矿山开发的环境响应与资源环境一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山资源的不可再生性和矿山开发所遗留的环境问题构成了对人类社会可持续发展的威胁。国内外学者从不同角度揭示矿山资源与环境问题,探讨污染治理的技术和路线。广西刁江流域的源头地带是我国著名的大厂矿区,较典型地反映了矿山资源开发与环境保护之间的对立关系。
    本研究重点解剖了刁江流域矿山资源开发的环境响应,探讨了尾砂资源化、矿山废弃地植被恢复与重建等若干个治理矿山环境问题的技术环节,并根据可持续发展理念,探论了矿山资源环境一体化思路的必要性和做法。
    主要研究内容与方法:
    (1)比较全面地调查了矿山废弃地类型、自然定居植物的种类、生境,分析了它们的重金属含量;
    (2)利用手持GPS 和1:1 万地形图调查了刁江流域矿山废弃地分布与面积;
    (3)利用南方n200GPS 定位系统测量了刁江沿岸重点污染区历史洪水位,与传统的土壤采样分析相结合,分析洪水淹没区与土壤污染区的关系;
    (4)在刁江沿岸设置了12 个采样断面,采了近200 个土壤样,分析土壤中污染物含量与分布规律;
    (5)比较全面地收集了刁江流域矿山开发与环境监测资料;
    (6)在车河坑马尾砂库上进行了一年的植被恢复与重建野外试验;
    (7)在温室内进行了半年的尾砂、垃圾肥和P 肥的不同组合对银合欢生长的影响研究。
    通过本项目的研究,取得如下主要认识:
    (1)上游的矿山开发已造成刁江流域严重的环境问题。其影响远远超出了矿区范围,影响到了距矿区200 多公里以外的下游地带,主要影响区域包括矿区、上游的拉么溪、平村河、车河河和刁江干流沿岸历史洪水淹没区。
    (2)在刁江流域上游地带存在大量矿山废弃地。包括随意堆放的尾砂、废石、尾砂库、废弃了的采矿与选矿场及因受污染而废弃了的耕地。这些废弃地中含有大量有毒有害物质且稳定性不好,是刁江流域最大的安全隐患和次生污染源。废弃地上自然定居植物体内的重金属含量高于一般植物,有可能对矿区生态系统构成长期危害。
    (3)刁江河水被严重污染,河床上沉积了大量尾砂。严重的水环境污染破坏了河流水生生态系统,曾造成刁江中上游河段鱼虾绝迹。河床上的尾砂沉积范围广、厚度深,重金属As、Pb、Zn、Cd 含量非常高,除了直接危害了水环境质量外,还造成河道泄洪能力下降和洪水淹没范围的扩大,构成对沿江土壤环境和生态环
Sustainability issues and the significant environmetal problems in mining have led to increased public concerns around the world. Many people are devoting themselves to solving them from different perspectives. Years of unregulated mining and mineral extraction activities within the mining district of Dachang, located at the upper region of Diaojiang river, have caused severe environmental problems, which reflect the historical negative environmental legacies produced by unregulated mining.
    On the basis of identifying the environmental impacts caused by mining activities in Diaojiang river basin, this article analyzes some technical details including the reuse of mine tailings, plant restoration and reconstruction, etc., and discusses the necessities of building an integrated system incorporating environmental protection into mining processes from a sustainable development perspective.
    The main research methods and works comprise the following:
    (1)Investigating the species, niches of plants colonising naturally at the abandoned mine sites, and analyzing heavy metal concentrations of the plants and the mine wastes;
    (2)Investigating the distribution and area of abandoned mine sites using GPS;
    (3)Investigating the flooded area using a high-tech measuring instrument n2000GPS,and analyzing the relationships between the flooded area and the polluted area along Diaojiang river;
    (4)Analyzing the concentrations of heavy metals in soils along Diaojiang river;
    (5)Collecting data by visiting all the related departments;
    (6)Conducting field trials of revegetation at Kengma tailings pond;
    (7)Conducting pot culture experiments of Leucaena leucocephala(Lamk) Dewit in a green house.
