茶园土壤微生物量、硝化和反硝化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择我国浙江绿茶产区为主的代表性茶园,包括不同理化性状、茶园管理水平和管理方式等典型土壤为研究材料,以不同生产力水平和植茶年龄茶园,及附近森林和蔬菜土壤为重点,采用田间调查与实验室培养相结合,综合运用传统和现代微生物分析技术,对茶园上壤微生物量、硝化作用强度、硝化微生物的种类及N2O释放特点等进行了系统全面的研究。获得以下主要研究结果:
     1.浙江75个茶园土壤微生物量碳(C)在38.1-607.2mg/kg之间,平均为208.1mg/kg;微生物量C占总有机C的比例在0.21%-4.55%之间,平均为1.25%。微生物量氮(茚三酮反应态N)在1.76-76.14mg/kg之间,平均为20.67mg/kg;微生物量N占全N的比例在0.26%-9.09%之间,平均为1.80%。微生物量磷(P)在未检出到60.07mg/kg之间,平均为14.93mg/kg;微生物量P占全P的比例在0-10.20%之间,平均为3.06%。与多数耕地或森林土壤相比,茶园土壤微量物量C和N,以及微生物量C占总有机C的比例和微生物量N占全N的比例均偏低,但微生物量P与其它土壤相当,微生物量P占全P的比例高于其它土壤。
     2.茶园土壤微生物量受生产力水平、植茶年龄、pH、施肥量和茶树种植模式的显著影响。随着茶园生产力水平和植茶年龄的提高,土壤pH明显降低,有机C、全N、全P和有效态营养元素含量显著提高。微生物C、N和PLFAs含量表现为森林>低产>高产>中产茶园:土壤微生物C和ATP含量表现为50年>9年>森林>90年生茶园,微生物量N及微生物量N占全N量的比例表现为森林≥9年>50年>90年生茶园。茶园土壤pH低是导致微生物量少和生长代谢弱的最重要原因之一,除微生物量P外,微生物量C和N、微生物商、土壤基础呼吸速率和代谢商均与pH呈极显著正相关。适量施P有利于提高土壤微生物量P,但过量施N降低微生物量C和N含量;随着茶园施氮量的提高,土壤微生物商C、N和P均呈极显著降低的趋势。对磷酯脂肪酸(PLFA)的分析表明茶园土壤微生物群落结构随着茶园生产力水平的提高和树龄的增加呈连续有规律的变化;PLFA标记革兰氏阳性细菌的数量显著高于革兰氏阴性细菌和真菌的数量;茶园土壤PLFA标记真菌和细菌的比例显著高于森林土壤,且PLFA标记真菌与细菌比例与代谢商呈显著负相关(R2=0.93,p<0.05)。茶园由常规种植向有机种植转换有利于提高土壤pH和有机C含量,有机茶种植年限越长,pH和有机C含量越高。茶园有机种植方式能明显提高土壤微生物量C、N和P的含量及微生物商C、N和P的比例,改善茶园土壤质量。
     3.尽管土壤pH很低,茶园土壤存在较强的硝化作用。浙江为主共130个茶园土壤的NO3--N含量在0~286.8mg/kg之间,平均为41.7mg/kg。其中低于20mg/kg的样品占41%,超过100mg/kg的样品占12%。茶园上壤净硝化速率在-6.08-6.54mg/kg-d之间,平均1.62mg/kg-d,约有10%的土壤处于N固定化状态。极大多数NO3--N含量特别高的土壤施N量高、pH低于4.0,净硝化速率呈负数,土壤中积累的NO3-是大量施氮的结果。15个茶园土壤总硝化速率在0.75~11.56mg/kg.d之间,平均为4.66mg/kg.d。土壤微生物对NO3--N的同化速率在0.29~7.67mg/kg.d之间,平均为3.01mg/kg.d,占总硝化速率的33.7%~76.7%,平均为61.5%;茶园土壤与pH呈中性的蔬菜土壤差异不大,但显著高于森林土壤。
     4.土壤硝化速率的高低主要取决于土地使用类型(土壤植被)及其管理水平,与茶树种植模式和植茶树龄也有较大的关系,与土壤pH的关系则相对较小。蔬菜、茶园和森林三种土壤比较,蔬菜土壤的硝化速率最高,茶园土壤次之,森林土壤最低;不同生产力水平茶园比较:高产>中产>低产茶园。施肥对土壤硝化速率有十分重要的影响。随着施N量的提高,土壤硝化作用随之增强,氮肥是刺激和促进硝化微生物数量和活性的重要因素。加入到蔬菜土壤的NH4+被迅速硝化,使土壤硝化速率随培养时间的变化表现为一级动力学方程,而加入到茶园和森林土壤中的NH4+被逐渐缓慢硝化,在35天的培养期内硝化的NH4+占60%~80%,硝化速率随培养时间的变化呈直线方程。适当降低茶园施N量,平衡供应土壤养分对于提高N素利用率,减少土壤NO3--N积累以及由此产生的环境污染有重要意义。不同种植模式土壤的净硝化速率表现为有机茶园>常规茶园>荒芜茶园,不同植茶年龄土壤的总硝化速率表现为50年>90年>9年生茶园>森林。土壤中添加不同剂量的CaCO3后,总硝化速率没有随pH的提高而增加。
     5.导致酸性茶园土壤具有较强硝化活性的主要微生物是硝化古菌,而非硝化细菌。传统培养法没有检测到高生产力水平茶园土壤氨氧化细菌。DNA检测表明茶园土壤中硝化古菌(AO A) amoA基因拷贝数在5.5×104至2.4×107/g之间,平均为1.36×107/g,茶园土壤明显高于森林土壤;土壤硝化细菌(AOB) amoA基因拷贝数在未检出至4.40×106/g之间,平均为1.20×106/g。土壤硝化势与硝化古菌amoA基因拷贝数呈极显著正相关(p<0.001),但与硝化细菌amoA基因拷贝数的相关性不明显;土壤pH与硝化古菌amoA基因拷贝数的相关性不明显,但与硝化细菌amoA基因拷贝数却呈极显著正相关(p<0.001);AOA与AOB amoA基因拷贝数之比随土壤pH的降低呈指数曲线显著提高,表明AOA是酸性茶园土壤硝化作用的主要微生物。茶园土壤AOA和AOB群落组成随上壤pH和施N量发生变化,不同石灰施用量茶园土壤间AOA群落组成、高N与低N施肥土壤间AOB群落组成有显著区别。不同基因型的AOA和AOB种类对土壤pH和施N量具有不同的要求,说明不同种类的AOA和AOB对土壤生态环境具有不同的要求。
     6.茶园土壤具有较高的N20释放速率,施氮量高是最重要的原因之一。浙江142个茶园土壤N20释放速率在0~4960μg/m2.h之间,平均为467μg/m2.h。不同土壤类型间表现为:高产>中产>低产茶园和菜园>森林土壤。土壤N20释放速率的年周期变化与气温(地温)变化一致。随着施N量的提高,N20释放速率显著增加。茶园土壤N20-N占施N量的比例在1.43%-3.44%之间,平均为2.28%。N20释放速率随土壤含水量的提高明显增加,土壤含水量与施N量存在一定的正交互作用,上壤有机质含量高的土壤释放的N20也显著高于有机质含量低的土壤,但pH对土壤N20释放速率的影响不大。土壤中添加杀菌剂会明显降低N20释放速率,N20释放速率与硝酸还原酶活性呈正相关,表明茶园土壤释放的N20主要是生物反硝化产生的。
Tea is a globally important crop and is unusual because it both requires and acidifies the soil in which it grows. In spite of the low pH, high NO3-accumulation in and N2O emission from tea soils have been found, resulting in low N use efficiency and a great potential for diffuse pollution. In this study, represent tea soils with different basic properties, from tea gardens with varied management levels and planting models were collected from Zhejiang province, eastern China. A special attention was focused on tea soils with different production levels and tea stand ages, and their adjacent forest or/and vegetable soils in which tea soil originated. A series of field investigation and laboratory experiments were carried out to study soil microbial properties, biomass C, N and P, microbial quotient, net and gross nitrification, microbial nitrifiers, denitrification and N2O emission rate and their impact factors. The main results are as follows:
     1. The microbial biomass C from75tea soils ranged from38.1to607.2mg/kg with an average of208.1mg/kg, microbial quotient C (ratio of microbial biomass C to total organic C) ranged from0.21%to4.55%with a mean of1.25%; the microbial biomass ninhydrin-N ranged from1.76to76.14mg/kg with an average of20.67mg/kg, microbial quotient ninhydrin-N ranged from0.26%to9.09%with a mean of1.80%; the microbial biomass P ranged from undetected to60.07mg/kg with a mean of14.93mg/kg, microbial quotient P ranged from0to10.20%with a mean of3.06%. Compared to other arable, grass and forest soils in literature, the microbial biomass, microbial quotient C and ninhydrin-N in tea soils were lower. However, the microbial biomass P was higher.
