阳泉280煤矸石山适宜植物选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石山易自燃,对大气污染严重,破坏周边生态环境,而且侵占大量的土地。植被恢复是治理煤矸石山的有效途径之一,煤矸石山高温、干旱、酸化等特殊的土壤条件是植被恢复的主要限制因素。针对此问题本文对2005年完成覆土的山西阳泉280煤矸石山的土壤条件及植被做了系统调查,并对适宜该条件的植物进行了选择,为我国煤矸石山的治理及植被恢复奠定了一定的理论和实验基础。研究结果如下:
     (1)植物调查结果显示,280煤矸石山现有植物83种,其中自然入侵植物17种,覆盖面积约50%,植被分布极不均匀,以草本植物如狗尾草(Setaria viridis L.)、沙打旺(Astragalus adsurgens Pall)、蒺藜(Tribulus terrestris L.)等为主,乔灌木有侧柏(Platycladus orientalis)、臭椿(Ailanthus altissima)、荆条(Vitex negundo)等,所占比例较小。
     (2)280煤矸石山覆土层(0~50cm)土壤温度较正常土壤温度高4.6~18.2℃,覆土层剖面温度随深度加深而增加,非煤矸石山土壤剖面温度变化幅度不大;覆土层土壤含水量较矸石层(50cm以下)高,而且随深度增加略有降低,矸石层则无明显变化;煤矸石风化层pH值在5.5以下,不适于多数植物生长,而覆土层土壤pH值则正常;煤矸石风化层的盐分含量较高,属于盐土,不适于植物生长,而覆土层则无明显盐化现象。结果表明280煤矸石山土壤条件对浅根系的草本植物及一、二年生的木本植物影响较小,对深根系的成年木本植物生长不利,因此建议保证一定的覆土层厚度,以适宜更多植物生长。
     (3)煤矸石及其风化物与一定比例黄土混合可明显降低其的酸化、盐化程度,植物在混合后的土壤上也有较好的成活率。这为增加适宜植物生长的土层厚度,节省覆土成本提供了一条可行的途径。
     (4)在280煤矸石山现有的83种植物中选取了生长状况较好的30几种植物通过室内高温、酸胁迫实验、植物需水量测定等进行了适宜植物选择。结果显示较耐土壤高温的植物有狗尾草、马齿苋(Portulaca oleracea L.)、百脉根(Lotus corniculatus L.)、沙打旺、紫穗槐(Amorpha fruticosa)、侧柏、臭椿等,能忍受46.8℃以下的土温,尤其是狗尾草、马齿苋等能在温度在53℃以下的土壤中存活;最低需水量小相对耐旱的植物有马齿苋、胡颓子(Elaeagnus pungens,)、爬山虎(Parthenocissus tricuspidata)、连翘(Forsythia suspensa)、侧柏等;酸胁迫实验中成活率较高且光合作用指标较好的植物有爬山虎、山杏(Prunus armeniaca)、华北卫矛(Euonymus maackii)等。
Coal gangue easy to ignite and impact on environment espesilly for air, and it occupy a great deal of soil. Vegetation restoration is one of available approach for coal gangue pile fathering,the special soil condition of coal gangue pile such as high temperature,acidification, salinity etc. is the main limited factor for vegetation restoration.Due to this question the paper settle a study for adaptive plant selecting on the basis of investigation on soil condition and vegetation of 280 coal gangue pile which finished the earthen up project in 2005 in Shanxi Yangquan,this will establish some groundwoks of theory and for coal gangue pile fathering and vegetation restoration innation .The results of study as following:
     (1) The results of vegetation investigation shows that there are 83 kinds of plant and 17 kinds of it are growing spontaneousness,vegetation is not uniform distributing,most of it are herbage such as Setaria viridis L, Astragalus adsurgens Pall, Tribulus terrestris L etc. the arbor and shrub inverse proportion is small such as Platycladus orientalis, Ailanthus altissima, Vitex negundo,etc.of herbage for high temperature condition of coal gangue pile is better the arbor and shrub which root distribution is relatively deeper.