    The following conclusions can be drawn: (1) Severe environmental problems have been resulted due to the mining operation at the upper region of Diaojing river basin, and the pollutants extend to the lower reaches which are more than 200 kilometers away. (2) Large amounts of abandoned mine sites which include tailings, derelict mining and extraction sites, and the abandoned arable land caused by mining, are not physically stable and contain toxic elements which can serve as a more or less permanent source of threat to surroundings. The plants on the mine sites contain high levels of heavy metals which may lead to more serious detriment to local ecosystem. (3)Severe water pollution and sediment build-up at the Diaojiang river bottom have spoiled aquatic ecosystem, causing a fish kill and forcing local people to turn off their drinking water intakes, and increased the incidence and severity of overbank flooding. All of these can have a significant negative effects on the local ecosystems along the river. (4)The flooding resulted in the deposit of mine waste on the arable land, and caused severe heavy metal contamination of soils along Diaojiang river. There are obvious mine wastes in soils of upper region, so it’s relatively easy to identify the polluted area, but in the lower reaches, mine wastes are not so obvious although the concentrations of pollutants in soil are still high. The plough sole of rice land can obstruct the transport of heavy metals downwards. The concentrations of Cd, Pb and Zn in rice and corn have exceeded the national food standards, and may have serious detriment to public health. (5)There are still several kinds of valuable elements worth of reextration in the mine tailings. (6) The selection of plant species and appropriate amendment of substrate are the key to successful revegetation on the mine sites. The results of field trials at Kengma tailings pond demonstrate that Saccharum arundinaceum, Arundo donax L. and Leucaena leucocephala (Lamk) Dewit. can grow well when the substrate is amended with garbage compost, especially for L. leucocephala which bore fruits after 16 months’growth, and the three plant species can be introduced as pioneer plants for vegetation establishment on the mine wastes. The results also indicate that pure tailings inhibit the growth of L. leucocephala, but not seriously affect the growth of S. arundinaceum and A. donax. The results of pot cultivation in green house indicate that different combinations of tailings and garbage compost have different effects on the growth of L. leucocephala. Adding appropriate amount of NH4H2PO4 to the substrates composed of tailings and garbage compost can be helpful to the growth of L.
    leucocephala. (7)Mineral development has been often hostile to well environment in the history of mining. It’s essential to introduce an new framework which can combine them together. The integration of mine resources and environment is a theoretical framework which contains two basic parts: First, mine resources are the components of mine environment which have economic value, so it’s inevitable for mine environment to be changed in the process of mineral development, but the environment problems are often the results of unreasonable mining operation, and the mine wastes can be seen as the unused resource. Second, only if environmental protection measures are incorporated into the whole process of mineral development, the environmental problems caused by mining could be solved soundly. The distinguishing features of this article comprise the following: (1)Analyzing the environmental impacts of mineral development in Diaojiang river basin, including the impacts on soil environment, water environment and ecological environment,etc.. (2) Conducting the field trials at Kengma tailings pond for the selection of appropriate plant species which can endure high levels of heavy metals in tailings. Conducting the pot cultivation experiments in a green house for the growth of L. leucocephala which was planted in the substrates composed of tailings and garbage compost. The results was as expected. (3) Analyzing the contaminated area by an innovative method combining sampling analysis with GPS measurement. (4) Defining an new concept “the integration of mine resources and environment”, and applying it to regulate the treatment of historical environmental problems and the development of mine resources. The innovations of this article comprise the following: (1)Defining an new concept “the integration of mine resources and environment”and putting forward a series of strategies for the treatment of historical mining legacies and prevention of new environmental problems in Diaojiang river basin. (2)Revealing the remarkable effects of mineral development on water, soil and ecosystem in Diaojiang river basin. The pollution extends to the lower reaches which are more than 200 kilometers away. (3)Proving that overbank soils along Diangjiang river have been severely contaminated by heavy metals and the plough sole of rice land can obstruct the transport of heavy metals downwards.
    (4) S. arundinaceum, A. donax and L. leucocephala can be introduced as pioneer plants for revegetation on the mine wastes. Adding appropriate amount of NH4H2PO4 to the substrates composed of tailings and garbage compost can be helpful to the growth of L. leucocephala.
引文
[1] 中国矿产资源网,www.chinasd.com/gzsk.htm
    [2] Hard-rock mining issues in New Mexico. www.nmenvirolaw.org/issues/mining.htm
    [3] The last American dinosaur—the 1872 mining law. %20www. Mineralpolicy. org/ publications/factsheets.