     2. The microbial biomass content in tea garden soils was strongly influenced by tea cultivation intensity (production level), tea planting duration, soil pH, fertilizer application and tea planting model. Soil pH was highest in the forest soil and decreased with increasing productivity and age of tea stand. Soil total organic C, N, P and available nutrients significantly increased. Microbial biomass C, ninhydrin-N, PLFAs declined in the order forest> low> high> middle production, and biomass C and ATP declined in the order tea stand age50> age9> forest> age90. Microbial biomass ninhydrin-N and microbial quotient N declined in the order forest≥age9> age50> age90. Soil pH had a strong influence on the microbial biomass, demonstrated by positive linear correlations with: microbial biomass C, microbial biomass ninhydrin-N, PLFAs, the microbial quotient C, ninhydrin-N and P, the basal respiration rate and specific respiration rate. Appropriate fertilization could increase microbial biomass P. However, over application of N fertilizers reduced microbial biomass C, microbial biomass ninhydrin-N. With the increase of N application, the ratio of biomass C to total organic C, biomass ninhydrin-N to total N and biomass P to total P all significantly decreased. A principal component (PC) analysis of PLFA data showed consistent shift in the community composition with productivity level and stand age. The Gran positive bacterial PLFA biomarkers were significantly higher than Gran negative bacterial and fungal PLFA biomarkers. The ratio of fungal:bacterial PLFA biomarkers was negatively and linearly correlated with specific respiration rate in the soils (R2=0.93, p<0.05). Converting tea fields from conventional to organic increased soil pH and total organic C, the longer under organic cultivation, the higher pH and total organic C. Organic tea fields had higher microbial biomass C, ninhydrin-N, P and their microbial quotients than conventional fields.
     3. In spite of low pH, tea garden soils had strong nitrification. The NO3--N concentrations in130tea field soils ranged from0to286.8mg/kg with an average of41.7mg/kg. About41%and12%of soil samples below20and above100mg/kg, respectively. Soil net nitrification rate ranged from-6.08to6.54mg/kg-d with an average of1.62mg/kg-d. About10%soils were in N immobilization. The NO3--N and net nitrification rate increased with increase of N application rate. The majority of soils with very higher NO3-accumulation had higher N application rate, pH below4.0, and even negative net nitrification rate. The gross nitrification rate from15soils ranged from0.75to11.56mg/kg.d with a mean of4.66mg/kg.d. Soil microbial NO3--N consumption rate ranged from0.29to7.67mg/kg.d with a mean of3.01mg/kg.d, accounting for33.7%-76.7%(mean61.5%) of gross nitrification rate. Nitrificaton rate in the tea soils had no significantly different with the neutral pH vegetable soil, but significant higher than the forest soil.
     4. Type of land use and its management, tea planting model and duration were more effective to impact soil nitrification rate than soil pH. The net and gross nitrification rate was highest in vegetable soil, followed by tea soils, and the lowest in the forest soil. Net nitrification rate decreased in the order forest> age50> age90> age9tea stand, and organic> conventional> abandoned soils. Gross nitrification rate declined in the order tea age50> age90> age9> forest. The nitrification rate increased with increasing tea production and N application rates. The NH4+added to the vegetable soil was immediately and completely nitrified, resulted in nitrification pattern in first-order kinetics, but that in the tea and forest soils was nitrified more slowly with nearly linear nitrification pattern. About60%-80%of the added NH4+in the tea and forest soils was nitrified during35days of incubation, indicating nitrifiers do exist in these soils. High nitrogen application rate is the main cause of NO3-accumulation in tea soils and should be reduced to increase N use efficiency and minimize NO3-pollution of water resources. Liming did not increase soil gross nitrification rate.
     5. The key microorganism for strong nitrification in tea soils were ammonia-oxidizing archaea (AOA), instead of ammonia-oxidizing bacteria (AOB). No AOB were found by traditional incubation method in the soil of high tea production field. Soil DNA sequence analysis after quantitative polymerase chain reaction (Q-PCR) and terminal-restriction fragment length polymorphism (T-RFLP) showed the abundance of AOA and AOB, and nitrification potentials were significantly higher in the tea soils than adjacent forest soils. The AOA amoA gene copy numbers ranged from5.5×104to2.4×107/g with an average of1.36X107/g, and the AOB amoA gene copy numbers ranged from below detection limits to4.40×106/g with a mean of1.20×106/g. A significant relationship between AOA abundance and nitrification potential (p<0.001) was found, but not between the AOB abundance and nitrification potential. Soil pH had a significantly negative relationship with AOB abundance, but not with AOA abundance. There was an exponential increase in the ratio of AOA to AOB amoA gene copies with decreasing soil pH values in the tea gardens. The AOB copy numbers were below detection limits in some highly acidic tea soils, but these soils still had high nitrification rates. These results suggest that nitrification is mainly driven by AOA and not AOB in highly acidic tea soils. We also found that different genotypes of AOA and AOB adapt to a particular soil pH and N content which suggest that functional microbial populations also follow niche based community assembly.
     6. High N2O emission rate was found in tea garden soils, high N application rate was the main cause. The N2O emission rate in142tea soils ranged from0to4960μg/m2.h with an average of467μg/m2.h. It decreased in the order high> middle> low tea production and vegetable> forest soils. Its annual change was in accordance with the soil temperature. N2O emission rate was significantly increased with the increase of N application rate and of soil moisture contents, which had a synergistic effect on N2O emission rate. The annual fertilizer-induced emission factor ranged from1.43%to3.44%with a mean of2.28%. High soil organic C increased N2O emission, but no effect of soil pH on N2O emission was found. There were a significant reduction of N2O emission by bactericides and significant relationship between N2O emission rate and nitrate reductase, indicating that N2O emitted by microbial denitrification.
