川南坡地几种退耕模式对土壤抗蚀性及有机质组分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土流失是当今世界普遍关注的重大环境间题,退耕还林(草)是修复土壤、控制水土流失、改善生态环境的根本性措施。退耕还林后林间部分土地荒芜,加之林木生长缓慢,经济效益不高,如何兼顾与协调生态效益、经济效益和社会效益三者的关系,选择适宜的退耕模式成为迫切需要解决的问题。论文从土壤抗蚀性和土壤有机质组分着手,系统地研究了川南坡地及其退耕成慈竹林、杂交竹林、桤木+慈竹混交林和弃耕地5年后土壤养分、土壤层及枯落物层水源涵养功能、土壤抗蚀性、土壤分形特征及土壤有机质组分(包括微生物量碳和氮、水溶性有机碳、活性有机碳、轻组有机碳和氮、颗粒有机碳和氮、腐殖质组分碳和氮、有机碳和氮矿化、团聚体中有机碳和氮)的变化,主要研究结果如下:
     1)退耕有利于土壤养分含量、微生物数量和酶活性的提高,不同退耕模式的土壤有机质、全氮、碱解氮、全磷、细菌、真菌、放线菌及总微生物数量、蔗糖酶、脲酶和磷酸酶活性的大小顺序为:慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地;有效磷、速效钾含量的大小顺序为:农耕地>慈竹林>杂交竹林>桤木+慈竹林>弃耕地;全钾含量的大小顺序为:慈竹林>杂交竹林>桤木+慈竹林=弃耕地>农耕地,且0-15 cm土层各指标含量均高于15-30 cm土层。土壤有机质、全氮、碱解氮、全磷和全钾含量与蔗糖酶、磷酸酶、脲酶、微生物总数、细菌、真菌和放线菌数量之间呈极显著正相关关系。
     2)不同退耕模式土壤物理性质及其水源涵养功能差异明显。慈竹林土壤总空隙度、最大持水量和毛管持水量大于杂交竹林、桤木+慈竹林和弃耕地;枯落物储量、最大持水量和有效拦蓄量呈现出慈竹林>杂交竹林>桤木+慈竹混交林>弃耕地的变化规律。4种不同退耕模式枯落物持水量与浸泡时间的关系式为Q=alnt+b,在0-2 h内,枯落物持水量迅速增加,此后增加速度逐渐减缓;其吸水速率与浸泡时间关系式为V=ktn,在0-2 h内,枯落物吸水速率迅速下降,4h后下降速度逐渐减缓。综合土壤层和枯落物层的综合蓄水能力,慈竹林持水能力最强,具有良好的生态水文功能。
     3)与农耕地对照相比,退耕5年后土壤水稳性团聚体平均重量直径、结构性颗粒指数、团聚状况、团聚度、物理稳定性指数和有机质增加,土壤结构体破坏率、不稳定团粒指数、分散率、侵蚀系数和受蚀性指数降低。各模式土壤抗蚀性综合主成分值为-4.466~3.436,呈现出慈竹林>杂交竹林>桤木+慈竹混交林>弃耕地>农耕地的规律。土壤有机质与大多数抗蚀性指标具有显著相关性,且与抗蚀性综合主成分值呈极显著正相关,说明坡地退耕后土壤有机质增加是土壤抗蚀性增强的关键,坡地退耕成慈竹林更有利于增强研究区土壤抗蚀性。
     4)退耕后>0.25 mm的土壤团聚体和水稳性团聚体含量均显著增加,团粒结构分形维数介于1.377-2.826之间,且慈竹林<杂交竹林<桤木+慈竹林<弃耕地<农耕地,并随>0.25 mm的土壤团聚体及水稳性团聚体含量的增加而降低。退耕后的慈竹林、杂交竹林、桤木+慈竹林和弃耕地的土壤团粒结构分形维数与抗蚀性综合主成分值、土壤理化性质、微生物数量及酶活性相关性较好。农耕地退耕对增加>0.25 mm的土壤团聚体及水稳性团聚体含量和提高土壤结构稳定性具有较好的作用;土壤团粒结构分形维数可以作为坡地退耕后土壤肥力和抗蚀性变化的理想指标,在研究区坡地退耕种植慈竹具有较好的培肥改土效益。
     5)退耕后土壤有机质、粘粒(<0.001 mm)含量、颗粒分形维数、颗粒组成中物理性粘粒(<0.01 mm)与物理性砂粒(>0.01 mm)含量的比值增加,呈现出慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地的变化规律,各模式土壤颗粒分形维数在2.507-2.598之间。土壤颗粒分形维数与土壤物理性质、抗蚀性综合主成分值、养分含量、微生物数量和酶活性之间相关性较好。说明农耕地退耕对提高土壤粘粒含量、肥力水平及改善颗粒组成比例具有较好的作用;土壤颗粒分形维数可以作为坡地退耕后土壤肥力和抗蚀性变化的评价指标。
     6)不同退耕模式土壤微生物量碳和氮含量以慈竹林为最高,且慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地,各模式土壤微生物量碳和氮含量均为0-15 cm土层高于15-30 cm土层。退耕模式慈竹林、杂交竹林、桤木+慈竹林和弃耕地0-30 cm土层土壤微生物量比农耕地相比,微生物量碳分别高出111.6~147.0%,78.4~107.4%,59.2~83.9%,28.7~51.3%,微生物量氮分别增加92.1~107.8%,57.6~78.9%,45.7~62.3%,27.2~43.6%。水溶性有机碳含量排序同土壤微生物量碳和氮,各模式依次比农耕地高出128.4~150.6%、79.2~105.9%、59.3~86.0%、35.8~55.5%,且均为上层大于下层土壤。说明退耕有利于土壤微生物量碳和氮及水溶性有机碳含量的增加。土壤微生物量可以较为敏感地反映退耕地植被恢复对土壤性质的影响。
