on soil processes and plant growth.Soil Biology and Biochemistry,29:541-545.
    68 Devliegher W,Verstraete W,1995.Lumbricus terrestris in a soil core experiment:nutrient-enrichment processes(NEP) and gut associated processes(GAP) and their effect on microbial biomass and microbial activity.Soil Biology and Biochemistry,27:1573-1580.
    69 Devliegher W,Verstraete W,1997.The effect of Lumbricus terrestris on soil in relation to plant growth:effects of nutrient-enrichment processes(NEP) and gut-associated processes(GAP).Soil Biology and Biochemistry,29:341-346.
    70 Doure BM,Williams PML,Willmott PJ,1997.The influence of two species of earthworm (Aporrectodea trapezoids and Aporrectoedea rosea) on the growth of wheat,barley and faba beans in three soil types in the greenhouse.Soil Biology Biochemistry,29:503-509.
    71 Edwards CA,Bater JE,I992.The use of earthworms in environmental management.Soil Biology and.Biochemistry,24:1683-1689.
    72 Edwards CA,Bohlen PJ,1996.Biology and Ecology of Earthworms.Chapman and Hall,London,pp 426.
    73 Fischer K,Hahn D,Amann RI,Daniel O,Zeyer J,1995.In situ naniysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L.by whole-cell hybridization,Canadian Journal of.Microbiology,41:666-673.
    74 Fisk MC,Fahey TJ,Groffman PM,Bohlen PJ,2004.Earthworm Invasion,free-root distributions,and soil respiration in north temperate forests.Ecosystems,7:55-62.
    75 Fisk MC,Ruether KF,Yavitt JB,2003.Microbial activity and functional composition among northern peatland ecosystems.Soil Biology and Biochemistry,35:591-602.
    76 Flegel M,Sehrader S,Zhang H,1998.Influence of food quality on the physical and chemical properties of detritivorous earthworm casts.Applied Soil Ecology,9:263-269.
    77 Fragoso C,Brown GG,Patron JC,Blanchart E,Lavele P,Pashanasi B,Senapati B,Kumar T,1997.Agricultural intensification,soil biodiversity and agroecosystem function in the tropics:the role of earthworms.Applied Soil Ecology,6:17-35.
    78 Fraser PM,Williams PH,Haynes RJ,1999.Earwhworm species population size and biomass under different cropping systems across the Canterbury Plains,New Zealand.Applied Soil Ecology,3:49-57.
    79 Frouz J,Novakova A,2005.Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development.Geoderma,129:54-64.
    80 Gallagher AV,Wollenhaupt NC,1997.Surface alfalfa residue removal by earthworms Lumbricus terrestris L.In a no-till agroecosystem.Soil Biol.Biochem,29(3/4):477-479.
    81 Ganeshamurthy AN,Manjaiah KM,Rao AS,1998.Mobilization of nutrients in tropical soils through worm casting:availability of macronutrients.Soil Biology and Biochemsitry,30(13):1671-1676.
    82 Garvin MH,Martinez F,Jess JB,Gutierrez M,Ruiz P,Cosin DJD,2001.Effect of Hormogaster elisae(Oligochaeta;Hormogastridae) on the stability of soil aggregates.European Journal of Soil Biology,37:273-276.
    83 Gilot C, 1997. Effects of a tropical geophageous earthworm, M. anomala(Megascolecidae), on soil characteristics and production of a yam crop in ivory coast. Soil Biology and Biochemistry, 29(3/4): 353-359.
    
    84 Gilot-Villenave C, Lavelle P, Ganry F, 1996. Effects of a tropical geophagous earthworm, Millsonia anomala, on some soil characteristics, on maize-residue decomposition and on maize production in Ivory Coast. Applied Soil Ecology, 4: 201-211.
    
    85 Gorres JH, Savin MC, Amador JA, 2001. Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris). Soil Biology and Biochemistry, 33: 1881-1887.
    
    86 Groffman PM, Bohlen PJ, Fisk MC, et al., 2004. Exotic Earthworm Invasion and Microbial Biomass in Temperate Forest Soils. Ecosystems, 7:45-54.
    
