除草剂氟磺胺草醚对土壤酶、微生物与蚯蚓的生态毒理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟磺胺草醚是一种二苯醚类除草剂,广泛应用于大豆、花生等作物田用来防除阔叶性杂草。该除草剂是长残留除草剂,使用不当或长期大量重复使用可以对后茬作物产生药害,并且可能会对土壤生态环境造成不利影响。因此本文利用室内培养实验,采用常规生理生化方法结合变性梯度凝胶电泳(DGGE)和限制性片段长度多态性(T-RFLP)等分子生物学技术评价了氟磺胺草醚对土壤酶和土壤微生物的生态效应。同时还研究了氟磺胺草醚对土壤中生物标志物蚯蚓的氧化胁迫和DNA损伤,为合理评价氟磺胺草醚的环境生态效应提供了科学依据。主要研究结果如下:
     1.利用HPLC法测定了氟磺胺草醚在土壤中的残留动态,结果表明氟磺胺草醚在受试土壤中的消解动态符合一级动力学方程,降解半衰期为38.9d。采用平板计数法测定了不同浓度氟磺胺草醚对土壤可培养微生物数量的影响,结果表明培养40d内氟磺胺草醚在土壤中浓度为10、100和500μg/kg时对土壤中细菌和放线菌表现出明显的刺激作用,对真菌表现出轻微的抑制作用,培养60d后,细菌、放线菌和真菌数量均回到对照水平,整体来说实验浓度下的氟磺胺草醚对土壤微生物毒性较小。
     2.本文测定了低剂量氟磺胺草醚对土壤磷酸酶、脲酶、脱氢酶和p-葡糖苷酶的影响。结果发现氟磺胺草醚对土壤中酸性磷酸酶、碱性磷酸酶和β-葡糖苷酶在染毒前30d有刺激作用,对土壤脲酶呈现出先抑制再刺激逐渐恢复至对照水平的作用,而土壤脱氢酶在60d的实验周期内均呈现出刺激作用,且呈现剂量效应关系。实验结果表明土壤脲酶和脱氢酶对低剂量氟磺胺草醚较为敏感,可以作为评价氟磺胺草醚对土壤生态效应影响的指标之一
     3.采用PCR-DGGE分子指纹技术研究了低剂量(≤500μg/kg)氟磺胺草醚在不同培养时间对土壤中细菌和真菌群落结构的影响。结果发现在整个试验周期(60d)氟磺胺草醚对土壤中细菌生长起到一定的刺激作用,特别是对Emticicia、Luteibacter、 Bacillus和Pontibacter菌属代表的细菌生长刺激作用较强,且在某个实验阶段呈现出一定的剂量效应关系,说明低剂量(≤500μg/kg)氟磺胺草醚不会对土壤中细菌有毒性作用,但从相似度指数上可以看到随土壤染毒浓度的提高相似度指数与对照相比相似性逐渐变小,这说明氟磺胺草醚可以在一定程度上改变土壤中细菌的群落结构;氟磺胺草醚对真菌群落结构也有一定程度的影响,在氟磺胺草醚处理20d以内,10μg/kg的氟磺胺草醚对土壤中真菌生长有刺激作用,而100和500μg/kg氟磺胺草醚对土壤真菌有轻微的抑制作用,表现出轻微的毒性效应,当培养30d以后,各浓度氟磺胺草醚和对照相比均对土壤中Trichosporon、Ascobolus和一些未培养的真菌生长起到刺激作用,且呈现一定的剂量效应关系。
     4.采用PCR-RFLP技术研究了低剂量(≤500μg/kg)氟磺胺草醚对土壤中细菌群落结构的影响。结果发现氟磺胺草醚施用后10d对土壤细菌影响较大,对土壤中不同细菌种群既有刺激作用也有抑制作用,但是从整体上刺激作用大于抑制作用;10d后对土壤细菌抑制作用基本消失,但在培养30天以内对土壤细菌的刺激作用仍然较为明显,该研究结果与平板计数和PCR-DGGE实验研究结果基本一致。在细菌种群多样性方面,氟磺胺草醚培养30d以内可以使土壤细菌多样性降低,但是可以使某些细菌种群的优势度增加,30d以后氟磺胺草醚对土壤细菌种群多样性的影响基本消失。在整个实验周期内TRF138菌群相对含量和对照相比均较高,这可能说明TRF138片段代表的细菌种群能够充分利用低剂量氟磺胺草醚作为能源,为筛选氟磺胺草醚降解菌株奠定了基础。
     5.利用OECD人工土壤研究了低剂量(≤500μg/kg)氟磺胺草醚对蚯蚓的氧化胁迫和DNA损伤,发现蚯蚓在氟磺胺草醚暴露前14d,体内抗氧化酶(SOD、CAT和POD)活性、ROS水平变化较为明显,除第14d在100和500、μg/kg氟磺胺草醚影响下蚯蚓体内SOD活性下降外,其余时间SOD、CAT和POD活性以及ROS水平均比对照水平高;低剂量氟磺胺草醚不能引起蚯蚓体内明显的脂质过氧化;彗星实验表明低剂量氟磺胺草醚施用前期(14d)可以引起蚯蚓体腔细胞的DNA损伤,但是DNA损伤程度多为轻微损伤和中度损伤。随着暴露时间的延长,在蚯蚓机体自我防御功能的保护下,氟磺胺草醚对蚯蚓的生态毒性逐渐消失。
Fomesafen is a diphenyl ether herbicide that is mainly used in soybean and peanut fields to control the broad-leaved weeds. The improper use, long-term use and large amounts use of fomesafen, long residual herbicide, caused not only carryover injury to sensitive crops but also potential damaged the soil ecosystem. To evaluate the safety of fomesafen on the soil environment, studies were conducted concerning its influences on soil enzymes and soil microorganisms by conventional physiological and biochemical methods and combining with the denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) technologies. In addition, the oxidative stress and DNA damage in the earthworm Eisenia fetida induced by low doses of fomesafen were also investigated. The main results were summarized as follows:
     1. The fomesafen was determined in culture soil by high-performance liquid chromatography (HPLC), which showed that the dissipation kinetics of fomesafen in soil was described using a first order kinetics model, the half-time was38.9d. Followed that, the soil microbe quantity in the soil samples treated with different doses of fomesafen were measured by the plate counting method. Results showed that the number of bacterial and actinomyces in the10,100and500μg/kg fomesafen treated soil were higher than those in the control groups, but the fungi was slightly inhibited in the40days of incubation. With the incubation time prolonged, the number of bacteria, actinomyces and fungi were gradually returned the control levels at60d. In the whole, low doses (≤500μg/kg) of fomesafen has less effect on the soil microorganism quantity
     2. Effect of low doses of fomesafen on soil enzyme activities under the laboratory simulation conditions was investigated. Five enzymes, i.e., Acid phosphatase, alkaline phosphatase, urease, dehydrogenase and β-glucosidase, were selected. The results found that the activities of acid phosphatase, alkaline phosphatase and P-glucosidase were significantly stimulated by the fomesafen in the30days of incubation. The activity of soil urease presents the effect of inhibit-stimulate-return to a control level. In the60days of incubation, the dehydrogenase activities of soils treated with fomesafen were higher that those of the controls, and showed a statistical dose-dependent relationship. Because of the sensitive to fomesafen, the soil urease and dehydrogenase can be used as one of the indicator to evaluate its soil ecological effect.
     3. The potential influences of fomesafen on soil bacterial and fungal community in brown soil were assessed by16S rDNA-PCR-DGGE. During the60days of incubation, fomesafen could stimulate the bacteria populations, especially for Emticicia, Luteibacter, Bacillus and Pontibacter. These mean that low doses (≤500μg/kg) of fomesafen had no toxicity on soil bacteria. But the Jacarrd indices calculated from DGGE indicated that the similarity gradually reduced with the increased of fomesafen concentration in soil compared to the controls. These showed that fomesafen could change the soil bacteria community structure in some extent. Soil fungi community was also affected by low doses of fomesafen. In the20days of incubation, soil fungi were stimulated by minimum concentration (10μg/kg) of fomesafen, but the inhibited effect was found at the higher concentrations (100and500μg/kg). After30days of incubation, DGGE profiles showed that Trichosporon、Ascobolus and uncultured fungi were simulated under the stresses of fomesafen.