     7)在不同退耕模式下土壤活性有机碳的含量为0.121-1.238 g·kg-1。同一退耕模式下,上层土壤的活性有机碳(CL333)、中等活性有机碳(CL167)和高活性有机碳(CL33)的含量均高于下层,且CL333>CL167>CL33。各土层土壤活性有机碳(CL333)、中等活性有机碳(CL167)和高活性有机碳(CL33)含量及碳库管理指数大小均为:慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地;各模式土壤活性有机碳(CL333、CL167和CL33)含量均为0-15 cm土层高于15-30 cm土层。全氮、碱解氮、全磷、全钾、细菌、真菌、放线菌、蔗糖酶、脲酶、磷酸酶和抗蚀性综合主成分值与高活性有机碳、中等活性有机碳、活性有机碳及碳库管理指数呈极显著相关,说明全氮、碱解氮、全磷、全钾、细菌、真菌、放线菌、蔗糖酶、脲酶和磷酸酶与土壤不同活度有机碳和碳库管理指数关系密切,通过对土壤活性有机碳和碳库管理指数的研究可以预测坡地退耕后土壤肥力和抗蚀性的变化。
     8)退耕后土壤轻组及重组有机碳和氮含量、轻组有机碳和氮分配比例、轻组及重组有机质C/N比、轻组有机碳和氮储量均呈现出慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地的变化规律,且轻组及重组有机碳和氮含量、轻组有机碳和氮分配比例和轻组及重组有机质C/N比均为0-15 cm土层土壤高于15-30 cm土层。
     9)退耕均能在不同程度上增加土壤颗粒有机碳和氮及矿质结合有机碳和氮含量,提高土壤颗粒有机碳和氮分配比例及颗粒有机质C/N,且上层土壤各指标均高于下层。各模式颗粒有机碳和氮及矿质结合有机碳和氮储量均呈现出慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地的趋势,与农耕地相比,各退耕模式颗粒有机碳和氮储量分别增加60.9%-162.4%和54.5%-136.5%,矿质结合有机碳和氮储量分别增加54.6%-119.8%和50.4%-103.4%。说明退耕是增加土壤颗粒有机碳和氮及矿质结合有机碳和氮的关键。
     10)土壤腐殖质(胡敏酸、富里酸和胡敏素)及活性腐殖质(活性胡敏酸和活性富里酸)组分碳、氮含量和可浸提腐殖质(胡敏酸和富里酸)及活性腐殖质组分碳、氮分配比例大小顺序均为:慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地,说明慈竹林对增加土壤腐殖质及活性腐殖质组分碳、氮效果更为明显。各退耕模式土壤活性腐殖质碳和氮的增加率均分别高于腐殖质碳和氮,说明活性腐殖质组分碳和氮较腐殖质组分碳和氮对不同退耕模式的响应更灵敏。
     11)不同退耕模式下各土层土壤有机碳矿化量差异显著,其释放C02-C量的大小顺序为:慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地,且上层土壤高于下层。在培养的前5天,各土层土壤C02-C快速释放,之后趋于平缓,整个培养期土壤有机碳累积矿化量呈曲线增加趋势。与弃耕地相比,慈竹林、杂交竹林、桤木+慈竹林和农耕地土壤中铵态氮、硝态氮和总无机氮含量均增加;0-30 cm土层土壤氮净矿化速率由大到小依次为慈竹林>杂交竹林>慈竹+桤木林>弃耕地>农耕地,且差异显著。
     12)不同退耕模式土壤各粒级团聚体有机碳和氮含量顺序均为慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地,表明退耕后随着植被的恢复土壤团聚体有机碳和氮含量提高。土壤团聚体有机碳和氮的含量随团聚体粒径的减小而增大呈现出“V”变化规律,即大粒级和小粒级团聚体(>5 mm和<0.25mm粒径)土壤有机碳和氮含量高,而中间粒级团聚体土壤有机碳和氮含量低,且各模式均以<0.25mm团聚体土壤有机碳和氮含量最高。退耕增加了大粒径团聚体中有机碳和氮的分配比例,减少了小粒径团聚体有机碳和氮的分配比例。
Water loss and soil erosion is a serious environmental problem in the world, returning farmland to forest (grass) is the essential measure to remedy soil, control water loss and soil erosion, and improve the ecological environment. After de-farming, how to consider and harmonize the ecological, economic and social benefits and choosing feasible de-farming patterns become an exigent problem to settle. By analyzing soil anti-erodibility and soil organic matter fractions, this paper systematically studied the changes of soil nutrients, water conservation function of soil and litter layer, soil anti-erodibility, fractal dimension characteristics and organic matter fractions (including microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), water-soluble