引文
Aarnio T, Martikainen PJ.1996. Mineralization of carbon and nitrogen, and nitrification in Scots pine forest soil treated with fast-and slow-release nitrogen fertilizers. Biology and Fertility of Soils,22:214-220
    Abell GCJ, Revill AT, Smith C, Bissett AP, Volkman JK, Robert SS.2009. Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary.ISME Journal,4:286-300
    Adams TM, Adams SN.1983. The effects of liming and soil pH on carbon and nitrogen contained in the soil biomass. Journal of Agricultural Science,101:553-558
    Akiyama H, Yan X, Yagi K.2006. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan:Summary of available data. Soil Science and Plant Nutrition,52:774-787
    Allison SM,Prosser JI.1991. Urease activity in neutrophilic autotrophic ammonia-oxidizing bacteria isolated from acid soils. Soil Biology & Biochemistry,23:45-51
    Amato M, Ladd JN.1994. Application of the ninhydrin-reactive N assay for microbial biomass in acid soils. Soil Biology & Biochemistry,26:1109-1115
    Anderson JPE, Domash KH.1980. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sciences,130:211-216
    Anderson TH, Domsch KH.1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology & Biochemistry,21:471-479
    Araujo ASF, Santos VB, Monteiro RTR.2008. Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piaui'state, Brazil. Europe Journal Soil Biology,44:225-230
    Arp DJ, Sayavedra-Soto LA, Hommes NG.2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology,178:250-255
    Aulakh MS, Kuldip S, Bijay S, Doran JW.1996. Kinetics of nitrification under upland and flooded soils of varying texture. Communications in Soil Science and Plant Analysis,27:2079-2089
    Bhuiya ZH, Walker N.1977. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. Journal of Applied Bacteriology,42(2):253-257
    Blackmer AM, Bremner JM.1978. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biology & Biochemistry,10:187-191
    Blagodatskaya EV, Anderson TH.1999. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Applied Soil Ecology,11:207-216
    Blagodatskaya EV, Anderson TH.1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biology & Biochemistry,30:1269-1274
    Booth MS, Stark JM, Rastetter E.2005. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecological Monographs,75:139-157
    Bouwman AF, Boumans LJM, Batjes NH.2006. Emissions of N2O and NO from Fertilized Fields: Summary of available measurement data. Global Biogeochemical Cycles,14(4):1058
    Brookes PC, Landman A, Pruden G, Jenkinson DS.1985. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology & Biochemistry,17:837-842
    Brookes PC, Powlson DS, Jenkinson DS.1982. Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry,14:319-329
    Brookes PC, Powlson DS, Jenkinson DS.1984. Phosphorus in the soil microbial biomass. Soil Biology & Biochemistry,16:169-175
    Brookes PC.2001. The soil microbial biomass:concept, measurement and applications in soil ecosystem research. Microbes and Environments,16:131-140
    Cabello P, Roldan MD, Moreno-Vivian C.2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology,150:3527-3546
    Chen CR, Condron LM, Davis MR, Sherlock RR.2003.Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology Management,177:539-557
    Chen XP, Zhu YG, Xia Y, Shen JP, He JZ.2008. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology,10:1978-1987
    Chu HY, Fujii T, Morimoto S, Lin XG, Yagi K.2008:Population size and specific nitrification potential of soil ammoniaoxidizing bacteria under long-term fertilizer management. Soil Biology & Biochemistry,40:1960-1963
    Clark MS, Horwath WR, Shennan C, Scow KM.1998. Changes in soil chemical properties resulting from organic and low-input farming practices. Agronomy Journal,90:662-671
    Coll P, Cadrea EL, Blanchart E, Hinsinger P, Villenave C.2011. Organic viticulture and soil quality: A long-term study in Southern France Apply Soil Ecology,50:37-44
    Contin M, Todd A, Brookes PC.2001. The ATP concentration in the soil microbial biomass. Soil Biology & Biochemistry 33:701-704
    Dancer WS, Peterson LA, Chesters G.1973. Ammonification and nitrification of N influenced by soil pH and previous N treatments. Soil Science Society of American Journal,37:67-69
    Daum D, Nelson DW.1998. Influence nutrient solution pH on N2O and N2 emission from a soilless culture system. Plant and Soil,203:279-287
    De Boer W, Duyts H, Laanbroek HJ.1989a. Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil. Soil Biology & Biochemistry,21:349-354
    De Boer W, Klein Gunnewiek PJA, Troelstra SR, Laanbroek HJ.1989b. Two types of autotrophic nitri(?)cation in acid heathland humus. Plant and Soil,119:229-235
    De Boer W, Kowalchuk GA.2001. Nitrification in acid soils:Microorganisms and mechanisms. Soil Biolology & Biochemistry,33:853-866
    De Boer W, Laanbroek HJ.1989. Ureolytic nitrification at low pH by Nitrosospira spec. Archives of Microbiology,152:178-181
    Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ.2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience,2:621-624
    Ellis S, Yamulki S, Dixon E, Harrison R, Jarvis SC.1998. Denitrification and N2O emissions from a UK pasture soil following the early spring application of cattle slurry and mineral fertiliser. Plant and Soil,202:15-25
    FAO.2009. Food Security and Agricultural Mitigation in Developing Countries:Options for Capturing Synergies. Food and Agriculture Organization of the United Nations, Rome.
    Firestone MK, Firestone RB, Tiedje JM.1980. Nitrous oxide from soil denitrification:factors controlling its biological production. Science,208(16):749-751
    Flieβbach A, Mader P. 2000. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biology & Biochemistry.32:757-768
    FlieBbach A, Oberholzer HR, Gunst L, Mader P.2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture Ecosystem and Environment,118:273-284
    Frijlink M J, AbeeTjakko, Laanbroek H J., de Boer W and Konings WN.1992. The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Archives of Microbiology,157:194-199
    Frostegard A, Baath E.1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils,22:59-65
    Fu XQ, Li Y, Xiao RL, Tong CL, Wu JH.2010. N2O emissions from a tea field in subtropical China.19th World Congress of Soil Science, Soil Solutions for a Changing World. August 1-6, Brisbane, Australia. pp:161-163
    Ghoshal N, Singh KP.1995. Singh. Effects of farmyard manure and inorganic fertilizer on the dynamics of soil microbial biomass in a tropical agroecosystem. Biology and Fertility of Soils,19(2-3):231-238
    Gogoi B, Baruah KK.2011. Nitrous oxide emission from tea (Camellia sinensis (L.) O. kuntze)-planted soils of North East India and soil parameters associated with the emission. Current Science,101 (4):531-536
    Gonzalez-Prieto SJ, Carballas M, Carballas T.1992. Incorporation of the degradation products of 14C, 15N-Glycine in various forms of organic carbon and nitrogen in two acid soils. Soil Biology & Biochemistry,24:199-208
    Gosling P, Shepherd M.2005. Long-term changes in soil fertility in organic arable farming systems in England with particular reference to phosphorus and potassium. Agriculture Ecosystem and Environment,105:425-432
    Guindon S, Gascuel O.2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology,52(5):696-704.