    [4] Bill to help clean up abandoned mines endorsed by Mineral Policy Center. %20www.mineralpolicy.org
    Adams J G U. Determined to Dig[M]. Council for Protection of Rural England, London,1991,28.
    Alvarez-Ayuso E, Garcia-Sanchez A.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J].Environmental Pollution ,2003,125:337–344.
    Ash H J,Gemmell R P,Bradshaw A D. The introduction of native plant species on industrial waste heaps:a test of immigration and factors affecting primary succession[J]. Journal of Applied Ecology,1994,31:74~84.
    Azapagic A. Life cycle assessment and its application to process selection,design and optimisation[J]. Chemical Engineering Journal,1999,(73):1-21.
    Baas L W. Cleaner production:beyond projects[J]. Journal of Cleaner Production, 1995, 3(1-2):55-59.
    Baker A J M. Metal tolerance[J]. New photologist,1987,(106):93~111.
    Bell L C. A Multidisciplinary Approach to Producing Solutions for Sustainable Mine Rehabilitation-The Role of the Australian Centre for Minesite Rehabilitation Research[A],Remediation and Management of Degraded Lands[C].Wong M.H.,Ed.,Lewis Publishers,1999.
    Bell L C.Establishment of native ecosystems after mining-Australian experience across diverse biogeographic zones[J]. Ecological Engineering,2001,17:179-186.
    Bellairs S M. Development of success criteria for reestablishment of native flora habitats on coal mine rehabilitaiton areas in Australia[A],Remediation and Management of Degraded Lands[C].Wong M.H.,Ed.,Lewis Publishers,1999.
    Bradshaw A. Restoration of mined lands---using natural processes[J].Ecological Engineering , 1997,(8 ):255-269
    Brooks R R, Lee J,Reeves D R. Sebertia acuminate: A Hyperaccumulator of Nickel for New Caledonia[J]. Science, 1976,(193):579-580.
    Brooks R R,Chambers M F,Nicks L J,Robinson B H. Phytomining[J]. Perspectives, 1998,3(9):359~362.
    Chaney R L, Li Y M, Angle J S, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems:approaches and progress[A]. Phytoremediation of contaminated soil and water[C]. N Terry and G S Banuelos(eds.).CRC Press, Boca Raton, FL, 2000:131-136.
    Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals[J]. Current opinion in biotechnology,1997,(8):279-284.
    Charles R M. Ecosystem management policies in the state government of the USA[J].Landscape and Urban Planning, 2000,(48): 57~64.
    Chen H, Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus[J]. Chemosphere, 2001,45:21~28.
    Chlopecka A , Adriano D C.Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc[J].Environmental Science and Technology,1996,30, 3294–3303.
    Clark A L. The new reality of mineral development: social and cultural issues in asia and pacific nations[J]. Resource policy, 1999, 25 :189-196.
    Clark T, Knowles L L. Global myopia: globalization theory in international business[J]. Journal of international management,2003,(9):361~372.
    Clark,A.L., 1999.The new reality of mineral development: social and cultural issues in asia and pacific nations, Resource policy ,25 : 189-196.
    Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chem Rev 1989,89:713-764.
    Cunningham D S,Berti R W,Huang W J.Photoremediation of contaminated soils[J]. Trends in Biotochnology,1995,13(9):393~397.
    Dahmami-Muller H, Oort V F, Gélie B, Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter[J]. Environmental Pollution,2000,109:231~238.
    EPA. Best practice environmental management in mining---rehabilitation and revegetation[M].Australia,1995.
    Francesconi K, Visoottiviseth P, Sridokchan W, et al. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils[J]. The science of the total environment , 2002,(284):27-35.
    Fresner J. Cleaner production as a means for effective environmental management[J].Journal of Cleaner Production,1998, 6: 171–179.
    Garbisu C,Alkorta I.Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J].Bioresource Technology,2001,77:229-236.
    Garcia-Sanchez A, Alastuey A, Querol X. Heavy metal adsorption by different minerals:application to the remediation of polluted soils[J]. The Science of the Total Environment,1999,242:179-188.
    Gayler D.澳大利亚的清洁生产途径[J].产业与环境,1995,17(4):77-79.
    Gemmel R P. Colonization of industrial wasteland[M]. Edward Arnold,London,1977:21-47.