organic carbon (WSOC), labile organic C, light fraction organic carbon (LFC) and light fraction organic nitrogen (LFN), particle organic carbon (POC) and particle organic nitrogen (PON), humus fraction C and N, soil organic C and N mineralization, aggregate organic C and N in the slope farmland (CK) and its 5-year de-farmed Neosinocalamus affinis plantation (NAP), Bambusa pervariabilis x Dendrocalamopsis oldhami plantation (BDP), Alnus crenastogyne+Neosinocalamus affinis plantation (ANP) and abandoned farmland (AFL) in southern Sichuan Province of China. The main results were found as follows:
     1) De-farming could increase soil nutrients content, microbe counts and enzyme activities. Contents of soil organic matter (SOM), total N, alkaline hydrolysis N, total P, soil bacteria, fungi, actinomycete and total microbe counts, and invertase, phosphatase and urase activities followed the order of NAP>BDP>ANP>AFL>CK, contents of available P and available K were followed the order of CK>NAP>BDP>ANP>AFL, content of total K followed the order of NAP>BDP>ANP=AFL>CK, and these in 0-15 cm soil layer were higher than in 15-30 cm soil layer. Soil nutrients content were well correlated with enzyme activities and microbe counts, and SOM, total N, alkaline hydrolysis N, total P and total K contents were positively correlated with invertase, phosphatase and urase activities, and bacteria, fungi, actinomycete and total microbe counts. This indicates that the de-farming of slope farmland was beneficial for improvement of soil fertility.
     2) Soil physical properties and water conversation of soil and litter layer were significantly different under all de-farming patterns. Soil total porosity, maximum water holding capacity and capillary moisture water holding capacity in NAP were better than the others. Litter storage, maximum water-holding capacity, and modified interception of litter layer were NAP>BDP>ANP>AFL. During the process of water holding, the water holding capacity and absorption speed in first 2 h were superior to the rest of time. The equation between the water holding capacity of the litter layer and the immerse time is Q=alnt+b, the equation between the water absorption speed of the litter layer and the immerse time is V=ktn. Overall, NAP had better water conservation function than the others.