    Hall AD, Miller NHJ, Gimmingham CT.1907. Nitrification in acid soils. Proceedings Royal Society of London,80:196-212
    Han WY, Ma LF, Shi RZ, Ruan JY, Kemmitt SJ.2008. Nitrogen dynamics during the transformation of slow release fertilizers and their effects on tea yield and quality. Journal of the Science of Food and Agriculture,88:839-846
    Han WY, Shi YZ, Ma LF, Ruan JY, Zhao FJ.2007. Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis L). Chemosphere,66:84-90
    Han WY, Zhao FJ, Shi YZ, Ma LF, Ruan JY.2006. Scale and causes of lead contamination in Chinese tea. Environmental Pollution,139:125-132
    Han WY, Xu YW, Li Q.2001. Effect of Mulching and Organic Fertilizers on Soil Fertility and the Yield and Quality of Tea in an Organic Conversion Tea Field. Proceedings of the Fifth IFOAM-Asia Scientific Conference, Hangzhou, China, pp:130-137
    Hankinson TR, Schmidt EL.1984. Examination of an acid forest soil for ammonia-and nitrite-oxidizing autotrophic bacteria. Canadian Journal of Microbiology,30:1125-1132
    Hart SC, Stark JM, Davidson EA, Firestone MK.1994:Nitrogen mineralization, immobilization, and nitrification. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabi A, Wollum A (Eds.). Methods of Soil Analysis Part 2. Microbiological and Biochemical Properties, Eds. RW Weaver et al., pp 985-1018. Soil Science Society of America, Madison.
    Hattenschwiler S, Vitousek PM.2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution,15:238-243
    Hayatsu M, Kosuge N.1993. Autotrophic nitrification in acid tea soils. Soil Science and Plant Nutrition,39:209-217
    Hayatsu M, Tago K, Saito M.2008. Various players in the nitrogen cycle:Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition,54:33-45
    Hayatsu M.1993. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil Science and Plant Nutrition,39:219-226
    He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M, Di HJ.2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology,9:2364-2374
    He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M, Di HJ.2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology,9:2364-2374
    Hirono Y, Watanabe I, Nonaka K.2009. Trends in water quality around an intensive tea-growing area in Shizuoka, Japan. Soil Science and Plant Nutrition,55:783-792
    Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP.2011. Nonlinear nitrous oxide response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology,17: 1140-1152
    Hooper AB, Vannelli T, Bergmann DJ.1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek,71:59-67
    Hyde BP, Hawkins MJ, Fanning AF, Noonan D, Ryan M, O'Toole P, Carton OT.2006. Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland. Nutrient Cycling in Agroecosystems,75:187-200
    Hyman M R, Wood P M.1985. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochemistry Journal,227:719-725
    Ii H. Hirata T, Matsuo H, Nishikawa M, Tase N.1997. Surface water chemistry, particularly concentrations of NO3- and DO and (?)15N values near a tea plantation in Kyushu, Japan. Journal of Hydrology,202:341-352
    Insam H, Domsch KH.1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology,15:177-188
    Insam H, Parkinson D, Domsch KH.1989. Influence of macroclimate on soil microbial biomass Soil Biology & Biochemistry,21:211-221
    International Tea Committee (ITC).2011. Annual Bulletin of Statistics.
    Inubushi K, Naganuma H, Kitahara S.1996. Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols. Biology and Fertility of Soils,23:292-298
    IPCC,2006. Volume 4 Agriculture, Forestry and Other Land Use. In:Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. (Eds.) 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.
    IPCC,2007. Climate change 2007:the physical science basis. In:Solomon S, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. (Eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA, p.996.
    IPCC.2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Kanagawa, Japan.
    Ishaque M, Cornfield AH.1972. Nitrogen mineralization and nitrification during incubation of East Pakistan'tea' soils in relation to pH. Plant and Soil,37:91-95
    Jenkinson DS, Ladd JN.1981. Microbial biomass in soil:measurement and turnover. In:Paul EA, Ladd JN (eds). Soil biochemistry. New York: Marcel Dekker, pp 415-471
    Jenkinson DS, Oades JM.1979. A method for measuring adenosine triphosphate in soil. Soil Biology & Biochemistry,11:193-199
    Jenkinson DS.1988. Determination of microbial biomass nitrogen and carbon in soil. In:Wilson, JT (Ed). Advances in Nitrogen Cycling in Agricultural Ecosystems. Commonwealth Agricultural Bureau International, Wallingford, pp:368-386
    Jiang QQ, Bakken LR.1999. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiology Ecology,30:171-186
    Joergensen RG, Brookes PC.1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biology & Biochemistry,22:1023-1027
    Joergensen RG, Castillo X.2001. Interrelationships between microbial and soil properties in young volcanic ash soils of Nicaragua. Soil Biology & Biochemistry,33:1581-1589
    Joergensen RG, Kiibler H, Meyer B, Wolters V.1995. Microb(?)al biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biology and Fertility of Soils,19:215-219
    Jumadi O, Hala Y, Inubushi K.2005. Production and emission of nitrous oxide and responsible microorganisms in upland acid soil in Indonesia. Soil Science and Plant Nutrition,51 (9): 693-696
    Kanazawa S, An GH, Kaizu T.2005. Effects of curtailment of nitrogen fertilizer on biological properties and tea leaf yield in acid tea field soils. Soil Science and Plant Nutrition,51 (5): 675-677
    Kanazawa S, Chau NTT, Miyaki S.2005. Identification and characterization of high acid tolerant and aluminum resistant yeasts isolated from tea soils. Soil Science and Plant Nutrition,61 (5). 671-674
    Katyal JC, Cater MF and Vlek PLG.1988. Nitrification activity in submerged soil and its relation to denitrification loss. Biology and Fertility of Soils,7:16-22
    Keen G A, Prosser J I.1987. Interrelationship between pH and surface growth of Nitrobacter. Soil Biology & Biochemistry,19:665-672
    Kemmitt SJ, Wright D, Goulding KWT, Jones DL.2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry,38:898-911
    Kemmitt SJ, Wright D, Jones DL.2005. Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biology & Biochemistry,37:867-875
    Khalil MI, Rahman MS, Schmidhalter U, Olfs HW.2007. Nitrogen fertilizer-induced mineralization of soil organic C and N in six contrasting soils of Bangladesh. Soil Science and Plant Nutrition,170:210-218
    Khan SA, Mulvaney RL, Brooks PD.1998. Diffusion methods for automated nitrogen-15 analysis using acidified disks. Soil Science Society of America Journal,62:406-412.