     (2) The soil temperature of soil laye(r0~50cm)in 280 coal gangue pile is higher than normal one for 4.6~18.2℃, the section temperature of soil layer is increasing with depth, it is not change obviously in normal one; soil moisture of soil layer is higher than mantlerock(50cm以下)and will little reduce along with deepness increasing, it is not change obviously in mantlerock; the pH is less than 5.5 in mantlerock of coal gangue pile, it is unfit for most of plant to grow, the pH of soil layer is normal; the salinity content of mantlerock of coal gangue pile is higher, it is belong to salty soil category and unfit for plant growth,but it is not salinited in soil layer.The result shows that the soil condition will not impact herbage and 1,2 years old arbor and shrub which have short roots,but it is disadvantage for adult arbor and shrub to growth.
     (3) The acidity and salinity of coal gangue and it’s weathered products will reduce in evidence when commix with ocher in given proportion,and the survive rate of plant growing on the commixed soil is better.This offer an available approach for increasing thickness of soil which in favor of plant growth and save money for earthen up project.
     (4)We choose more than 30 kinds plant which growth status is better from 83 kinds plant in 280 coal gangue pile for adaptive plant select by high temperature stress experimentation,acid stress experimentation,soil moisture mensuration which plant growth demand. The result shows that some plant can stand with high temperature of soil such as Setaria viridis L, Portulaca oleracea L, Lotus corniculatus L, Astragalus adsurgens Pall, Amorpha fruticosa, Platycladus orientalis,Ailanthus altissima,etc,they can stand with temperature less than 46.8℃of soil,especially for Setaria viridis L, Portulaca oleracea L, can survive in soil which temperature is less than 53℃;some plant such as Portulaca oleracea L, Elaeagnus pungens, Parthenocissus tricuspidata,Forsythia suspensa, Platycladus orientalis,etc are relatively resist drought which the least moisture plant growth need are small; some plant such as Parthenocissus tricuspidata, Prunus armeniaca, Euonymus maackii,etc.have better survive rate and photosynthesis guide line in acid stress experimentation.
引文
[1] 安林萍.煤矸石风化物的复垦特性及其改良措施研究[A].山西农业大学.2005.
    [2] 白中科,段永红.阳泉煤矸石山浅层矸石风化物水分特性初探[J].煤炭学报.1999, 24(5): 533-535.
    [3] 白中科,赵景逵,段永红等.工矿区土地复垦与生态重建[M].北京:中国农业出版社.2000.
    [4] 毕银丽,全文智,柳博会.煤矸石堆放的环境问题及其生物综合治理对策[J].金属矿山.2005, (12):61-64.
    [5] 毕银丽,吴福勇.丛枝菌根在煤矿区生态重建中的应用[J].生态学报.2005,25(8): 2068- 2072.
    [6] 卞正富.我国煤矿区土地复垦与生态重建研究[J].资源·产业.2005,7(2):18-24.
    [7] 常允新,朱学顺,宋长斌等煤矸石的危害与防治[J].中国地质灾害与防治学报.2001,12(2): 39-43.
    [8] 陈培琴,郁松林,詹研妮.植物在高温胁迫下的生理研究进展[J].中国农学.2006,(5): 223-227.
    [9] 陈胜华,胡振琪.煤矸石山酸化的内外因分析及防治措施[J].煤炭科学技术.2007,(2): 90-93.
    [10] 陈阳.新疆盐生植物生理生态适应性及硅提高植物抗盐作用机制的研究[A].甘肃农业大学.2002.
    [11] 杜志刚.阳泉煤矸石山自燃因素与特征及治理措施[J].煤炭环境保护. 1998,(5):21-23.
    [12] 段永红,赵景逵.煤矸石山表层矸石风化物的盐分状况与复垦种植[J].山西农业大学学报. 1998,18 (4):337-339.
    [13] 段永红,赵景逵.煤矸石山覆盖种植对植物根系的影响[J].煤矿环境保护. 1999,13(1): 41-43
    [14] 冯杰,马彦卿.酸性土壤矿区复垦中护坡植被品种筛选研究[J].冶金矿山设计与建设.2001, (1):28-33.
    [15] 高建钰,白中科,焦志芳.煤矸石山立地条件与林业复垦研究[J].山西林业科技.1999,3(1): 18-21.