     3) After 5 years'de-farming, the mean weight diameter of soil water-stable aggregates, structural granular index, aggregation state, aggregation rate and physical stability and SOM increased, while the soil structure deterioration ratio, index of unstable aggregate, dispersion ratio, erosion coefficient and index of erodibility decreased, as compared to CK. The synthetic principal component score value of soil anti-erodibility was-4.466~3.436 and followed the order of NAP>BDP>ANP>AFL>CK. SOM was significantly correlated with most of the soil anti-erodibility indices, as well as the synthetic principal component score value of soil anti-erodibility. The results suggested that SOM increasing after slope farmland de-farming could be the key for enhancing the soil anti-erodibility, and NAP was better for enhancing the soil anti-erodibility than other de-farming patterns.
     4) In the de-farmed plantations and abandoned farmland, the content of>0.25 mm soil aggregates and water-stable aggregates were increased significantly, compared with those in the slope farmland. The fractal dimension of soil aggregate structure was 1.377-2.826 and followed the order of NAP0.25 mm soil aggregate and water-stable aggregate. There were close relationships between fractal dimension of soil aggregate structure, soil physical and chemical properties, microbe counts and enzyme activities under de-farming patterns. This indicated that the de-farming of slope farmland was beneficial for increasing the contents of>0.25 mm soil aggregate and water-stable aggregate, and improving the stability of soil structure. The fractal dimension of soil aggregate structure could be used as an ideal index to evaluate soil fertility, and planting Neosinocalamus affinis in the de-farming slope farmland, which was best for soil improvement in the research area.
     5) After 5 years'de-farming, SOM, clay contents (<0.001 mm), fractal dimension of soil particles, ratio of soil physical clay (<0.001 mm) and physical sand (>0.01 mm) were increased. Soil fractal dimension of soil particles was 2.507~2.598 and followed the order of NAP>BDP>ANP>AFL>CK. The fractal dimension of soil particles were well correlated with soil physical properties, synthetic principal component score value of soil anti-erodibility, nutrients contents, microbe counts and enzyme activity. This indicated that de-farming of slope farmland was beneficial for soil clay content increase, soil fertility and proportion of particle composition improvement, fractal dimension of soil particle could be used as comprehensive quantitative index to evaluate soil fertility and anti-erodibility for slope farmland de-farming.
     6) MBC and MBN contents under different de-farming patterns was highest in NAP, and they were followed the order of NAP>BDP>ANP>AFL>CK. In all patterns, MBC and NAP in 0-15 cm soil layer were higher than those in 15~30 cm soil layer. MBC contents in NAP, BDP, ANP and AFL were 111.6~147.0%,78.4-107.4%,59.2~83.9%,28.7-51.3% higher respectively than that in CK, MBN contents were 92.1~107.8%,57.6-78.9%, 45.7-62.3%,27.2~43.6% higher respectively than that in CK, and WSOC contents were 128.4~150.6%,79.2-105.9%,59.3~86.0%,35.8-55.5% higher respectively than that in CK, and MBC, MBN and WSOC contents in upper layer of soil were higher than those in the subsoil. This indicated that de-farming is beneficial for the increase of MBC, MBN and WSOC. Soil microbial biomass can sensitively reflect the effect of re-farming vegetation pattern on soil properties.
     7) Soil labile organic C contents were 0.121-1.238 g-kg"1 under different de-farming patterns. In the same pattern, the content of labile organic C (CL333), middle labile organic C (CL167) and high labile organic C (CL33) in upper layer of soil were higher than those in the subsoil, and followed the order of CL333>CL167>CL33 The content of labile organic C (CL333), middle labile organic C (CL167) and high labile organic C (CL33) and soil carbon management index in different soil layers followed the order of NAP>BDP>ANP>AFL>CK. Soil labile organic C (CL333, CL167and CL33) in 0-15 cm soil layer were all higher than those in 15~30 cm soil layer. Total N, alkaline hydrolysis N, total P, total K, soil bacteria, fungi, actinomycete, invertase, phosphatase and urase activities and the synthetic principal component score value of soil anti-erodibility were significantly correlated with high labile organic C (CL33), middle labile organic C (CL167) and labile organic C (CL333) and soil carbon management index, this indicated that total N, alkaline hydrolysis N, total P, total K, soil bacteria, fungi, actinomycete, invertase, phosphatase and urase activities had close relationships with different soil labile organic C and soil carbon management index. The study on soil labile organic C and soil carbon management index can predict the change of soil fertility in de-farming land and soil anti-erodibility.