    Kiml YG, Ryul HS, Leel JH.2002. Nitrogen leaching volume based on soil property and fertilization method in Jeju Island's tea gardens. Proceedings of International Tea Symposium, Japan. pp:187-190
    Kirkham D, Bartholomew WV.1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Proceedings,18:33-34
    Koga K, Suehiro Y, Matsuoka ST, Takahashi K.2003. Evaluation of growth activity.of microbes in tea field soil using microbial calorimetry. Journal of Bioscience and Bioengineering,95(5): 429-434
    Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WR, Preston CM.2004. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biology & Biochemistry,36:309-321
    Laverman AM, Speksnijder AG, Braster M, Kowalchuk GA, Verhoef HA, Van Verseveld HW. 2001. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogensaturated forest soil. Microbial Ecology,42:35-45
    Leifeld J, Fuhrer J.2010. Organic Farming and Soil Carbon Sequestration: What Do We Really Know About the Benefits? Journal of Human Environment,39:585-599
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,442: 806-809
    Liu XJ, Mosier AR, Halvorson AD, Zhang FS.2006. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil,280:177-188
    Liu YT, Li Y, Wan Y, Chen D, Gao Q, Qin X.2011. Nitrous oxide emissions from irrigated and fertilized spring maize in semi-arid northern China. Agriculture Ecosystem and Environment, 141:287-295
    Mader P, FlieBbach A, Dubois D, Gunst L, Fried P, Niggli U.2002. Soil fertility and biodiversity in organic farming. Science,296:1694-1697
    Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA.2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature,461: 976-979
    Martikainen PJ.1985. Numbers of autotrophic nitrifiers and nitrification in fertilized forest soil. Soil Biology & Biochemistry,17:245-248
    Matsuzaka E, Nomura N, Maseda H.2003. Participation of nitrite reductase in conversion of to in a heterotrophic nitrifier, Burkholderia cepacia NH-17, with denitrification activity. Microbes Environment,18:203-209
    Mendum TA, Sockett RE, Hirsch PR.1999. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the β subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Applied Environmental Microbiology,66: 4155-4162
    Meng L, Ding W, Cai Z.2005. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology & Biochemistry,37:2037-2045
    Morita A, Ohta M, Yoneyama T.1998. Uptake, transport and assimilation of 15N-nitrate and 15N-ammonium in tea (Camellia sinensis L.) plants. Soil Science and Plant Nutrition,44: 647-654
    Muller C, Stevens RJ, Laughlin RJ, Jager HJ.2004. Microbial processes and the site of N2O production in a temperate grassland soil. Soil Biology & Biochemistry,36:453-461
    Nicol GW, Leininger S, Schleper C, Prosser JI.2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology,10:2966-2978
    Morita A, Takano H, Oota M, TadakatsuY.2002. Nitrification and denitrification in an acidic soil of tea (Camellia sinensis L.) field estimated by (?)15N values of leached nitrogen from the soil columns treated with ammonium nitrate in the presence or absence of a nitrification inhibitor and with slow-release fertilizers. Soil Science and Plant Nutrition,48(4):585-593
    Mu Z, Kimura SD, Toma Y, Hatano R.2008. Nitrous oxide fluxes from upland soils in central Hokkaido, Japanese Journal Environmental Science,20:1312-1322
    Murphy J, Riley JP.1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta,27:31-36
    Nagele W, Conrad R.1990. Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O. FEMS Microbiology Ecology,74:49-58
    Nakasone H, Kuroda H, Kato T, Tabuchi T.2003. Nitrogen removal from water containing high nitrate nitrogen in a paddy field. Water Science & Technology,48(10):209-216
    Nicol GW, Leininger S, Schleper C, Prosser JI.2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology,10:2966-2978
    Nioh I, Isobe T, Osada M.1993. Microbial biomass and some biochemical characteristics of a strongly acid tea field soil. Soil Science and Plant Nutrition,39(4):617-626
    Norton JM, Stark JM.2011. Regulation and measurement of nitrification in terrestrial systems. In Methods in Enzymology,486, Klotz MG (Ed). Elsevier Inc. pp:343-368
    Nugroho RA, Roling WF, Laverman AM, Zoomer HR, Verhoef HA.2005. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbial Ecology,53:473-481.
    Oh K, Kato T, Li ZP, Li FY.2006. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide. Pedosphere,16:770-777
    Okada N, Nomura N, Nakajima-Kambe T, Uchiyama H.2005. Characterization of the aerobic denitrification in Mesorhizobium sp. strain NH-14 in comparison with that in related rhizobia. Microbes Environment,20:208-215
    Olsson P A.1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology,29:303-310
    Overrein LN.1967. Immobilization and mineralization of tracer nitrogen in forest raw humus 1. Effect of temperature on the interchange of nitrogen after addition of urea-, ammonium-, and nitrate-N15. Plant and Soil,27:1-19
    Pal R, Bhattacharyya P, Das P, Chakrabarti K, Chakraborty A. Kim K.2007. Relationship between acidity and microbiological properties in some tea soils. Biology and Fertility of Soils,44: 399-404
    Pandey A, Palni LMS.1996. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location. Biology and Fertility of Soils,21:131-137
    Pansombat K, Kanazawa S, Horiguchi T.1997a. Microbial ecology in tea soils.1. Soil properties and microbial populations. Soil Science and Plant Nutrition,43:317-327
    Pansombat K, Kanazawa S, Horiguchi T.1997b. Microbial ecology in tea soils.2. Soil protease activity. Soil Science and Plant Nutrition,43:431-438
    Paul EA, Clark FE.1989. Soil Microbiology and Biochemistry. San Diego, California: Academic Press
    Pennington PI, Ellis RC.1993. Autotrophic and heterotrophic nitrification in acidic forest and native grassland soils. Soil Biology and Biochemistry,25:1399-1408
    Philippot L.2002. Denitrifying genes in bacterial and archaeal genomes. Biochimica Et Biophysica Acta-Gene Structure and Expression,1577(3):355-376
    Prosser JI.1989. Autotrophic nitrification in bacteria. Advances in Microbial Physiology,30: 125-181
    Prosser JI, Nicol GW.2008. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology,10:2931-2941
    Reganold JP, Palmer AS, Lockhart JC, Macgregor AN.1993. Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 260:344-349
    Robertson GP.1982a. Nitrification in forested ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,296:445-457
    Robertson GP.1982b. Factors regulating nitrification in primary and secondary succession. Ecology,63:1561-1573
    Rotthauwe JH, Witzel KP, Liesack W.1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied Environmental Microbiology,63:4704-4712
    Sandanam S, Krishnapillai S, Sabaratnam J.1978. Nitrification of ammonium sulphate and urea in an acid red yellow podzolic tea soil in Sri Lanka in relation to soil fertility. Plant and Soil,49: 9-22
    Sanders JR.1983. The effect of pH on the total and free ionic concentrations of manganese, zinc, and cobalt in soil solutions. Journal of Soil Science,34:315-323
    Sanger A, Geisseler D, Ludwig B.2011. Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry. Biology and Fertility of Soils,47:249-259
    Scheer C, Wassmann R, Kienzler K, Ibragimov N, Eschanov R.2008. Nitrous oxide emissions from fertilized, irrigated cotton(Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biology & Biochemistry 40: 290-301
    Schleper C, Jurgens G, Jonuscheit M.2005. Genomic studies of uncultivated archaea. Nature Review of Microbiology,3:479-488
    Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ.2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology,10:1601-1611.