    Ghose M K.Indian small-scale mining with special emphasis on environmental management[J]. Journal of Cleaner Production,2003, 11:159-165.
    Gisbert C,Ros R, Haro A D, et al.A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J]. Biochemical and Biophysical Research Communications,2003,(303):440–445.
    Government of Canada. Minerals and Metals Towards a Sustainable Future,A Canadian contribution to the land use dialogue at the Eighth Session of the United Commission on Sustainable Development,April 24 to May 5,Government of Canada,Ottawa,Ontario,2000.
    Government of Canada. The Minerals and Metals Policy of the Government of Canada: Partnerships for Sustainable Development. Government of Canada,Ottawa,Ontario,1996.
    Hamilton E I. Environmental variables in holistic evaluation of land contaminated by historic mine wastes:a study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health[J]. The science of the total environment, 2000,249:171-221.
    Herat Sunil. Education and training for cleaner production: a flexible learning approach[J]. Journal of Cleaner Production , 2000, 8: 361–364.
    Hilson G. Pollution prevention and cleaner production in the mining industry: an analysis of current issues[J]. Journal of cleaner production,2000, 8:119-126.
    Hilson G. Progress toward pollution prevention and waste minimization in the North American gold mining industry [J].Journal of cleaner production,2001, 9:405-415.
    Hilson G., Nayee V. Environmental management system implementation in the mining industry: a key to achieving cleaner production[J].International journal of mineral processing, 2002. 64:19-41.
    Hilson G.,Barbara M. Sustainable development in the mining industry:clarifying the corporate perspective[J].Resources Policy,2000,26:227-238.
    Hilson G.. Barriers to implementing cleaner technologies and cleaner production (cp) practices in the mining industry: a case study of the Americas[J].Mineral Engineering,2000,13(7):699-717.
    Hilson G..Sustainable development policies in Canada’s mining sector: an overview of government and industry efforts[J]. Environment Science and Policy, 2000,(3):201-211.
    Jakelski D,Lebrasseur R.Implementing continuous improvement in the North American mining industry[J].Technological Forecasting and Social Change,1997,55:165-177.
    Johnson G D. Globalization: what it is and who benefits[J]. Journal of Asian Economics, 2002,13:427~439.
    Kambani S M. Small-scale mining and cleaner production issues in Zambia[J]. Journal of Clenaer Production,2003,11:141-146.
    Kauffman J W, Laughlin W C, Baldwin R A.Microbiological treatment of uranium mine waters[J].Environmental science technology,1986,20:243-248.
    Lai H Y, Chen Z S.Effects of EDTA on solubility of cadmium,zinc,and lead and their uptake by rainbow pink and vetiver grass[J]. Chmosphere,2004,55:421-430.
    Laughlin G J,Todd J A. Evidence for early Bronze Age tin ore processing[J]. Materials Characterization, 2000,45,269~273.
    Lin G,Miao Z W,Zhong K B,et al. A case study of eclolgical restoration at the Xiaoyi Bauxite Mine,Shanxi Province,China[J]. Ecological Engineering, 1998,11 :221-229.
    Lombi E, Zhao F J, Zhang G Y, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution, 2002,118 : 435–443.
    Ma L Q, Komar K M, Tu C,Zhang W, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic[J].Nature, 2001,(409):579.
    Matschulla J. Arsenic in the geosphere---a review[J]. The Science of the Total Environment. 2000, 249:297-312.
    McRae S G. Land reclamation after open-pit mineral extraction in Britain[A], Remediation and management of degraded lands[C]. Lewis publishers,1999.
    Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation[J]. Engineering Geology ,2001,60:193-207.
    NRC. Sustainable development of minerals and metals. Natural Resources Canada,Ottawa, Canada.1997.
    Otto J M. Global changes in mining laws, agreements and tax systems[J].Resources policy, 1998,24(2):79-86.
    Prasad M N V, Freitas H M O.Metal hyperaccumulator in plants---biodiversity prospecting for phytoremediation technology[J]. Electronic Journal of Biotechnology, 2003,6(3):285~321.
    Pugh R E,Dick D G,Fredeen A L.Heavy metal(Pb,Zn,Cd,Fe,and Cu) contents of plant foliage near the Anvil Range lead/zinc mine,Faro,Yukon Territory[J]. Ecotoxicology and environmental safety,2002,52:273-279.