     8) The contents of soil LFC and LFN, heavy fraction organic (HFC) and nitrogen (HFN), the distribution ratios of LFC and LFN, C/N ratio of light fraction and heavy fraction, and the storage of LFC and LFN all showed a tendency of NAP>BDP>ANP>AFL>CK. At the same time, the contents of LFC, HFC, LFN and HFN, the proportion of LFC and LFN in total organic carbon and nitrogen, respectively, and C/N ratio of light fraction and heavy fraction in 0-15 cm soil layer were all higher than those in 15-30 cm soil layer.
     9) De-farming can increase contents of soil POC and PON, incorporated organic carbon (IOC) and nitrogen (ION), and improve the distribution ratios of soil POC and PON, and the C/N ratio of particle organic matter. These indexes in upper layer of soil are all higher than those in the subsoil. The storage of POC and PON, IOC and ION showed a tendency of NAP>BDP>ANP>AFL>CK. Compared with CK, the storage of POC and PON increased 60.9%~162.4% and 54.5%~136.5% respectively, and IOC and ION increased 54.6%~119.8% and 50.4%~103.4%, respectively. This indicated that de-farming is the key to increase soil POC and PON, IOC and ION.
     10) The contents of soil humus and labile humus compositions of C and N, extractable humus, and proportions of labile humus compositions of C and N followed the order of NAP>BDP>ANP>AFL>CK. This indicated that NAP is more efficient to increase the soil humus C and N fractions and soil labile humus C and N fractions. The increased rate of soil labile humus C and N under different de-farming patterns were higher than that of soil humus C and N fractions respectively, indicating that soil labile humus C and N fractions were more sensitive to different de-farming patterns than soil humus C and N fractions.
     11) Soil organic carbon (SOC) mineralization under different de-farming patterns was significantly different in every soil layer, and the cummualtive CO2-C in upper layer of soil is higher than that in the subsoil and follows the order of NAP>BDP>ANP>AFL>CK. In the first five days of the mineralization, the cummualtive CO2-C increased sharply in the first five days and then changed moderately, in the whole culture, the cumulative amount of mineralized SOC were increased based curve of objective function. Compared with AFL, NH+-N, NO3-N and total inorganic N in NAP, BDP, ANP and CK all increased. Soil net nitrogen mineralization rate followed the order of NAP>BDP>ANP>AFL>CK.
     12) SOC and SON contents of all different size aggregates under different de-farming patterns followed the order of NAP>BDP>ANP>AFL>CK respectively, indicating that SOC and SON in soil aggregates would increase with the vegetation restoration in de-farming land. The contents of SOC and SON in soil aggregates increased with the aggregate size decreased, showing a change tendency of V, that means the SOC and SON contents in small particles and micro-aggregates (>5 mm and<0.25 mm) were high, while in intermediate size aggregates was low, and<0.25 mm aggregate SOC and SON were the highest. De-farming increased the distribution ratios of SOC and SON in the lager particle-sized aggregates, and decreased the distribution ratios of SOC and SON in the lower particle-sized aggregate.