    Shoun H, Kim D H, Uchiyama H, Sugiyama J.1992. Denitrification by fungi. FEMS Microbiology Letters,94(3):277-281
    Singh BK, Nazaries L, Munro S, Anderson IC, Campbell CD.2006. Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Applied and Environmental Microbiology,72: 7278-7285
    Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F.1998. Effects of temperature, water content and nitrogen fertilization on emissions of nitrous oxide by soils. Atmospheric Environment,32:3301-3309
    Soil Association.2009. Soil carbon and organic farming: a review of the evidence of agriculture's potential to combat climate change. http://www.ifoam.org/growing_organic/1_arguments_for_oa/environmental_benefits/ pdfs/SA_SoilCarbonandorganicfarming.pdf
    Sorokin D, Tourova T, Schmid MC, Wagner M, Koops HP, Kuenen JG, Jetten M.2001. Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Archive of Microbiology,176: 170-177
    Sparling GP.1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research,30:195-207
    Sparling GP.1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In:Pankhurst CE, Doube BM, Gupta VVSR (Eds), Biological Indicators of Soil Health. CAB International, Wallingford, pp 97-119
    Stams AJM, Flameling EM, Marnette EC.1990. The importance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbiology Ecology,74:337-344
    Stark C, Condron LM, Stewart A, Hong JD, Callaghan MO.2007. Effects of past and current crop management on soil microbial biomass and activity. Biology and Fertility of Soils,43:531-540
    Stark JM, Hart SC.1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature,385:61-64
    Ste-Marie M, Pare D.1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology & Biochemistry,31:1579-1589
    Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mandic-Mulec I, Prosser JI.2010. Thaumarchaeal Ammonia Oxidation in an Acidic Forest Peat Soil Is Not Influenced by Ammonium Amendment. Applied and Environmental Microbiology,76:7626-7634
    Su F, Takaya N, Shoun H.2004. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor. Bioscience, Biotechnology & Biochemistry,68:473-475
    Tanimoto T, Hatano K, Kim DH, Shoun H.1992. Co-denitrification by the denitrifying system of the fungus Fusarium oxysporum. FEMS Microbiology Letters,93(2):177-180
    Tanner CB, Jackson ML.1947. Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration. Soil Science Society of America Proceedings,12:60-65
    Tate KR, Speir TW, Ross D J, Parfitt RL, Whale KN, Cowling JC.1991. Temporal variations in some plant and soil P pools in two pasture soils of widely different P fertility status. Plant and Soil,132:219-232
    Tate RL.1995. Soil Microbiology p 398, Wiley New, York.
    Tinsley J, Taylor TJ, Moore JH.1951. The determination of carbon dioxide derived from carbonates in agricultural and biological materials. Analyst,76:300-310
    Tokuda S, Hayatsu M.2000. Nitrous oxide production from strongly acid tea field soils. Soil Science and Plant Nutrition,46(4):835-844
    Tokuda S, Hayatsu M.2001. Nitrous oxides emission potential of 21 acidic tea field soils in Japan. Soil Science and Plant Nutrition,47:637-642
    Tokuda S, Hayatsu M.2002. Soil microbial biomass and fluorescein diacetate hydrolytic activity in Japanese acidic tea field soils. Soil Science and Plant Nutrition,48:865-869
    Tokuda S, Hayatsu M.2004. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil Science and Plant Nutrition,50:365-374
    Troelstra S R, Wagenaar R, De Boer W.1990. Nitrate production in Dutch heathland soils. I. General soil characteristics and nitrification in undisturbed soil cores. Plant and Soil,127: 179-192
    Tsuruta H.2001. Establishment of GHGs reduction model. Incorporated foundation, Society for the Study of Agricultural Technology. A Report on an investigation of how to quantify the amount of Greenhouse Gases Emissions reduced in 2000
    Valentine DL.2007. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nature Reviews Microbiology,5:316-323
    van Groenigen JW, Velthof GL, van der Bolt FJE, Vos A, Kuikman PJ.2005. Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung. Plant and Soil,273:15-27
    Vance ED, Brookes PC, Jenkinson DS.1987. An extraction method for measuring soil microbial biomass C. Soil Biolology & Biochemistry,19:703-707
    Venterea RT, Rolston DE.2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology,6:303-316
    Walker N, Wickramasinghe KN.1979. Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil Biolology & Biochemistry,11:231-236
    Wang YA, Ke XB, Wu LQ, Lu YH.2009. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Systematic and Applied Microbiology,32:27-36
    Wardle DA.1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soils. Biological Reviews,67:321-358
    Watanabe I, Tokuda S, Nonaka K.2002. Nutrients leaching losses from lysimeter-grown tea plants fertilized at two rates of nitrogen. Tea Research Report, pp:94:1-6.
    Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW.2002. Managing soil fertility in organic farming systems. Soil Use and Management 18:239-247
    Weber DF, Gainey PL.1962. Relative sensitivity of nitrifying organisms to hydrogen ions in soils and solutions. Soil Science,94:138-145
    Webster G, Embley TM, Prosser JI.2002. Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Applied Environmental Microbiology,68:20-30
    Wickramasinghe KN, Rodgers GA, Jenkinson DS.1985. Nitrification in acid tea soils and a neutral grassland soil:effects of nitrification inhibitors and inorganic salts. Soil Biolology & Biochemistry,17:249-252
    Wickremasinghe KN, Sinvasubramaniam S, Nalliah P.1981. Urea hydrolysis in some tea soils. Plant and Soil,62:473-477.
    Wilkinson SG.1988. Gram-negative bacteria. In:Ratledge C, Wilkinson SG (eds). Microbial lipids. London:Academic Press, pp 299-408
    Wood PM.1987. Mono-oxygenase and free radical mechanisms for biological ammonia oxidation. In:Cole JA, Ferguson SJ (Eds). The Nitrogen and Sulphur Cycles. Proceeding Symposium 42 of the Society for General Microbiology Cambridge University Press, Cambridge, pp: 219-243.
    World Health Organization (WHO).1970. European Standards for Drinking Water,2nd ed., WHO, Geneva.