    [16] 洪坚平,谢英荷.矿山复垦区土壤微生物及其生化特性研究[J].生态学报.2000,20(4): 669-672.
    [17] 胡振琪,李鹏波,张光灿.煤矸石山复垦[M ].北京: 煤炭工业出版社, 2006.
    [18] 贾宝山,章庆丰,孙福玉.煤矸石山自燃防治措施[J].辽宁工程技术大学学报. 2003,8(4): 512-514.
    [19] 贾平,白中科,段永红.山西煤矸石山风化层中重金属元素及盐分对复垦种植的影响[J].煤矿环境保护.1995,(4):32-34.
    [20] 罗红,赵敏.矿区复垦的培肥地力和改土耕作[J].技术黑龙江水利科技.2005, 1(1):102-103.
    [21] 李合生.植物生理学[M].北京:高教出版社.2002.
    [22] 李晋川.自中科,张立城等.平朔煤矿土地复垦与生态重建[M].北京:科学出版社.2000.
    [23] 李艺华,罗丽.植物盐胁迫及其抗性生理研究进展[J].福建热作科技.2006,(3): 200:46-49.
    [24] 刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技.2003,(2):21-25.
    [25] 刘培云,浅析煤矸石山的自燃机理及燃烧控制[J].中州煤炭.2000,(5):37-39.
    [26] 刘守维.用压实法防止煤矸石山自燃[J].煤矿环境保护.1998,12(1):40-42.
    [27] 马东建.几种盐生植物对盐胁迫反应的研究[A].新疆大学.2004.
    [28] 马彦卿.微生物复垦技术在矿区生态重建中的应用[J].采矿技术.2001,1(2):66-68.
    [29] 梅梅.煤矿复垦土壤的重新植被技术[J].能源环境保护.2005,6(3):58-63.
    [30] 闵凡飞.煤矸石山自燃火源形成原因及其预测预防[J].煤炭科技. 2003,(1):41-43.
    [31] 乔慧萍,李建设,雍立华.植物盐胁迫生理及其适应性调控机制的研究进展[J].宁夏农林科技.2007,(3):34-36.
    [32] 隋淑梅,徐颖.对矿区煤矸石山植被恢复限制性条件的研究[J].能源与环境.2006,(5): 50-52.
    [33] 陶晶,李铁,孙长彬.植物盐胁迫研究进展[J].吉林林业科技.2003,10(5):1-7.
    [34] 王文英,李晋川.矿区生态恢复与重建研究[J].河南科学.1999,17(6):87-91.
    [35] 武冬梅,张建红.施肥对煤矸石风化物微生物活性的影响[J].水土保持学报.2000,9(3): 100-103.
    [36] 吴敏,薛立,李燕.植物盐胁迫适应机制研究进展[J].林业科学.2007,(8):111-117.
    [37] 邢永强,冯进城,荣晓伟.河南平煤四矿煤矸石山自燃爆炸成因及防治分析[J].中国地质灾害与防治学报.2007,6,(2):145-150.
    [38] 谢德瑜,张凤辰.煤矸石及其综合利用[J].中国资源综合利用.2004,(10):20-23.
    [39] 徐友宁,袁汉春,何芳.煤矸石对矿山环境的影响及其防治[J].中国煤炭.2004,(9): 50-52.
    [40] 荀兰平.煤矸石山的治理方法探讨[J].科技咨询导报.2007,1(b):101.
    [41] 杨京平.生态恢复工程技术[M].北京: 化学工业出版社, 2002.
    [42] 杨少辉,季静.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展.2006,8(4): 70-76.
    [43] 杨晓慧,蒋卫杰,魏珉.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报. 2006,37(2):302-305.
    [44] 杨主泉,胡振琪.煤矸石山复垦的恢复生态学研究[J].中国水土保持.2007,(6):35-42.
    [45] 易杰祥,吕亮雪.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报.2006,12(1): 23-27.
    [46] 于广才,刘永彬.煤矸石山自燃污染对周围居民健康影响探讨[J].中国自然医学杂志.2004, 6(4):265-266.
    [47] 张光灿,刘霞,王燕.煤矿区生态重建过程中风化矸石山植被生长及土壤水文效应[J]. 水土 保持学报.2002,10(5):20-23.