引文
[1]胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863
    [2]李占斌,鲁克新,丁文峰.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报,2002,16(2):5-7,49
    [3]田超,王米道,王家嘉.土壤有机质与水土流失相关性研究[J].安徽农学通报,2008,14(19):54,115
    [4]刘新宇,赵岭,王立刚,等.阿伦河流域水土保持林土壤抗蚀性研究[J].防护林科技,2000,(3):21-23
    [5]沈慧,姜凤岐,杜晓军.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348
    [6]David DB, Jeffrey JW, Mathew PJ, et al. Wind and water erosion and transport in semi-arid scrublands, grassland and forest ecosystems:quantifying dominance of horizontal wind driven transport. Earth Surface Processes and Landforms,2003,28:1189~1209
    [7]Haynes RJ, Swift RS, Stephen RC. Influence of mixed cropping rotations(Pasture-arable)on organic matter content, water stable aggregation and clod porosity in a group of soils[J]. Soil Tillage Res,1991,19:77~87
    [8]Tian GM, Wang FE, Chen YX, et al. Effect of different vegetation systems on soil erosion and soil nutrients in red soil region of southeastern China[J]. Pedosphere.2003,13(2):121~128
    [9]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化[.J].生态学报,2008,28(6):2536-2545
    [10]Blair GJ, Lefroy RDB. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46:1459~1466
    [11]Loginow WW, Wisniewski SG, Ciescinska B. Fractionation of organic C based on susceptibility to oxidation[J]. Polish Journal of Soil Science,1987,20:47~52
    [12]何毓蓉,廖超林,张保华.长江上游人工林与天然林土壤结构质量及保水抗蚀性研究[J].水土保持学报,2005,19(5):1-4
    [13]国家林业局.退耕还林技术与模式[M].北京:中国林业出版社,2001
    [14]高国雄,张国良,刘美鲜,等.国内外退耕还林研究与实践回顾[J].西北林学院学报,2007,22(2):203-208
    [15]刘志华.我国退耕还林政策问题研究综述[J].山西林业,2007,(2):5-7
    [16]佘方忠.退耕还林(草)与可持续发展研究[J].林业经济,2000,(5):18-24,28
    [17]马旭彦,陈方,李雪东.我国退耕还林政策存在的问题及其建议[J].内蒙古林业调查设计,2008,31(4):1-3,31
    [18]李世东.中外退耕还林还草比较及其启示[J].世界林业研究,2002,15(2):22-27
    [19]张芳芳.退耕还林还草与农业结构调整研究——以陇南市成县为例[D].西北师范大学,2007.
    [20]Wang XJ, Gong ZT. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China[J]. Geodema.1998,81:229~355
    [21]彭文英.黄土高原退耕还林还草及其对水土资源的影响[D].北京师范大学(博士学位论文).2003
    [22]李艳,李鹏,赵忠,等.退耕地植被恢复演替的生态环境效应研究进展[J].西北农林科技大学学报(自然科学版),2007,35(8):155-159
    [23]龙健,邓启琼,江新荣,等.西南喀斯特地区退耕还林(草)模式对土壤肥力质量演变的影响[J].应用生态学报,2005,16(7):1279-1284
    [24]王同顺,郭建英,孙保平,等.农牧交错区退耕还林后土壤物理性状分析[J].福建林业科技,2010,37(1):17-21
    [25]李文忠,贺永元,张伟华,等.北川河流域退耕还林(草)对土壤质量影响的评价[J].水土保持研究,2005,12(6):1-3
    [26]杨会侠,张景根,张雨鹏,等.不同退耕还林模式对地表径流及土壤物理性状影响的研究[J].吉林林业科技,2007,36(4):29-33
    [27]李品荣,陈强,常恩福,等.滇东南石漠化山地不同退耕还林模式土壤地力变化初探[J].水土保持研究,2008,15(1):65-68,71
    [28]彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):272-278
    [29]赵岩,杨越,孙保平,等.黄土丘陵区不同退耕模式对土壤物理性状影响研究[J].中国农学通报,2009,25(16):99-105
    [30]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599
    [31]石培礼,于贵瑞.拉萨河下游河谷不同土地利用方式下土壤有机碳储量格局[J].资源科学,2003,25(5):96-102
    [32]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552
    [33]李月梅.青海高寒农区不同土地利用方式下土壤有机碳含量变化研究[J].安徽农业科学,2010,38(10):5191-5193
    [34]丁文峰,李占斌.土壤抗蚀性的研究动态明.水土保持科技情报,2001,(1):36-39
    [35]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997
    [36]史晓梅.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究[D].西南大学(硕士学位论文).2008
    [37]阮伏水,吴雄海.关于土壤可蚀性指标的讨论[J].水土保持通报,1996,16(6):68-72