    87 Guckert JB, Carr GJ, Johnson TD, et al., 1996. Community analysis by Biolog: curve integration for statistical analysis of activated sludge microbial habitats. Journal of Microbiological Methods, 27: 183-197.
    
    88 Guggenberger G, Thomas R J, Zech W, 1996. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community, Colombia. Applied Soil Ecology 3:263-274.
    
    89 Haimi J, Einbork M, 1992. Effects of endogeic earthworms on soil processes and plant growth in coniferous forest soil. Biology and Fertility of Soils, 13: 6-10.
    
    90 Hale CM, Frelich LE, Reich PB, Pastor J, 2005. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of minnesota, USA. Ecosystems, 8:911-927.
    
    91 Hallaire V, Curmi P, Duboisset A, et al., 2000. Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. European. Journal of Soil Biology, 36: 35-44.
    
    92 Harch BD, Correll RL, Meech W, et al., 1997. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 30:91-101.
    
    93 Hassink J, 1997. The capacity of soils to preserve organic C and N by their association with clay and soilt particles. Plant and Soil, 191:77-87.
    
    94 Hauser S, Asawalam DO, 1998. A continuous sampling technique to estimate surface cast production of the tropical earthworm Hyperiodrilus africanus. Applied Soil Ecology, 10: 179-182.
    
    95 Haynes RJ, Dominy CS, Graham MH, 2003. Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in KwaZulu-Natal, South Africa. Agriculture, Ecosystems and Environment, 95: 453-464.
    96 Haynes RJ,Fraser PM,1998.A comparison of aggregate stability and biological activity in earthworm casts and uningested soil as affected by amendment with wheat or lucerne straw.European Journal of Soil Science,49:629-636.
    97 Hendrix PF,Peterson AC,Beare MH,Coleman DC,1998.Long-term effects of earthworms on microbial biomass nitrogen in coarse and fine textured soils.Applied Soil Ecology,9:375-380.
    98 Henriksen TM,Breland TA,2002.Carbon mineralization,fungal and bacterial growth,and enzyme activities as affected by contact between crop residues and soil.Biology and Fertility of Soils,35:41-48.
    99 Hindell RP,McKenzie BM,Tisdall JM,1997.Destabilization of soil during the production of earthworm(Lumbricidae) and artificial casts.Biology and Fertility of Soils,24:153-163.
    100 Hopkins DW,Marinari S,Tilston EL,Halpin C,2005.Lumbricus terrestris counteract the effects of modified lignin biosyngthesis on the decomposition of tobacco plant residues.Soil Biology and Biochemistry,37:1141-1144.
    101 Hubbard VC,Jordan D,Stecker JA.1999.Earthworm response to rotation and tillage in a Missouri claypan soil.Biol Fertil Soils,29:343-347.
    102 Hu S,Coleman DC,Hendrix PF,Beare MH,1995.Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil.Soil Biology and Biochemsitry,27(9):1127-1135.
    103 Isaac SR,Nair MA,2005.Biodegradation of leaf litter in the warm humid tropics of Kerala,India.Soil Biology & Biochemistry,37:1656-1664.
    104 Jager T,Fleuren RHLJ,Roelofs W,Groot AC,2003.Feeding activity of the earthworm Eisenia andrei in artificial soil.Soil Biology and Biochemistry,35,313-322.
    105 Jegou D,Cluzeau D,Balesdent J,Trehen P,1998.Effects of four ecological categories of earthworms on carbon transfer in soil.Applied Soil Ecology,9:249-255.
    106 Jegou D,Cluzeau D,Hallaire V,et al.,2000.Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil.European Journal of Soil Biology,36:27-34
    107 Jegou D,Schrader S,Diestel H,Cluzeau D,2001.Morphological,physical and biochemical characteristics of burrow walls formed by earthworms.Applied Soil Ecology,17:165-174.
    108 Jones CG,Lawton JH,Shachak M,1994.Organisms as ecosystem engineers.Oikos,69:373-386.
    109 Jongmans AG,Pulleman MM,Balabane M,et al.,2003.Soil structure and characteristics of organic matter in two orchards differing in earthworm activity.Applied Soil Ecology,24:219-232.
    110 Jongmans AG,Pulleman MM,Marinissen JCY,2001.Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biology and Fertility of Soils, 33:279-285.
    