     4. T-RFLP was used to assess the impact on soil bacterial community by low doses of fomesafen in this study. The soil bacterial was significantly affected by fomesafen during10days of incubation. Some soil bacterial floras were inhibited, but this inhibition effect gradually disappeared after days of10. Another some soil bacterial floras were always stimulated by fomesafen during the whole cultural period (60d). It was found that these findings were similar to results obtained through DGGE and plate counting method. The biodiversity of soil bacterial community (Shannon index, H') reduced during the30days of cultural period and then recovered to that in the control. The Simpson index was increased under the stress of fomesafen, which showed that fomesafen could stimulate the growth of some bacteria. The relative content of TRF138flora was always higher than that in the control. This showed that some strains could utilize fomesafen as the energy sources for growth. And this may be also providing the foundation for isolating fomesafen degrading bacterium.
     5. Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by low doses (≤500μg/kg) of fomesafen were investigated in the OECD soil. Compared to the control, the SOD activity increased on the3rd and7th days but decreased on the14th day due to treatment with100and500μg/kg of fomesafen. The activities of CAT and POD increased significantly on the3rd,7th and14th days of exposure. In addition, the ROS level was significantly enhanced throughout the entire experimental period. When exposure period was prolonged21and28days, the activities of SOD, CAT, and POD returned to the control levels. Slight increase of ROS could not effect the changes of three enzymes activity on the exposure days of21and28. Compared to the controls, MDA contents had no obvious changes, in addition to the seventh day had significance increase. Based on the results of the present study, low doses of fomesafen (≤500μg/kg) could not lead to oxidative stress and peroxidation in E. fetida after exposure of21days. The slightly DNA damage in earthworm coelomocytes was observed after treatment with low doses fomesafen in14days of exposure. With the extension of exposure time, the DNA damage in earthworm coelomocytes gradually disappeared under the defense mechanism of earthworm.
引文
曹锐.2009.毒死蜱及TCP对生物DNA的损伤和土壤微生物多样性的影响(M).山东农业大学
    陈林华,江吉红,杨正见,马云,刘维屏.蚯蚓生物标志物在农药污染评价中的应用[J].浙江农业学报,2010,22(1):130-134
    丁伟,曹丽娟,程茁.咪唑乙烟酸对大豆根瘤固氮酶和硝酸还原酶活性的影响[J].中国农业科学,2010,43(20):4192-4197
    封少龙,罗屿,钟远,谢朝云,孔志明.应用单细胞凝胶电泳技术测定农药对蚯蚓的DNA损伤[J].南京大学学报(自然科学版),2000,36(5):649-651
    葛芸英,陈松,胡兰,涂政.土壤细菌DNA提取及多样性分析的T-RFLP方法[J].微生物学通报,2008,35(1):131-136
    关松荫.土壤酶学研究方法[M].北京:农业出版社,1986