    [38]张振国,黄建成,焦菊英,等.安塞黄土丘陵沟壑区退耕地植物群落土壤抗蚀性分析[J].水土保持研究,2008,15(1):28-31
    [39]黄义端,田积莹,雍绍萍.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3(3):9-14
    [40]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗蚀指标的初步研究[J].土壤学报,1964,12(3):286-296
    [41]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:25-45
    [42]史东梅,吕刚,蒋光毅,等.马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,19(6):35-39
    [43]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报,1989,4(1):80-86
    [44]张启昌,孟庆繁,兰晓龙.黄土低山丘陵土壤抗蚀性影响因素的初步研究[J].水土保持通报,1996,16(3):23-26
    [45]杨玉盛,何宗明,陈光水,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-534
    [46]董慧霞,李贤伟,张健,等.退耕地三倍体毛白杨林地土壤抗蚀性研究[J].水土保持通报,2008,28(6):45-48
    [47]温仲明,焦峰,赫晓慧,等.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草业学报,2007,16(1):16-23
    [48]王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报,2003,18(5):529-535
    [49]胡海波,魏勇,仇才楼.苏北沿海防护林土壤可蚀性的研究[J].水土保持研究,2001,8(1):150-154
    [50]吴彦,刘世全,付秀琴,等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45-49
    [51]张金池,康立新,卢义山,等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,.1994,8(2):43-47,55
    [52]侯扶江,肖金玉,南志标.黄土高原退耕地的生态恢复[J].应用生态学报,2002,13(8):923-929
    [53]刘勇,王凯博,上官周平.黄土高原子午岭退耕地土壤物理性质与群落特征[J].植物资源与环境学报,2006,15(2):42-46
    [54]张振国,范变娥,白文娟,等.黄土丘陵沟壑区退耕地植物群落土壤抗蚀性研究[J].中国水土保持科学,2007,5(1):7-13
    [55]韩鲁艳,贾燕锋,王宁,等.黄土丘陵沟壑区植被恢复过程中的土壤抗蚀与细沟侵蚀演变[J].土壤,2009,41(3):483-489
    [56]郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(3):48-51,58
    [57]刘世德,李建牢.罗玉沟流域坡面土壤侵蚀与土壤理化性质[J].水土保持学报,1989,3(1):43-50
    [58]王佑民.刺槐林地土壤抗蚀性的研究[J].林业科技通讯,1984.5
    [59]李勇,吴钦孝,朱显漠,等.黄十高原植物根系提高十壤抗冲性能的研究[J].水十保持学报,1990,4(1):1-5,10
    [60]蒋定生.黄土抗冲性的研究[M].陕西省土壤学会1978年学术年会论文集,1978
    [61]史德明.土壤侵蚀调查方法中的试验研究和侵蚀量测定问题[J].中国水土保持,1983.9
    [62]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):11-16
    [63]王清奎,汪思龙,于小军,等.常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响[J].生态学杂志,2007,26(12):1918-1923
    [64]李强,马明东,刘跃建,等.川西北几种常绿阔叶林土壤碳库和养分库的比较[J].水土保持学报,2007,21(6):114-125
    [65]朱书法,刘丛强,陶发祥.δ13C方法在土壤有机质研究中的应用[J].土壤学报,2005,42(3):495-503
    [66]Cui XY, Wang YF, Niu HS, et al. Effect of long-term grazing on soil organic carbon content in semiarid steppe in Inner Mongolia[J]. Ecological Research,2005,20:519-527
    [67]林葆,林继雄,李家康.长期施肥作物产量和土壤肥力变化[M].北京:农业科技出版社,1996.1-179
    [68]West TO, Marland G A synthesis of carbon sequestration, carbon emission, and net carbon flux from agriculture: comparing tillage practices in the United States[J]. Agriculture Ecosystems Environment,2002,91:217~232
    [69]Johnson DW. Role of carbon in the cycling of other nutrients in forested ecosystems. In:MeFee WW, Kelly JJ, eds. Carbon Form sand Functions in Forest Soils. SSSA, Madison, WI.,1995.299~328
    [70]Santa RI, Tarazona T. Nutrient return on the soil through litterfall and throughfall under beech and pines stands of Sierradela Demanda[J], Spain. Arid Soil Res. Rehab.,2000,14:239-252
    [71]Nunez S, Martinez-Yrizar A, Burquez A, et al. Carbon mineralization in the southern Sonoran desert[J]. Acta Oecologica,2001,22:269~276