    Wu J, He ZL, Wei WX, O'Donnell AG, Syers JK.2000. Quantifying microbial biomass phosphorus in acid soils. Biology and Fertilizer of Soils,32:500-507
    Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC.1990. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology & Biochemistry,22:1167-1169
    Xing SH, Chen CR, Zhang H, Zhou BQ, Nang ZM, Xu ZH.2011. Genotype and slope position control on the availability of soil soluble organic nitrogen in tea plantations. Biogeochemistry, 103:245-261
    Xue D, Gao YM, Yao HY, Huang CY.2009. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils. Journal of Environmental Sciences,21: 1225-1229
    Xue D, Huang XD, Yao HY, Huang CY.2010. Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils. Journal of Environmental Sciences,22(8):1253-1260
    Xue D, Yao HY, Huang CY.2006. Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant and Soil,288: 319-331
    Yamulki S, Harrison RM, Goulding KWT, Webster CP.1997. N2O, NO and NO2 fluxes from a grassland:effect of soil pH. Soil Biology & Biochemistry,29:1199-1208
    Yan T, Yang L, Campbell CD.2003. Microbial biomass and metabolic quotient of soils under different land use in the three Gorges reservoir area. Geoderma 115:129-138
    Yao H, He Z, Huang C.2001. Phospholipid fatty acid profiles of Chinese red soils with varying fertility levels and land use histories. Pedosphere,11:97-103
    Yao H, He Z, Wilson MJ, Campbell CD.2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology,40: 223-237
    Yao H, Liu Y, Xue D.2006. Influence of tea cultivation on soil microbial biomass and substrate utilization pattern. Communications in Soil Science and Plant Analysis,37:641-651
    Yokoyama K, Kimura H, Shinozaki H.2003. Ammonia-oxidizing activity under extremely oligotrophic conditions in strongly acid tea soils. Soil Science and Plant Nutrition,49: 711-718
    Yokoyama K, Ohama T.2005. Effect of inorganic N composition of fertilizers on nitrous oxide emission associated with nitrification and denitrification. Soil Science and Plant Nutrition, 51(7):967-972
    Zagal E, Munoz C, Quiroz M, Cordova C.2009. Sensitivity of early indicators for evaluating quality changes in soil organic matter. Geoderma,151:191-198
    Zelles L, Bai QY, Beck T, Beese F.1992. Signature fatty-acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biology & Biochemistry,24:317-323
    Zhang W, Mo J, Yu G, Fang Y, Li D, Lu X, Wang H.2008. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 306:221-236
    鲍士旦主编.2000.土壤农化分析,北京:中国农业出版社
    蔡祖聪,赵维.2009.土地利用方式对湿润亚热带土壤硝化作用的影响.土壤学报,46:795-801
    陈国潮,何振立.1998.红壤不同利用方式下的微生物量研究.土壤通报,29(6):276-278
    陈国潮,何振立,黄昌勇.2001.菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究.土壤学报,38(1):75-80
    单武雄,罗文,肖润林,何秋虹,陈佩,徐华勤.2010.连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响.中国生态农业学报,18(3):472-476
    邓晓保.1987.热带胶茶林群落中土壤动物的初步调查.生态学杂志,6(2):18-20
    邓欣,刘红艳,谭济才,陈辉玲,孙少华.2006.有机茶园土壤微生物区系年度变化规律研究.中国农学通报,22(5):389-392
    邓欣,谭济才,尹丽蓉,任佑华,刘红艳.2005.不同茶园土壤微生物数量状况调查初报.茶叶通讯,32(2):7-9
    邓欣,刘红艳,谭济才,陈辉玲,孙少华.2006.不同种植年限有机茶园土壤微生物群落组成及活性比较.湖南农业大学学报(自然科学版),32(1):53-56
    丁瑞兴,李庆康,宋木兰.1988.苏、皖南部丘陵区茶园土壤肥力性质的研究.土壤通报,19(5):193-196
    范晓晖,朱兆良.2002.旱地土壤中的硝化-反硝化作用.土壤通报,33(5):385-391
    方晶晶,马传明,刘存富.2010.反硝化细菌研究进展.环境科学与技术,33(6E):206-210,264
    高旭晖,胡贤春,梁丽云.2006.茶园土壤真菌主要种群及其分布规律的初步研究.福建茶叶,4:15-16
    高杨梅.2010.茶园土壤中氨氧化古菌的丰富度和多样性的研究.浙江大学硕士学位论文.
    葛德永,姚槐应,黄昌勇.2007.茶园土壤耐酸铝微生物的分离鉴定及其耐铝特性研究.浙江大学学报(农业与生命科学版),33(6):626-632
    韩文炎,李强.2002.茶园施肥现状与无公害茶园施肥技术.中国茶叶,2002,24(6):29-31
    韩文炎,马立锋,石元值,阮建云.2007.茶树控释氮肥的施用效果与合理施用技术研究.植物营养与肥料学报,13(6):1148-1155
    韩文炎,阮建云,林智,吴洵,许允文,石元值,马立峰.2002.茶园土壤主要营养障碍因子及系列专用肥的研制.茶叶科学,22(1):70-74
    洪祯瑞,王益福,方月珍,董金甫,李能树.1985.茶树根际微生物区系的研究.茶叶科学,5(2):11-18
    胡诚,曹志平,叶钟年,吴文良.2006.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报,26(3):808-814
    胡磊,杨广,尤民生.2010.茶园土壤微生物总DNA不同提取方法的比较基因组学与应用生物学,29(2):361-368
    黄承才.2002.马尾松林和茶园土壤微生物生物量垂直分布研究.绍兴文理学院学报,22(1):62-65
    黄瑶,肖润林,杨知建,徐华勤.2009.不同培肥措施对丘陵红壤茶园土壤微生物量碳的影响.现代生物医学进展,9(1):134-137
    黄祖法,温琼英.1982.茶树根表微生物的初步调查.中国茶叶,6:9-11
    姜虹.沙丽清.2008.云南澜沧县景迈古茶园土壤养分和土壤酶活性研究.茶叶科学,28(3):214-220
    来璐.赵小蓉,李贵桐,林启美.2006.土壤微生物量磷及碳磷比对加入无机磷的响应.中国农业科学,39(10):2036-2041
    李辉信,胡锋,刘满强,蔡贵,范晓晖.2000.红壤氮素的矿化和硝化作用特征.土壤,32(4):194-197
    李庆康,丁瑞兴,黄瑞采.1990.黄棕壤植茶后微生物数量和分布的变化.茶叶,16(4):4-6,26
    李香真,曲秋皓.2002.蒙古高原草原土壤微生物量碳氮特征.土壤学报,39(1):97-104
    李鑫,巨晓棠,张丽娟,万云静,刘树庆.2008.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,19(1):99-104
    李远华,郑芳,倪德江,杨江帆,石玉涛.2011.茶树接种VA菌根的生理特性研究.茶叶科学,31(6):504-512
    李忠佩.1997.亚热带茶园土壤的某些生物化学性状研究.热带亚热带土壤科学,6(3):62-170
    粱慧玲,董尚胜.2001.茶园土壤微生物研究现状.茶叶,27(4):3-5
    梁月荣,陆建良,刘祖生.1999.茶树根际土壤抗酸铝微生物的分离与初步鉴定.茶叶科学,19(2):110-114
    林先贵主编.2010.土壤微生物研究原理与方法.北京:高等教育出版社.