    郭江峰,陆贻通,孙锦荷.氟磺胺草醚在花生和大豆田中的残留动态[J].农业环境保护,2000,19(2):82-84
    胡元森,吴坤,李翠香,贾新成.黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2267-2273
    贾秀英,李喜梅,杨亚琴,胡凌飞,朱越峰Cu、Cr(Ⅳ)复合污染对蚯蚓急性毒性效应的研究[J].农业环境科学学报,2005,24:31-34
    开美玲,郭江峰,金仁耀,徐步进.氟磺胺草醚在模拟水生生态系统中的行为特征[J].农业环境科学学报,2005,24(3):486-489
    李新宇,张惠文,吴敏娜,张勤,张成刚.乙草胺、甲胺磷及其复合对土壤真菌种群的毒性效应[J].农业环境科学学报,2008,27(5):1842-1847
    林先贵.2010.土壤微生物研究原理与方法[M].北京:高等教育出版社
    刘嫦娥,段昌群,王旭.丁草胺和乙草胺对蚯蚓CAT和SOD活性的影响[J].环境化学,2008,27(6):757-760
    刘伟,朱鲁生,王军,谢慧,王金花.毒死蜱、马拉硫磷和氰戊菊酯对赤子爱胜蚓(Eisenia foetida)的毒性效应[J].生态毒理学报,2009,4(4):597-601
    鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业出版社
    陆贻通,朱有为,俞丹宏.除草剂氟磺胺草醚农田残留动态研究[J].上海环境科学,1996, 15(1):39-41
    罗海峰,齐鸿雁,薛凯,王晓谊,王川,张洪勋.在PCR-DGGE研究土壤微生物多样性中应用GC发夹结构的效应[J].生态学报,2003,23(10):2170-2175
    孙瑞莲.2003.阿特拉津在不同肥力土壤中的生态效应[M].山东农业大学
    陶波,李晓薇,韩玉军.不同吸附剂对土壤中氟磺胺草醚吸附/解吸的影响[J].土壤通报,2010,41(4):965-969
    王金花,朱鲁生,王军.除草剂阿特拉津对土壤脲酶活性的影响[J].应用生态学报,2003,14(2):2281-2284
    王黎明,徐冬梅,陈波,刘广深.外来污染物对土壤磷酸酶影响的研究进展[J].环境污染治理技术与设备,2004,5(5):11-17
    王陶,王振中.3种杀菌剂对小白菜内生细菌多样性的影响[J].广东农业科学,2010,11:153-159
    王振宇.异恶草酮(Clomazone)和氟磺胺草醚(Fomesafen)的生态危害评估公布等待评审.农药研究与应用,2009,3:49-50
    吴尔苗,王军良,赵士良,李辉龙,吴石.菲和芘单一及复合污染对蚯蚓抗氧化酶活性和丙二醛含量的影响[J].环境科学学报,2011,31(5):1077-1085
    徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性及活性抑制的紫外分光光度测定[J].环境化学,1997,16(1):3-7
    许光辉,郑洪元主编.1986.土壤微生物分析方法手册.上海科技出版社
    许育新,李晓慧,滕齐辉,陈义,吴春艳,李顺鹏.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响[J].土壤学报,2008,45(4):693-698
    薛银刚,王晓蓉,顾雪元,孙成.四溴双酚A对赤子爱胜蚓的急性毒性及抗氧化防御系统酶的影响[J].生态毒理学报,2009,(4):193-100
    杨光.农药“十二五”规划提出:至2015年农药收入达2210亿元.农药市场信息,2011,28:7
    杨景辉.1995.土壤污染与防治[M].北京:科学出版社
    杨校华,顾刘金,黄雅丽,陈琼姜,朱勇,徐娟,孙建析,吴立仁,陈日萍,张幸.氟磺胺草醚的亚慢性经口毒性研究[J].毒理学杂志,2009,23(6):512-513
    姚晓华.2005.新杀虫剂啶虫脒对旱地土壤微生物生态影响及其降解研究[D].浙江大学
    叶央芳.2004.酰胺类除草剂苯噻草胺的微生物生态毒理研究及其降解[D].浙江大学
    于峰,姚宝玉,王薏,石恩林,杨红光,张静.氟磺胺草醚的毒性研究[J].农药,1997,36(7):28-29
    张保国,唐玲,李祖明,王会利,许雯婷,张洪勋,庄国强,白志辉.阿维菌素杀虫剂对甘蓝叶际微生物群落结构的影响[J].环境科学,2009,30(5):1292-1297
    张薇宋玉芳孙铁珩李听馨刘淼陈朗.土壤低剂量荧蒽胁迫下蚯蚓的抗氧化防御反应[J].土壤学报,2007,44(6):1050-1054
    张宇,赵长山,丁伟.不同长残留除草剂对大豆根际土壤脲酶活性的影响[J].大豆科学,2007,26(5):781-783.
    郑丽莎,史雅娟,孟凡乔,张翔.硫丹对蚯蚓存活、生长和肠胃线粒体超微结构的影响[J].环境科学学报,2009,6:1283-1287
    郑清.绿色农药发展简介[J].山东化工,2004,(5):35-36
    钟决龙.二苯醚类除草剂生产及大田应用现状[J].农药,2005,44(5):237-238
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性2007,15(3):306-311
    周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162-171
    周新文.1998.二苯醚除草剂氟磺胺草醚、乙氧氟草醚对土壤微生物、酶活性的影响(M).浙江农业大学
    朱鲁生,王军.乙草胺和莠去津对土壤微生物的影响及安全性评价[J].土壤与环境,2000,9(1):71-72
    朱伟杰,王楠,郁雪平,王伟.生防菌Pseudomonas fluorescens 2P24对甜瓜根围土壤微生物的影响[J].中国农业科学,2010,43(7):1389-1396
    Abdo Z, Schuette U M, Bent S J, Williams C J, Forney L J, Joyce P. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes [J]. Environ Microbiol,2006,8(5): 929-938.