    Raskin I, Smith D R, Salt E D. Photoremediation of metals:using plants to remove pollutants from the environment[J]. Current Opinion in Biotechnology,1997,(8):221~226.
    Richard H. Ecosystem management and environmental policy in the United States:open window or closed door?[J]. Landscape and Urban Planning,1998, 40: 221~233.
    Robinson B H, Leblanc M, Petit D, et al. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils[J]. Plant and soil ,1998,(203):47-56.
    Rulkens W H, Tichy R, Grotenhuis T C. Remediation of polluted soil and sediment: perspectives and failures[J]. Wat. Sci. Tech.,1998,37(8): 27-35.
    Shinya M W. Canada’s new minerals and metals policy---Advancing the concept of sustainable development in the minerals and metals industry[J].Resource Policy,1998, 24(2):95-104.
    Skousen J G.,Call C A, Knight R W. Natural revegetation of an unreclaimed lignite surface mine in east-central Texas(USA)[J]. Southwestern Naturalist,1990,35:434~440.
    Tacey W, Treloar J, Gordine R.Completion criteria for mine site rehabilitation in the Arid landcare. Kalgoorlie,Goldfields Arts Centre,29 October-1 November, 1993:151-162.
    Teck Cominco. 2002 Sustainability Report. www.teckcominco.com,2002.
    Tilton J. Exaustable resources and sustainable development[J].Resources Policy,1996,23(1-2):91-97.
    Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil[J]. Chemosphere,2002,46:31-38.
    Tordoff G M,Baker A J M,Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes[J]. Chemosphere,2000,41:219-228.
    Truman P Y.Restoration ecology and conservation biology[J].Biological Conservation, 2000,92: 73-83.
    USGS. Environmental considerations of active and abandoned mine lands:lessons from Summitville,Colorado. Ed. Trude V.V.King. Denver,1995:2.
    Virkutyte J,Sillanp?? M,Latostenmaa P. Electrokinetic soil remediation-critical overview[J].The science of the total environment,2002,289:97-121.
    Wagner H, Fettweis G B L.About science and technology in the field of mining in the Western world at the beginning of the new century[J]. Resource Policy,2001,27(3):157-168.
    鲍负,常前发.尾矿利用是实现矿业可持续发展的重要途径[J].矿业快报,2000 ,(337):3-5.
    卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999, 19(1):81-84.
    卜国基. 浅谈铟、镉在大厂矿田的分布及综合回收前景[J]. 广西地质,2000,13(1):37~40.
    常前发,王运敏.我国尾矿综合利用的现状及对策[J].中国矿业,1999,8(2):20-23.
    常前发.谈矿产资源的开发利用与可持续发展[J].中国矿业,2000,9( 6):11-15.
    陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,23.
    陈景和. 创新,矿业企业发展的灵魂——紫金山金矿:一个成功创新的范例[J].金属矿山,2002,309(3):1~3,6.
    陈静生,王立新,洪松,等.各国水体沉积物重金属质量基准的差异及原因分析[J].环境化学,2001,20(5):417-424.
    陈涛,吴燕玉,等.张士灌区镉土石灰改良盆栽后效和扩大试验效果[J].环境科学,1981,2(3).
    陈涛,吴燕玉,张学询,等.张土灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5).
    陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报, 2002, 47(3):207-210.
    丛志远,赵峰华.酸性矿山废水研究的现状与展望[J].中国矿业,2003,12(3):15~18. 邓建,彭怀生,张强.矿业可持续发展理论及应用[J].黄金,1997,18(7):20-23.
    蒂尔顿,J.E. 在竞争性的全球矿业中求生存—美国铜矿工业复兴的经验与教训[J]. 地质矿产信息,1998,(2):1-5.
    都沁军.矿产资源可持续开发利用系统构建与优化[J].地质技术经济管理,1999, 21(5-6):97-102.
    杜祥英,郝福安等.构筑我国清洁生产政策体系框架的思考[J].中国软科学,2001,(2):33~36.
    段宁.机制创新是清洁生产的当务之急[R].清洁生产简讯,2001b,38:www.china.com.
    段宁.新清洁生产[R].清洁生产简讯,2001a,36:www.china.com.
    付英.试论21 世纪初中国的矿产资源战略[J].资源·产业,2001,(1):20-28.