    111 Joschko M, Diestel H, Larink O,1989. Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurements. Biology and Fertility of Soils, 8:191-196.
    
    112 Jr FP, Li F, Jordan D, 2000. Assessing the impact of Diplocardia ornata on physical and chemical properties of compacted forest soil in microcosms. Biology and Fertility of Soils, 32:166-172.
    113 Juliet PM, 2002. Analysis of microbial community functional diversity using sole-cabon utilization profiles-A critique. FEMS Microbiol Ecol, 42:1-14.
    114 Kalbitz K, Solinger S, Park J H, et al., 2000. Contrals on the dynamics of dissolved organic matter in soils: A review. Soil Science, 165:277-304.
    115 Ketterings QM, Blair JM, Marinissen JCY, 1997. Effects of earthworms on soil aggregate stability and carbon and nitrogen storage in A legume cover crop agroecosystem. Soil Biology and Biochemistry, 29(3/4): 401-408.
    116 Kladivko EJ, Mackay AD, Bradford JM, 1986. Earthworm as a factor in the reduction of soil crustiong. Soil Science Society of American Journel, 50:191-196.
    117 Koutika LS, Didden WAM, Marinissen JCY, 2001. Soil organic matter distribution as influenced by enchytraeid and earthworm activity. Biology and Fertility of Soils, 33:294-300.
    118 Kreuzer K, Bonkowski M, Langel R, Scheu S, 2005. Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biology and Biochemistry, 36:2005-2011.
    119 Larink O, Werner D, Langmaack M, Schrader S, 2001. Regeneration of compacted soil aggregates by earthworm activity. Biology and Fertility of Soils, 33:395—401.
    120 Lavelle P, 1988. Earthworm activites and the soil system. Biology and Fertility of soil, 6: 237-251.
    121 Lavelle P, 2002. Functional domains in soils. Ecological Research, 17: 441-450.
    122 Lavelle P, Barros E, Blanchart E, Brown G, Desjardins T, Mariani L, Rossi JP, 2001. SOM management in the tropics: Why feeding the soil macrofauna?. Nutrient Cycling in Agroecosystems, 61:53-61.
    123 Lavelle P, Bignell D, Lepage M, 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33:159-193.
    124 Lavelle P, Barros E, Blanchart E, Brown G, Desjardins T, Mariani L, Rossi JP, 2001. SOM managemen in the tropics: Why feeding the soil macrofauna?. Nutrient Cycling in Agroecosystems, 61:53-61.
    