    Adetutu EM, Ball AS, and Osborn AM. Azoxystrobin and soil interactions:degradation and impact on soil bacterial and fungal communities [J]. J Appl Microbiol,2008,105: 777-1790
    Alotaibi KD, Schoenau JJ. Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation [J]. Appl Soil Ecol,2009,41(3),293-304
    Aly, MAS, Schroder P. Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida [J]. Environ Sci Pollut R,2008,15(2):143-149.
    Amann RJ, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev,1995,59:143-169
    Barata C, Varo I, Navarro JC, Arun S, Porte C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds [J]. Comp Biochem Phys Part C,2005,140:175-186
    Bishnu A, Saha T, Mazumdar D, Chakrabarti K, Chakraborty A. Assessment of the impact of pesticide residues on microbiological and biochemical parameters of tea garden soils in India [J]. J Environ Sci Health B.2008,43(8):723-31.
    Blackwood CB, Buyer JS. Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities [J]. Soil Biol Biochem,2007,39:590-599
    Blackwood CB, Hudleston D, Zak DR, Buyer JS. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data:insights from simulated microbial communities [J]. Appl Environ Microbiol,2007,73(16):5276-5283
    Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976, 72:248-254
    Bradley J. Rauch, Robin R. Bellinder, et al. Dissipation of Fomesafen in New York State Soils and Potential to Cause Carryover Injury to Sweet Corn [J]. Weed Technology,2007, 21:206-212
    Burrows LA, Edwards CA. The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems [J]. Eur J Soil Biol,2002,38:245-249
    Capowiez Y, Rault M, Mazzia C. Earthworm behavior as a biomarker-a case study using imidacloprid [J]. Pedobiologia,2004,47(5-6):542-547
    Caquet T. Effects of Fomesafen, alone and in combination with an adjuvant, on plankton communities in freshwater outdoor pond mesocosms [J]. Environ Toxicol Chem,2005, 24(5):1116-1124
    Castro, HF, Williams, NH, Ogram, A. Phylogeny of sulfate-reducing bacteria [J]. FEMS Microbiol Ecol,2000,31(1):1-9
    Chance B, Machly AC. Assay of catalase and peroxidases. Methods in Enzymology [M], Academic Press, New York,1995, (2):764-775
    Cobucci T, Prates HT, Falcao DLM, Rezende MMV. Effect of imazamox, fomesafen and acifluorfen soil residue on rotational crops [J]. Weed Sci,1998,46:258-263
    Collins AR, Ma AG, Duthie SJ. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells [J]. Mutat Res,1995,336(1):69-77.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage:mechanisms, mutation, and disease [J]. FASEB J,2003,17(10):1195-214.
    Demain AL. Pharmaceutically active secondary metabolites of microorganisms [J]. Appl Microbiol Biotechnol,1999,52:455-63.
    Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health:current status and future prospects [J]. J Assoc Physicians India,2004,52:794-803
    Dunbar J, Takala S, Barns SM. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning [J]. Appl Environl Microbiol,1999, 5 (4):1662-1669
    Dunbar J, Ticknor LO, Kuske CR. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis [J]. Appl Environ Microbiol,2000,66(7):2943-2950.