    高国雄,高保山,周心澄,等.国外工矿去土地复垦动态研究[J].水土保持研究,2001,8(1):98-103.
    高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140.
    格鲁德夫S N.(刘述中译).重金属和砷污染土壤的微生物净化[J]. 国外金属矿选矿,1999,64(10):40-42.
    格默尔R.P.(倪彭年等译).工业废弃地上的植物定居[M].北京:科学出版社,1987.
    广西环境科学研究所. 大厂矿务局老矿区、铜坑矿区、车河选厂环境质量现状评价总研究报告. 1987, 53~62.
    广西年鉴社.广西年鉴·2002. 南宁:广西年鉴社,2002,504-505.
    广西壮族自治区地方志编纂委员会.广西通志—有色金属工业志.南宁:广西人民出版社,1994.
    广西壮族自治区地质矿产局.广西泥盆纪沉积相古地理及矿产[M].南宁:广西人民出版社,1987,201.
    广西壮族自治区地质矿产局.广西泥盆纪沉积相古地理及矿产[M].南宁:广西人民出版社,1987,201.
    郭晋平.制定可持续发展的政策---流域管理的任务[J].世界林业研究,1995,(4):63-66.
    郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    国家土地管理局赴澳土地复垦考察团.澳大利亚的土地复垦操作规程[J].中国土地科学,11(4):46-48.
    国土资源部信息中心.世界矿产品资源年评2000~2001[M].北京:地质出版社,2002.
    胡皓.可持续发展理论与实践[M].西安:陕西科学技术出版社,1998.
    胡振琪,毕银丽.2000 年北京国际土地复垦学术研讨会综述[J].中国土地科学,2000,14(4):15-17.
    华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤地改良效应[J].农业环境保护,1998,17(2):55-59,62.
    黄民生,郑乐平,朱莉.微生物对重金属的吸附与解吸[J].化工装备技术,2000,21(2):17-22.
    黄岁梁,万兆惠,张朝阳.冲积河流重金属污染物迁移转化数学模型研究[J].水利学报,1995,(1):47-56.
    黄志伟,古德生.我国矿山无废开采的现状[J].矿业研究与开发,2002,22(4):9~10,32.
    坎纳T.矿业和环境议程[J].国外金属矿山,2000,(2):65-68.
    拉特兰,R W R. 矿产利用的可持续性,地质矿产信息,1998,(10),1-18.
    蓝崇钰,束文圣.矿业废弃地植被恢复中的基质改良[J].生态学杂志,1996,15(2):55-59.
    李海波,卢才武.矿产资源开发与可持续发展[J].黄金科学技术,2000,8(2):10-14.
    李树志.中国煤炭开采土地破坏及其复垦利用技术[J].资源·产业,2000,(7):8-10,19.
    李万青.华锡集团产品战略的设计与实施[J]. 世界有色金属,2001,(5):17~19,35.
    李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    李志超.微生物对甲基汞的降解作用[J].环境科学,1984,5(3):61-64.
    廖敏,黄昌勇,谢正苗.pH 对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    刘宝琛.减少矿产资源开发对地球环境影响的出路[J].世界科技研究与发展,2000,21(1):26-29.
    刘广云.中原油田勘探成绩喜人.中国矿业报,2002, 1 月5 日第一版.
    刘金芝,路瑞芝.非煤产业撑起一片天.中国矿业报,2002,1 月8 日第一版.
    刘粤湘,赵鹏大.传统矿业的变化与新型矿业经济的发展[J].中国矿业,2002,11(3):1~6.
    吕贻峰,李华宇.矿产资源可持续利用途径探讨[J].矿产保护与利用,2001,(3):1-3.
    马彦卿.矿山土地复垦与生态恢复[J].有色金属,1999, 51( 3):24-29.
    马彦卿.微生物复垦技术在矿区生态重建中的应用[J].采矿技术,2001,1(2):66-68.
    毛麒瑞.矿山尾矿的综合回收与利用[J].中国资源综合利用,2000,(5):36-37.
    梅斯特雷爱德华多J.流域管理的一体化进程——墨西哥水管理的特点与经验[J].水利水电快报, 1998,19(19):18~20.
    穆东,任一鑫.矿产资源行业可持续发展的科技对策研究[J].地质与勘探,2001, 37(2): 6-8.