    林智.1993.VA菌根对茶树生长和矿质营养元素吸收的影响.茶叶科学,13(1):15-20
    刘红艳,张亚莲,邓欣,彭细桥,常硕其,傅海平.2007.小同栽培方式有机茶园土壤微生物群落组成、活性及脲酶活性比较.福建茶叶,4:17-18
    刘敏英,郑子成,李廷轩.2011.茶园土壤团聚体中微生物量碳、氮的分布特征.中国农业科学,44(15):3162-3168
    刘文娜,吴文良,王秀斌,王明新,毛文峰.2006.不同土壤类型和农业用地方式对土壤微生物量碳的影响.植物营养与肥料学报,12(3):406-411
    刘志培,刘双江.2004.硝化作用微生物的分子生物学研究进展.应用与环境生物学报,10(4):521-525
    刘智峰.2011.茶园原生动物群落结构与土壤质量评价.安徽农业科学,39(12):7014-7015,7022
    马立锋,石元值,阮建云.2000.苏、浙、皖茶区茶园土壤pH状况及近十年来的变化.土壤通报,31:205-207
    潘映华,李良谟,伍期途,李振高.1988.不同利用方式下红壤的硝化和反硝化活性研究.土壤,4:184-187
    彭福元,张亚莲,曾跃辉,罗淑华.1993.红壤茶园土壤酶活性深度分布特性研究.福建茶叶,4:23-26
    彭萍,李品武,杨水平,侯渝嘉,徐泽,胡翔.2006.施肥对茶园土壤微生物及土壤肥力的影响.西南农业学报,19(6):1096-1099
    彭仁,郭圣茂,孙志云.2008.茶多酚对土壤硝化作用的影响研究.中国土壤与肥料,4:50-52
    任全,单武雄,肖润林,杨知建,徐华勤,罗文.2007.不同施肥措施对红壤丘陵茶园土壤酶活性及呼吸强度的影响.农业现代化研究,28(4):498-500
    中燕,郑子成,李廷轩.2010.茶园土壤动物群落特征及其与土壤理化特性的关系.浙江大学学报(农业与生命科学版),36(5):503-512
    中燕,郑子成,李廷轩,吴德勇.2009.茶园土壤动物群落结构特征研究.茶叶科学,29(4): 275-281
    沈程文,肖润林,徐华勤,夏艳君,任全,黄瑶.2006.覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响.水土保持学报,20(3):141-144
    孙海新,刘训理.2004.茶树根际微生物研究.生态学报,24(7):1353-1357
    谭周进,戴素明,谢桂先,田慧.2006.旅游踩踏对土壤微生物生物量碳、氮、磷的影响.环境科学学报,26(11):1921-1926
    田永辉,魏杰.2001.不同无性系茶树品种的根际细菌及酶活性动态研究.西南农业学报,14(4):63-66
    田永辉,魏国雄,夏绍湄,卢天国.2000.土壤物理性状对茶树根际固氮微生物影响.蚕桑茶叶通讯,(1):6-8
    田永辉,魏杰,令狐昌弟,卢天国.2002.不同基因型茶树根系活力及根际土壤酶活性研究.贵州大学学报(农业与生物科学版),21(3):219-223
    田永辉,魏杰,卢天国.2001.不同群落茶树根际微生物及生态特征.贵州茶叶,(2):20-23
    田永辉.2000.不同树龄茶树根际固氮菌组成及多样性研究.福建茶叶,(3):19-21
    田永辉.2001.茶树根际固氮微生物固氮效能研究.蚕桑茶叶通讯,(1):12-14
    王汇海,李德厚.2003.胶茶人工群落在改善山地十壤生态环境上的作用.山地学报,21(3):318-323
    王国兵,王丰,金裕华,汪家社,阮宏华.2011.武夷山不同海拔植被土壤微生物量N时空变异.生态学杂志,30(4):784-789
    王世强,胡长玉,程东华,廖万有,李娜,陈玲,房江育.2011a.调节茶园土壤pH对其土著微生物区系及生理群的影响.土壤,43(1):76-80
    王世强,胡长玉,程东华,廖万有,赵灿,葛慧丽,房江育.2011b.A13+胁迫对茶园土壤微生物区系及生理群的影响.环境污染与防治,33(6):36-38,43
    王守生,何首林,王德军,方德华,吴光权,别之龙.1997.VAM真菌对茶树营养生长和茶叶品质的影响.土壤学报,34(1):97-102
    工晓萍,吴洵,俞永明1989. Study on activities of phosphatases in red earth in tea field茶叶科学,9(2):99-108
    工晓萍.1994.茶根分泌有机酸的分析研究初报.茶叶科学,14(1):17-22
    吴金水,肖和艾,陈桂秋,黄敏.2003.旱地土壤微生物磷测定方法研究.土壤学报,40(1):70-78
    吴金水,林启美,黄巧云,肖和艾.2006.土壤微生物生物量测定方法及其应用.北京:气象 出版社.pp 60-62
    吴全,陆锦时.1999.四川茶园土壤中脲酶活性研究.土壤肥料,1:30-32
    徐华勤,肖润林,宋同清,罗文,任全,黄瑶.2008.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响.生物多样性,16(2):166-174
    徐华勤,肖润林,向佐湘,黄瑶,罗文,秦钟.2010.小同生态管理措施对丘陵茶园土壤微生物生物量和微生物数量的影响.土壤通报,41(6):1355-1359
    徐华勤,肖润林,杨知建,宋同清,夏艳君,罗文,李盛华.2007.不同培肥措施对红壤茶园土壤微生物量碳的影响.生态学杂志,26(7):1009-1013
    徐秋芳,田甜,吴家森,姜培坤.2011.退化板栗林(套)改种茶树和毛竹后土壤生物学性质变化.水上保持学报,25(3):180-184
    薛冬,姚槐应,黄昌勇.2005.植茶年龄对茶园土壤微生物特性及酶活性的影响.水土保持学报,19(2):84-87
    薛冬,姚槐应,黄昌勇.2007a.不同利用年限茶园土壤矿化、硝化作用特性.土壤学报,44(2):373-378
    薛冬,姚槐应.黄昌勇.2007b.茶园土壤微生物群落基因多样性.应用生态学报,18(4):843-847
    薛冬.2007.茶园土壤微生物群落多样性及硝化作用研究.浙江大学博士学位论文
    薛菁芳,高艳梅,江景宽,付时丰,祝凤春.2007.土壤微生物量碳氮作为土壤肥力指标的探讨.土壤通报,38(2):247-250
    杨亚军主编.2005.中国茶树栽培学.上海:上海科学技术出版社
    姚槐应、黄昌勇主编.2006.土壤微生物生态学及其实验技术.北京:科学出版社
    姚槐应.2002.不同利用年限茶园土壤的化学及微生物生态特征研究.浙江农业科学,3:129-131
    十亚伟,张丽霞,韩晓阳.2011.尿素不同配施处理对棕壤茶园土壤尿素转化及硝化作用影响的研究.植物营养与肥料学报,17(5):1278-1282
    俞慎,何振立,陈国潮,黄昌勇.2003a.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响.土壤学报,40(3):433-439
    俞慎,何振立,张荣光,陈国潮,黄昌勇,朱炳良.2003b.红壤茶树根层土壤基础呼吸作用和酶活性.应用生态学报,14(2):179-183
    张于光,张小全,肖烨.2006.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响.应 用生态学报,17(11):2029-2033
    章铁,刘秀清,孙晓莉.2008.栗茶间作模式对土壤酶活性和土壤养分的影响.中国农学通报,24(4):265-268
    赵峰,谌斌,李明顺.2008.锰及锰镉复合污染对锰矿区茶园土壤酶活性的影响.广西师范大学学报:自然科学版,26(4):128-131
    赵先丽,吕国红,于文颖,李丽光,李昌杰.2010.辽宁省不同土地利用对土壤微生物量碳氮的影响.农业环境科学学报,29(10):1966-1970
    朱志建,姜培坤,徐秋芳.2006.不同森林植被下土壤微生物量碳和易氧化态碳的比较.林业科学研究,19(4):523-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700