    Dunbar J, Ticknor LO, Kuske CR. Phy-logenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities [J]. Appl Environ Microbiol,2001,67:190-197
    Edwards CA, Bohlen PJ. Biology and ecology of earthworms,3rd ed. Chapman and Hall, London,1996, pp 426
    EPA. Environmental fate, ecological risk and endangered species assessment in support of the registration review of fomesafen sodium (PC123802).2008, pp 12
    EPA. Environmental fate, ecological risk and endangered species assessment in support of the registration review of fomesafen sodium (PC123802). Environmental Protection Agency Office of Pesticide Programs. Washington, USA,2008, pp 23
    Fang H, Yu YL, Wang XG, Chu XQ, Pan D, Yang XE. Effects of repeated applications of chlorpyrifos on its persistence and soil microbial functional diversity and development of its degradation capability [J]. B Environ Contam Tox,2008,81:397-400
    Fantroussi S, Verschuere L, Verstraete W. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of rRNA gene fingerprints and community-level physiological profiles [J]. Appl Environ Microbiol,1999,65:982-988
    Fazeli F, Ghorbanli M, Niknam V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars [J]. Biol Plantarum,2007, 51:98-103
    Ferreira EPB, Dusi A, Costa JR, Xavier GR, Rumjanek NG. Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data [J]. Eur J Soil Biol,2009,45(5-6):466-472
    Guo JF, Zhu GN, Shi JJ, Sun JH. Adsorption, desorption and mobility of fomesafen in Chinese soils [J]. Water Air Soil Poll,2003,148:77-85
    Hackenberger BK, Jaric-Perkusic D, Stepic S. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae) [J]. Ecotox Environ Safe,2008, 71:583-589
    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine,3rd ed., Oxford University Press, New York,1999, pp 617-783
    Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH. Analysis of actinomycete aommunities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients [J]. Appl Environ Microbiol,1997, 63(8):3233-3241
    Kaare Johnsen, Carsten S. Jacobsen, Vigdis Torsvik, Jan S(?)rensen. Pesticide effects on bacterial diversity in agricultural soils-a review [J]. Biol Fertil Soils,2001,33:443-453.
    Kah M, Beulke S, Brown CD. Factors influencing degradation of pesticides in soil [J]. J Agric Food Chem,2007,55(11):4487-4492
    Khan S, Hesham AEL, Qiao M, Rehman S, He JZ. Effects of Cd and Pb on soil microbial community structure and activities [J]. Environ Sci Pollut Res (2010) 17:288-296
    Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification [J]. Nat Protoc,2008,3:1452-1456
    Krijt J, Psenak O, Vokurka M, Chlumska A, Fakan F. Experimental hepatic uroporphyria induced by the diphenyl-ether herbicide fomesafen in male DBA/2 mice [J]. Toxicol Appl Pharmacol,2003,189:28-38
    Krijt J, Stranska P, Sanitrak J, Chlumska A, Fakan F. Liver preneoplastic changes in mice treated with the herbicide fomesafen [J]. Hum Exp Toxicol,1999,18:338-344
    Krijt J, Van Holsteijn I, Hassing I, Vokurka M, Blaauboer BJ. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells [J]. Arch Toxicol,1993,67:255-261
    Krijt J, Vokurka M, Sanitrak J, Janousek V, van Holsteijn I, Blaauboer BJ. Effect of the protoporphyrinogen oxidase inhibiting herbicide fomesafen on liver uroporphyrin and heptacarboxylic porphyrin in two mouse strains [J]. Food Chem Toxicol,1994, 32:641-649
    LaMontagne MG, MichelJr FC, Holden PA, Reddy CA. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis [J]. J Microbiol Meth,2002,49:255-264
    Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle [J]. Free Radical Biol Med,2003,35:9-16
    Lin DS, Zhou QX, Xie XJ, Liu Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms(Eisenia fetida) [J]. Chemosphere,2010, 81:1328-1333
    Liu S, Zhou QX, Wang YY. Ecotoxicological responses of the earthworm Eisenia fetida exposed to soil contaminated with HHCB [J]. Chemosphere,2011,83:1080-1086
    Liu W, Zhu LS, Wang J, Wang JH, Xie H, Song Y. Assessment of genotoxicity of endosulfan in earthworm and white clover plants using comet assay [J].Arch Environ Con Tox,2009, 56:742-746.