    125 Lavelle P, Charpentier F, Villenave C, Rossi JP, Derouard L, Pashanasi B, Andre J, Ponge JF, Bernier N,2004.Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades.In:Edward CA(Ed) Earthworm Ecology(second edition).CRC Press,Boca Raton,USA,pp 145-157.
    126 Lee KE,1985.Earthworms,Their Ecology and Relationships with Soils and Land Use.Academic Press,Sydney,pp,411.
    127 Leinweber P,Schulten HR,Korsehens M,1995.Hot water extracted organic matter:chemical composition and temporal raviations in a long-term field experiment.Biology and Fertility of Soils,20:17-23.
    128 Li X,Fisk MC,Fahey TJ,et al.,2002.Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest.Soil Biology and Biochemistry,34:1929-1937.
    129 Loginow W,Wisniewski W,Gonet SS,et al.,1987.Fractionation of organic carbon based on susceptibility to oxidation.Polish Jorunal of Soil Science,20:47-52.
    130 Marashi ARA,Scullion J,2003.Earthworm casts form stable aggregates in physically degraded soils.Biology and Fertility of Soils,37:375-380.
    131 Marhan S,Scheu S,2005.Effects of sand and litter availability on organic matter decomposition in soil and in casts of Lumbricus terrestris L.Geoderma,128:155-166.
    132 Marinissen JCY,Dexter AR,1990.Mechanisms of stabilization of earthworm casts and artificial casts.Biology and Fertility of Soils,9:163-167.
    133 Marinissen JCY,Nijhuis E,van Breemen N,1996.Clay dispersability in moist earthworm casts of different soils,Applied Soil Ecology,4:83-92.
    134 Martin A,1991.Short-and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo)(Megascoleeidae,Oligochaeta) of tropical savannas,on soil orgnaic matter.Biology and Fertility of Soils,11:234-238.
    135 Marinissen JCY,Nijhuis E,van Breemen N,1996.Clay dispersability in moist earthworm casts of different soils,Applied Soil Ecology,4:83-92.
    136 Materechera SA,2002.Nutrient availability and maize growth in a soil amended with earthworm casts from a South African indigenous species.Bioresource Technology,84:197-201.
    137 McInemey M,Bolger T,2000.Decomposition of Quercus petraea litter:influence of burial,comminution and earthworms.Soil Biology and Biochemistry,32:1989-2000.
    138 Mclauchlan KK,Hobbie SE,2004.Comparison of Labile soil organic matter fractionation techniques.Soil Science Society of American Journal,68(5):1616-1624.
    139 Mclean MA,Parkinson D,1997.Changes in structure,organic matter and microbial activity in pine forest soil following the introduction of dendrobaena octaedra(oligochaeta,lumbricidae).Soil Biology and Biochemistry, 29(3/4): 537-540.
    