    潘明才.中国土地复垦概况及发展趋势与对策[J].资源·产业,2000,(7): 彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31.
    普兰特,J A.英国的矿业和与之相关的环境保护问题[J].地质矿产信息,1999,(6):10-17.
    秦德先,洪托,田毓龙,陈健文. 广西大厂锡矿92 号矿体矿床地质与技术经济[M].北京:地质出版社,2002,102~122.
    山本良一.战略环境经营生态设计——范例100[M].北京:化学工业出版社,2003:1-11.
    石磊,钱易.国际推行清洁生产的发展趋势[J].中国人口·资源与环境,2002,12(1):64-67.
    寿嘉华. 中国矿业改革决心更加坚强.中国矿业报,2003,11 月1 日第1 版.
    舒俭民,刘晓春.恢复生态学的理论基础、关键技术与应用前景[J].中国环境科学,1998,18(6):540~543.
    束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,23(8):1629-1639.
    宋瑞祥. 跨越千年的地质科学与可持续发展.中国环境报,2000, 10 月12 日第3 版.
    宋书巧,华璀. 刁江流域洪涝灾害分析[J]. 未雨绸缪—广西洪涝灾害与防御对策研讨会论文选[C]. 南宁:广西科学技术出版社, 1996:236~241.
    宋书巧,周永章.矿山清洁生产示范研究[J].中国人口·资源与环境, 2003, 13(3):106-110.
    宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001,(5):43-49.
    宋书巧,周永章.矿业可持续发展的基本途径探讨[J].矿业研究与开发,2002,22(4):1-5.
    宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨[J].热带地理, 2004, 24(1):6-9.
    苏思平.车河选矿厂借技改提高家经济效益的探索实践[J].中国有色金属学报, 1998, 8(增刊2):824-826.
    孙翠玲,顾万春,郭玉文.废弃矿区生态环境恢复林业复垦技术的研究[J].资源科学,1995,21(3):68-71.
    孙翠玲,顾万春.矿区及废弃矿造林绿化工程——恢复废弃矿生态环境的必由之路[J].世界林业研究,1995,(2):30-35
    孙庆业,蓝崇钰,廖文波.尾矿植被法治理初探[J].国土与自然资源研究, 1999, (3):58-60.
    孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2002:284~291.
    孙伟.有色金属矿山尾矿综合回收与利用[J].有色金属(选矿部分),1999,(3):44-47.
    唐政生,孙荣博,潘安.美国田纳西流域管理[J].东北水利水电,2000,(4):44~48.
    万云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59.
    王成端,张家达.矿山环境污染及矿业可持续发展对策的研究[J].四川冶金, 1997, (3):73-76,80.
    王宏镔,文传浩,谭晓勇,等.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学, 1998,17(2):43-46.
    王家枢,蒋承菘.论矿产资源的全球化配置.中国矿业报,2003 年11 月11 日,第1,8 版.
    王玲.利用基因重组技术解决土壤中重金属污染问题[J].国外科技动态,2001,(1):41.
    王小蓓.ISO14000 认证与清洁生产审计相辅相成[J].洁净煤技术,2000,6(4):31-35.
    王援高,陆景冈,潘洪明.茶园土壤砷的形态研究[J]. 浙江农业大学学报,1999,25(1):10-12.
    王振成.固体废弃物的利用与处理[C].西安:西安交通大学出版社,1987:116-127.
    王子平,冯百侠,徐静珍. 资源论[M]. 石家庄:河北科学技术出版社,2001:526-544.
    韦朝阳,陈同斌,黄泽春. 大叶井口边草—种新发现的富集砷的植物[J].生态学报, 2002,22(5):777-778.
    温琰茂,鲁艳兵.施用城市污泥的土壤重金属生物有效性[J].中山大学学报, 1999,38(4):97-101.
    吴伯增,黄根深,邬清平. 大厂100 号矿体特富矿选矿优化流程的初步实践[J]. 矿冶,1996,5(3):33-39.
    吴城材.新设备新工艺新药剂在车河选厂的应用[J]. 广东有色金属学报,1998,8(2):93-98.
    吴燕玉,陈涛,李书鼎,等.张士灌区镉污染综合防治技术的研究[J].中国环境科学,1985,5(3):1-7.