    [48] 张莉,宋瑞潭.浅淡煤矸石综合利用与生态环境[J].山西能源与节能.2001(4):34-35.
    [49] 张文敏,张美庆,孟娜.VA菌根用于矿山复垦的基础研究[J].矿冶.1996,5(3):17-20.
    [50] Banerjee S K,Mishra T K,Singh A K. Restoration and reconstruction of coal mine spoils : an assessment of time prediction for total ecosystem development.[J].Advances inForestry Research in India.2000,23:11-28.
    [51] Christensen N L. The report of the ecologial society of America Committee on the scientific basis for ecosystemmanagment.[J]. Ecological App lication.1996,6 (3):665-691.
    [52] Clark M W,Walsh S R,Smith J V.The distribution of heavy metal in anabandoned mining area;A case study of Strauss Pit,the Drak mining area,Australia:Implications for the environmental management of mine sites[J].EnvironmentalGelolgy,2001,40(6): 655-666.
    [53] Cooer D J,Mac Donald L H.Restoring the vegetation of mined peatlands in the southen Rocky Mountians of Colorado,U.S.A[J].Restoration Ecology,2000,8(2):103-111.
    [54] Darmody R G. Modeling agriculture impacts of longwall mine subsidence:A GIS approach. International Journal of Surface Mining[J].Reclamation & Environme t.1995,(9): 632-638.
    [55] Dinelli E,Tateo F.Factors controlling heavy metal dispersion in mining area:The case of Vigonzano(northern Italy),a Fe-Cu sulfide deoosit associated with ophioliticks[J].Environmental Geology 2001,40:1138-1150.
    [56] Fedkenheuer A W,Macyk T M. Reclamation of surfacemined coal lands in western Canada ∥Barnhisel R I , Dar2mody R G, Daniels W L. Reclamation of drastically disturbed lands[J].Madison : American Society of Agronomy.2000:567-594.
    [57] Finkelman R B,Gross P M K.The types of data needed for assessing The environmental and human impacts of caol[J].international Journal of Coal Geology,1999,40(2/3): 91-101.
    [58] Levan M. Reinventing left over landscape : design strategiesfor a sustainable recuperation of the former mining areas ofthe coalmine in Lota. Minor Field Studies InternationalOffice.[J].Swedish University of Agricultural Sciences.2001,180 : 47-52.
    [59] Panov B S.Dudik A M,Shevchenko O A,et al.On pollution of the biosphere in Industrial areas:The example of the Donets coal Basin[J].International Journal of Coal Geology,1999, 40:199-210.
    [60] Prasad B,Bose J M.evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Hi-malavas[J].Environment Geology,2001,41:183-188.
    [61] Querol X,Alastuey A,Zhuang X,et al.Petroloty,mineraloty and geochemistry of the Permianand Triassic coals in the Leping area,Jiangxi Province,southeast China[J].International Journal of Coal Geology,2001,48:23-45.
    [62] Salazar M, Poch R M, Bosch A D. Reclamation of steeply sloping coal spoil banks under Mediterranean semiarid climate[J]. Australian Journal of Soil Research,2002,40(5):827-845.
    [63] Szezepanska J,Twardowska I.Coal mine spoil tips as a large are source of watercontamination.In:Rainbow K.Reclamation,Treatment and Utilization of Coal Mining Wastes[J]. London:Bslkema Rotterdam,1987.267-280.
    [64] Teixeira E C, Ortiz L S,Alves M F C C,et al.Distribution of selected heavy metals in fluvial sediments of the coal mining regiono Baixo Jacui,R S,Brazil[J].Environment Geology,2001,41:145-150.
    [65] Torbert J L , Burger J A , Schoenholtz S H , etal. Growth of three pine species after eleven years on reclaimed minesoilsin Virginia.[J].Northern Journal ofApplied Forestry.2000 ,17(3) :95-99.
    [66] Vipulanandan C , Krizek R J , Wilkey M L.Erosion modelfor reclamation areas ∥GravesDH.Proceedings,1982 Symposium on Surface Mining,Hydrology, Sedimentologyand Reclamation. Kentucky : University of Kentucky.[J].Lexington ,USA ,1982 :339-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700