    Liu XL, Sun ZJ, Chong W, Sun ZT, He CK. Growth and stress responses of the earthworm Eisenia fetida to Escherichia coli O157:H7 in an artificial soil [J]. Microb Pathogenesis, 2009,46:266-272
    Liu Y, Zhou QX, Xie XJ, Lin DS, Dong LX. Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by toluene, ethylbenzene and xylene [J]. Ecotoxicology,2010,19:1551-1559
    Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment [J]. Soil Biol Biochem,2003, 35(3):453-461
    Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biol Biochem,2011,33(11): 1437-1445
    Martens DA, Johanson JB, FrankenbergerJr WT. Production and persistence of soil enzymes with repeated addition of organic residues [J]. Soil Sci,1992,153(1):53-61
    Mills, MS. and Simmons ND. Assessing the ground-water contamination potential of agricultural chemicals:a flexible approach to mobility and degradation studies [J]. Pesticide Sci,1998,54:418-434
    Min H, Ye YF, Chen ZY, Wu WX, Yufeng D. Effects of butachlor on microbial populations and enzyme activities in paddy soil [J]. J Environ Sci Health B,2001,36(5):581-595
    Mosleh YY, Ismail SM, Ahmed YM. Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions [J]. Environ Toxico,2003,18(5):338-346
    Muyzer Ellen CW, Andre GU. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA [J]. Appl Environ Microbial,1993,59:695-700
    Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reactionamplified genes-coding for 16S ribosomal-RNA [J]. Appl Environ Microbiol,1993,59:695-700
    Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system [J]. Free Radical Biol Med,2001,31:1287-1312
    Nowak J and Klodka D. Wplyw insektycydu perytroidowego-Decisu 2,5 EC na zmiany aktywnosci fosfatazy kwasnej i zasadowej oraz dehydrogenazy w glebie. Chemia i Inzynieria Ekologiczna,1998,5 (11):1025-1032
    OECD. Guidelines for Testing of Chemicals No.222:Earthworm Reproduction Tests (Eisenia foetida/Eisenia andrei). Organization for Economic Co-operation and Development (OECD), Paris,2004
    Okubo A, Sugiyama S. Comparison of molecular fingerprinting methods for analysis of soil microbial community structure [J]. Ecol Res,2009,24:1399-1405
    Osborn AM, Moore ERB, Timmis KN. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environ Microbiol,2000,2(1):39-50
    Osborne CA, Rees GN, Bernstein Y, Janssen PH. New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities [J]. Appl Environ Microbiol,2006,72(2):1270-1278.
    Paul D, Pandey G, Meier C, Roelof van der Meer J, Jain RK. Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation [J]. FEMS Microbiol Ecol,2006,57(1):116-127
    Porter NA. Chemistry of lipid peroxidation [J]. Method Enzymol,1984,105:273-282
    Powell SN, Singleton DR, Aitken MD. Effects of enrichment with salicylate on bacterial selection and PAH mineralization in a microbial community from a bioreactor treating contaminated soil [J]. Environ Sci Technol,2008,42 (11):4099-4105
    Rana I, Shivanandappa T. Mechanism of potentiation of endosulfan cytotoxicity by thiram in Ehrlich ascites tumor cells [J]. Toxicol in Vitro,2010,24:40-44
    Rauch BJ, Bellinder RR, Brainard DC, Lane M, Thies JE. Dissipation of fomesafen in New York state soils and potential to cause carryover injury to sweet corn [J]. Weed Tech, 2007,21:206-212
    Rault M, Collange B, Mazzia C and Capowiez Y. Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion [J]. Soil Biol Biochem,2008,40(12):3086-3091
    Ribasa G, Frenzillib G, Baraleb R, Marcos R. Herbicide-induced DNA damage in human lymphocytes evaluated by the single-cell gel electrophoresis (SCGE) assay [J]. Mutat Res,1995,344(1-2):41-54
    Ribera D, Narbonne JF, Arnaud C, Saint-Denis M. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl [J]. Soil Biol Biochem,2001,33:1123-1130
    Richard W. Lucas, Brenda B. Casper, John K. Jackson, Teri C. Balser. Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands [J]. Soil Biol Biochem,2007,39:2508-2519
    Rodriguez-Cruz MS, Jones JE, Bending GD. Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics [J]. Soil Biol Biochem,2006,38(9):2910-2918
    Rosello MR, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev,2001, 25:39-67
    Russo J, Lefeuvre-Orfila L, Lagadic L. Hemocyte-specific responses to the peroxidizing herbicide fomesafen in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata) [J]. Environ Pollut,2007,146:420-427
    Sannino F, Gianfreda L. Pesticide influence on soil enzymatic activities [J]. Chemosphere, 2001,45:417-425
    Schreck E, Geret F, Gontier L, Treilhou M. Neurotoxic effects and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna [J]. Chemosphere,2008,71:1832-1839
    Schutte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities [J]. Appl Microbiol Biotechnol,2008, 80:365-380
    Sebiomo A, Ogundero VW, Bankole SA. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity [J]. Afr J Biotechno,2011,10(5):770-778
    Sigler WV, Turco RF. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis [J]. Appl Soil Ecol, 2002,21 (2):107-118
    Sikkema PH, Shropshire C, Soltani N. Response of dry bean to pre-plant incorporated and pre-emergence applications of S-metolachlor and fomesafen [J]. Crop Prot,2009, 28:744-748.