    吴燕玉.辽宁省土壤元素背景值[M].北京:中国环境科学出版社,1994:562.
    夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996:86.
    夏青. 加入WTO 对中国矿业的影响及发展战略分析[J]. 矿冶,2002,11(增刊):40~41,32.
    夏星辉,陈静生. 土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76.
    小山雄生. 土壤和作物中的砷[J]. 土壤农化,1976,(6):41-51.
    肖斌,高甲荣,刘国强,等.国外流域管理机构与法规述评[J].西北林学院学报,2000,15(3):112~117.
    徐嵩龄.采矿地的生态重建和恢复生态学[J].科技导报,1994,(3):49-51,16.
    阎敬,杨福海,李富平.冶金矿山土地复垦综述[J].河北理工学院学报, 1999, 21(增刊):41-47.
    阎晓明,何金柱.重金属污染土壤的微生物修复机理及研究进展[J].安徽农业科学,2002,30(6):877-879,883.
    余斌,徐惠.矿山固体废弃物综合利用技术现状与发展趋势[J].矿冶,2002,11(增刊):236~240.
    愈孔坚,李迪华,吉庆萍.景观与城市的生态设计:概念与原理[J].中国园林,2001,(6):3-10.
    袁国华. 矿产资源与可持续发展研究[J].地域研究与开发,1997,16(3):20-23.
    曾绵华,范宏喜.绿色矿业路漫漫——中国矿山环境沉思录[J].国土资源,2002,(7):4~11.
    张宝莲,管志炜.21 世纪的新型资源——尾矿资源的开发[J].江西地质,2000,14(3): 176-179.
    张宝明.煤矿安全监察管理体制的重大改革[J].劳动保护,2000,(3):10-12.
    张国祥,杨居荣,华珞. 土壤环境中的砷及其生态效应[J].土壤,1996,28(2):64-68.
    张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429-434.
    张锦瑞,王伟之,秦煜民.尾矿库土地复垦的研究现状与方向[J].有色金属(选矿部分),2000,(3):42-45.
    张坤民.可持续发展论[M].北京:中国环境科学出版社,1997.
    张青松,张利民,姜伟立,吴海锁. 清洁生产与ISO14000[M]. 北京:中国环境科学出版社, 2003.
    张文敏,马彦卿,孟娜,等.内生(VA)菌根用于矿山复垦的田间试验研究[J].有色金属(矿山部分),2000,(6):40-42.
    张兴琼. 大厂100 号矿体硫化矿浮选的合理工艺[J].矿冶工程,2000,20(1):26-28.
    张修志,刘朝马.紫金矿业依靠技术创新取得超常规发展[J].江西有色金属, 2003,17(1):9-12.
    张应红,文志兵. 矿山环境综合治理政策研究[J].中国矿业, 2002,11(6):57~60.
    赵鹏大,陈建平. 21 世纪矿产资源经济展望[J].自然资源学报,2000,(3):197-200.
    赵鹏大,陈建平.非传统矿产资源体系及其关键科学问题[J].地球科学进展,2000,15(3): 251-255.
    郑春宝,马水庆,沈平伟.浅谈国外流域管理的成功经验及发展趋势[J].人民黄河,1999,21(1):44~45.
    中国矿业年鉴编辑部.中国矿业年鉴2002[M]. 北京:地震出版社,2002:559~583.
    周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508.
    周兴,宋书巧.刁江流域重金属污染土地合理利用探讨[J].广西师院学报, 1999, (4):93-96,110.
    周永章,宋书巧,杨小强,秦成.地区形象及其与区域可持续发展关系[A].地区形象理论与实践[C].广州:中山大学出版社,2000:142-152.
    周永章,郑洪汉.开展21 世纪区域可持续发展刍议[J].地球科学进展, 1995, 10(2): 202-204.
    周永章.稳健丰度分析及广西南丹-河池盆地泥盆系地层元素丰度的意义[J].地球化学, 1990,19(2):159-165.
    朱华平.中国矿产资源开发中的环境对策[J].西北地质,1996,17(2):56-57,46.
    朱中红.矿业固体废弃物—尾矿的资源化[J].环境与开发,1999,14(1):24-25,28.
    兹维尔斯基T B,贝格利R D. 适时改进ISO14000 环境管理体系在矿业中的应用[J].国外金属矿山,1999,(3):66~69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700