    140 Mele PM, Carter MR, 1999. Impact of crop management factors in conservation tillage farming on earthworm density, age structure and species abundance in south-eastern Australia. Soil Tillage Research, 50:1-10.
    141 Moody SA, Briones MJI, Piearce TG, Dighton J, 1995. Selective consumption of decomposing wheat straw by earthworms. Soil Biology and Biochemistry, 27(9): 1209-1213.
    142 Morgan MH, 1988. The role of microorganisms in the nutrition of Eiseniafoetida, In: Edwards CA and Neuhauser EF (Eds), Earthworms in Waste and Enviromental Management SPB Academic Publishing. The Hague, the Netherlands, PP: 71-82.
    143 Muller-Lemans H, Dorp FV, 1996. Bioturbation as a mechanism for radionuclide transport in soil: relevance of earthworms. Journal of. Environmental Radiocativity, 31(1): 7-20.
    144 Norgrove L, Hauser S, 2000. Production and nutrient content of earthworm casts in a tropical agrisilvicultural system. Soil Biology and Biochemistry, 32:1651-1660.
    145 Ortiz-Ceballos AI, Fragoso C, 2004. Earthworm populations under tropical maize cultivation: the effect of mulching with velvetbean. Biology and Fertility of Soils, 39:438-445.
    146 Paoletti MG, Sommaggio D, Favretto MR, Petruzzelli G, Pezzarossa B, Barbafieri M, 1998. Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology, 10:137-150.
    147 Pashanasi B, Lavelle P, Alegre J, Charpentier F, 1996. Effect of the endogeic earthworm pontoscolex corethrurus on soil chemical characterictics and plant growth in a low-input tropical agroecosystem. Soil Biology and Biochemistry, 28(6): 801-810.
    148 Pati SS, Sahu SK, 2004. CO_2 evolution and enzyme activities (dehydrogenase, protease and amylase) of fly ash amended soil in the presence and absence of earthworms (Drawida willsi Michaelsen) under laboratory conditions. Geoderma, 118: 289-301.
    149 Potthoff M, Joergensen RG, Wolters V, 2001. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biology and Biochemistry, 33: 583-591.
    150 Puget P, Chenu C, Balesdent J, 2000. Dynamics of soil organic matter with particle-size fractions of water-stable aggregates. European Journal of Soil Science, 51:595-605.
    151 Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG, 2005. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology 29: 1-15.
    152 Ruz-Jerez BE, Ball PR, Tillman RW, 1992. Laboratory assessment of nutrient release from a pasture soil receiving grass or clover residues,in the presence or absence of Lumbricus rubbellus or Eisenia foetida.Soil Biology and Biochemistry,24:1529-1534.
    153 Scheu S,1997.Effects of litter(beech and stinging nettle) and earthworms(Octolasion lacteum) on carbon and nutrient cycyling in beech forests on a basalt-limestone gradient:A laboratory experiment.Biology and Fertility of Soils,24:384-393.
    154 Scheu S,2003.Effects of earthworms on plant growth:patterns and perspectives.Pedobiologia,47:846-856.
    155 Schindler-Wessells ML,Bohlen PJ,Mccartney DA,Subler S,Edwards CA,1997.Earthworm effects on soil respiration in corn agroecosystems receiving different nutrient inputs.Soil Biology and Biochemistry,29(3/4):409-412.
    156 Schrader S,Seibel C,2001.Impact of cultivation management in an agroeeosystem on hot spot effects of earthworm middens.European Journal of Soil Biology,37:309-313.
    157 Schrader S,Zhang H,1997.Earthworm casting:stabilization or destabilization of soil structure?.Soil Biology and Biochemistry,29(3/4):469-475.
    158 Scullion J,Malik A,2000.Earthworm activity affecting organic matter,aggregation and microbial activity in soils restored after opencast mining for coal.Soil Biology and Biochemistry,32:119-126.
    159 Shipitalo MJ,Protz R,1988.Factors influencing the dispersibility of clay in worm casts.Soil Science of American Journal,52:764-769.
    160 Shipitalo MJ,Protz R,1989.Chemistry and micromorphology of aggregation in earthworm casts,Geoderma,45:357-374.
    161 Shipitalo MJ,Protz R,Tomlin AD,1988.Effect of diet on the feeding and casting activity of Lumbricus Terrestris and L.Rubellus in laboratory culture.Soil Biology and Biochemistry,20(2):233-237.
    162 Shuster WD,Subler S,McCoy EL,2001.Deep-burrowing earthworm additions changed the distribution of soil organic carbon in a chisel-tilled soil.Soil Biology and Biochemistry,33:983-996.
    163 Six J,Callewaert P,Lenders S,De Gryze S,Morris SJ,Gregorich EG,Paul EA,Paustian K,2002.Measuring and understanding cabon storage in afforested soils by physical fractionation.Soil Science Society of America Journal,66:1981-1987.
    164 Six J,Paustian K,Elliot ET,Combrink C,2000.Soil structure and organic matter:Ⅰ.Distribution of aggregate-size classes and aggregate-associated carbon.Soil Science Society of America Journal,64:681-689.
    165 Smith GR,Gross KL,Januchowski S,2005.Earthworms and weed seed distribution in annual crops. Agriculture, Ecosystems and Environment, 108: 363-367.
    
    166 Sparling GP, Feltham CW, Eynolds JR, et al., 1990. Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content and a reassessment of the K_(ec)-Factor. Soil Biology and Biochemistry, 22(3): 301-307.
    