    Singh J, Singh DK. Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments [J]. Chemosphere,2005,60:32-42
    Singh S, Eapen S, D'Souza SF. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L [J]. Chemosphere,2006,62:233-246
    Song Y, Zhu LS, Wang J, Wang JH, Liu W, Xie H. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine [J]. Soil Biol Biochem, 2009,41:905-909
    Stepniewska Z, Wolinska A. Soil dehydrogenase activity in the presence of chromium (III) and (VI) [J]. Int Agrophys,2005,19:79-83.
    Sun Y, Yin G, Zhang J, Yu H, Wang X. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No.1 exposure[J]. Environ Toxicol,2007,22:256-263
    Tabatabai MA. Soil enzymes [A]. In:Weewer R M, Angle S, Bottomley P, et al. Methods of Soil Analysis, Part2. Microbiological and Biochemical Properties [M], Soil Science Society of American, Wisconsin WI,1994,775-833
    Thirup L, Johnsen K, Torsvik V, Splid NH, Jacobsen CS. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots [J]. Soil Biol Biochem,2001,33 (11):1517-1524
    Torsvik V, Ovreas L. Microbial diversity and function in soil:from genes to ecosystems [J]. Curr Opin Microbiol,2002,5:240-245
    Veljo K, Johan W. Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences [J]. J Microbiol Meth,2003,54(2):183-191
    Vencill WK. Herbicide Handbook.8th ed. Lawrence, KS:Weed Science Society of America. 2002, pp 493
    Wakabayashi K, Boger P. General physiological characteristics and mode of action of peroxidizing herbicides. In:Boger, P., Wakabayashi, K. (Eds.), Peroxidizing Herbicides. Springer-Verlag, Berlin Heidelberg, Germany,1999, pp 163-190
    Wang XG, Song M, Wang YQ, Gao CM, Zhang Q, Chu XQ, Fang H, Yu YL. Response of soil bacterial community to repeated applications of carbendazim [J]. Ecotox Environ Safe, 2012,75:33-39
    Widenfalk A, Bertilsson S, Sundh I, Goedkoop W. Effects of pesticides on community composition and activity of sediment microbes e responses at various levels of microbial community organization [J]. Environ Pollut,2008,152:576-584.
    Xiao NW, Song Y, Ge F, Liu XH, Ou-Yang ZY. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil [J]. Chemosphere 2006,65:907-912
    Xue YG,Gu XY, Wang XR, Sun C, Xu XH, Sun J, Zhang BG. The hydroxyl radical generation and oxidative stress for the earthworm Eisenia fetida exposed to tetrabromobisphenol A[J]. Ecotoxicology,2009,18:693-699
    Yang YH, Yao J, Hu S, Qi Y. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community:A study with RAPD marker [J]. Microbial Ecol,2000,39 (1): 72-79.
    Yu YL, Shan M, Fang H, Wang X, Chu XQ. Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil [J]. J Agr Food Chem,2006, 54(26):10070-10075
    Zelikoff JT, Wang W, Islam N, Twerdok LE, Curry M, Beaman J, Flescher E. Assays of reactive oxygen intermediates and antioxidant enzymes:potential biomarkers for predicting effects of environmental pollution. In:Ostrander, G.K. (Ed.), Techniques in Aquatic Toxicology. Lewis Publishers, Boca Raton,1996, pp 287-306
    Zhang BG, Zhang HX, Jin B, Tang L, Yang JZ, Li BJ, Zhuang GQ, Bai ZH. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere [J]. J Environ Sci,2008,20:1356-1362
    Zhang FQ, Wang YS, Lou ZP, Dong JD. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) [J]. Chemosphere,2007,67:44-50
    Zhang W, Ki JS, Qian PY. Microbial diversity in polluted harbor sediments I:Bacterial community assessment based on four clone libraries of 16S rDNA [J]. Estuar Coast Shelf S,2008,76(3):668-681

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700