    167 Springett JA, 1992. Distribution of lumbricid earthworms in New Zealand. Soil Biology and Biochemistry, 24:1377-1382.
    168 Spycher G, Sollins P, Rose S, 1983. Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns. Soil Science, 135: 79-87.
    169 Stockdill SMJ, 1982. Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiology, 24: 29-35.
    170 Subler S, Kirsch AS, 1998. Spring dynamics of soil carbon, nitrogen, and microbial activity in earthworm middens in a no-till cornfield. Biology and Fertility of Soils, 26:243-249.
    171 Swift MJ, Heal OW, Anderson JM, 1979. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford pp.372.
    172 Shipitalo MJ, Protz R, 1988. Factors influencing the dispersibility of clay in worm casts. Soil Science Society of American Journal, 52: 764-769.
    173 Shuster WD, Subler S, McCoy EL, 2001. Deep-burrowing earthworm additions changed the distribution of soil organic carbon in a chisel-tilled soil. Soil Biology and Biochemistry, 33: 983-996.
    174 Tian G, Brussaard L, Kang BT, 1995. Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biology and Biochemistry, 27(3): 277-280.
    175 Tian G, Kang BT, Brussaard L, 1997. Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biology and Biochemistry, 29(3/4): 369-373.
    176 Tisdall, JM, Oades JM, 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science, 33,141-163.
    177 Tiunov AV, Scheu S, 1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry, 31: 2039-2048.
    178 Tomati U, Grappelli A, Galli E, 1988. The hormone-like effect of earthworm casts on plant growth. Biology and Fertility of Soils, 5: 288-294.
    179 Toyata K, Kimura M, 2000. Microbial community indigenous to the earthworm Eiseniafoetida, Biology and Fertility of Soils, 31: 187-190.
    180 Tubeileh A, Groleau-Renaud V, Plantureux S, Guckert A, 2003. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system.Soil Tillage Research,71:151-161.
    181 Uyl A,Didden W,Marinissen J,2002.Earthworm activity and decomposition of ~(14)C-labelled grass root systems,Biology and Fertility of Soils,36:447-455.
    182 Vance ED,Brookes PC,Jenkinson DS,1987.An extraction method for measuring soil microbial biomass C.Soil Biology and Biochemistry,19(6):703-707.
    183 Wardle DA,Giller KE,1996.The quest for a contemporary ecological dimension to soil biology.Soil Biology and Biochemistry,28:1549-1554.
    184 Welke SE,Parkinson D,2003.Effect of Apporrectodea trapezoids activity on seeding growth of Pseudosuga menziesii,nutrient dynamics and microbial activity in different forest soils.Forest Ecology and Management,173:169-186.
    185 Wilcox CS,Dominguez J,Parmelee RW,McCartney DA,2002.Soil carbon and nitrogen dynamics in Lumbricus terrestris.L.middens in four arable,a pasture,and a forest ecosystems,Biology and Fertility of Soils,36:26-34.
    186 Willems J J,Marinissen JC,Blair J,1996.Effects of earthworms on nitrogen mineralization,Biology and Fertility of Soils,23:57-63.
    187 Winsome T,McCOLL JG,1998.Changes in chemistry and aggregation of a california forest soil worked by the earthworm argilophilus papillifer eisen(megascolecidae).Soil Biology and Biochemistry,30(13):1677-1687.
    188 Wright MA,1972.Factors governing ingestion by earthworm Lumbdcus terrestris with special reference to apple leaves.Annual Applied Biology,70:175-188.
    189 Wolter C,Scheu S,1999.Changes in bacterial numbers and hyphal lenths during the gut passage through Lumbricus terrestris(Lumbricidae,Oligochaeta),Pedobiologia,43:891-900.
    190 Wolters V,Joergensen RG,1992.Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa(Savigny)(Oligochaeta:Lumbricidae).Soil Biology and Biochemistry,24:171-177.
    191 Wurst S,Jones TH,2003.Indirect effects of earthworms(Aporrectodea caliginosa) on an above-ground tritrophic interaction.Pedobiologia,47:91-97.
    192 Wurst S,Langel R,Scheu S,2005.Do endogeic earthworms change plant competition?.A microcosm study.Plant and Soil,271:123-130.
    193 Wu TY,Schoenau JJ,Li FM,et al.,2004.Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China.Soil Tillage Research,77:59-68.
    194 Yang CM, Yang LZ, Zhu OY, 2005. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma, 124: 133-142.
    195 Zak JC, Willig MR, Moorhead DL, et al., 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 26(9): 1101-1108.
    196 Zhang BG, Li GT, Shen TS, Wang JK, Sun Z, 2000. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eiseniafetida. Soil Biology and Biochemistry, 32:2055-2062.
    197 Zhang QL, Hendrix PF, 1995. Earthworm (Lumbricus rubellus and Aporrectodea caliginosa) Effects on carbon flux in soil. Soil Science Society of American Journal, 59: 816-823.
    198 Zhang X, Wang J, Xie H, Wang J, Zech W, 2003. Comparison of organic compounds in the particle-size fractions of earthworm casts and surrounding soil in humid Laos. Applied Soil Ecology, 23:147-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700