    [72]Gregorich EG, Carter MR, Doran JW, et al. Biological attributers of soil quality. In:Gregorich EQ Carter MR, eds. Soil Quality for Crop Production and Ecosystem Health. Development in Soil Science 25. The Netherlands:Elsevier, 1997.81-113
    [73]Tisdall JM, Oades JM. The management of ryegrass to stabilize aggregates of a red-brown earth[J]. Aust. J. Soil Res., 1980,18:415~422
    [74]Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol. Biochem.,2000,32:2099-2103
    [75]Campbell CA. Soil organic carbon,nitrogen and fertility. In:Schnitzer M, Khan SU, eds. Soil Organic Matter. Amsterdam, The Netherlands:Elsevier Scientific Publ. Co.,1978.173~271
    [76]Carter MR, Gregorich EG, Anderson DW, et al. Concepts of soil quality and their significance. In:Gregorich EG, Carter MR, eds. Soil Quality for Crop Production and Ecosystem Health, Development in Soil Science 25. The Netherlands:Elsevier,1997.1~19
    [77]Janzen HH,Campbell CA, Ellert BH, et al. Soil organic matter dynamics and their relationship to soil quality. In: Gregorich EG, Carter MR, eds. Soil Quality for Crop Production and Ecosystem Health. Development in Soil Science 25. The Netherlands:Elsevier.1997,277~291
    [78]Janzen HH, Campbell CA, Izaurralde RC, et al. Management effects on soil C storage on the Canadian prairies[J]. Soil Till. Res.,1998,47:181~195
    [79]Lumbanraja J, Syam T, Nishide H, et al. Deterioration of soil fertility by land use changes in South Sumatra, Indonesia:from 1970 to 1990. Hydrol. Process,1998,12:2003~2013
    [80]苏静,赵世伟,马继东,等.宁南黄土丘陵区不同人工植被对土壤碳库的影响[J].水土保持研究,2005,12(3):50-52,179
    [81]徐明岗,于荣,王伯仁.土壤活性有机质的研究进展[J].土壤肥料,2000(6):3-7
    [82]Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by 13C natural abundance[J]. Journal of Plant Nutrition and Soil Science, 2000,163:157~163
    [83]Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000,165(4):277~304
    [84]Guggenberger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin degradation products in two coniferous forests, N.E. Bavaria Germany[J]. Soil Biol. Biochem.,1994,26:19~27
    [85]Temminghoff EJM, Van Der Zee SEATM, De Haan FAM. Copper mobility in a copper contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environmental Science & Technology,1997,31(4): 1109~1115
    [86]Mcdowell WH. Dissolved organic matter in soils-future directions and unanswered questions[J]. Geoderma,2003, 113:179~186
    [87]Jandl R, Sollins P. Water-extractable soil carbon in relation to the belowground carbon cycle[J]. Biology and Fertility of Soils,1997,25:196~201
    [88]Meyer JL, Tate CM. The effects of watershed disturbance on dissolved organic carbon dynamics of a stream[J]. Ecology,1983,64:33-44
    [89]郭剑芬,杨玉盛,陈光水,等.不同营林措施对森林土壤DOM的影响研究进展[J].福建师范大学学报(自然科学版).2008,24(4):102-108
    [90]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519
    [91]李睿,屈明.土壤溶解性有机质的生态环境效应[J].生态环境,2004,13(2):271-275
    [92]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330
    [93]Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models[J]. Environmental Science & Technology,1994,28:38~46
    [94]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报,2002,22(2):258-269
    [95]高树芳,王果,方玲.溶解性有机质对水稻生长及元素吸收的影响[J].福建农业大学学报,2001,30(1):87-90
    [96]杨佳波,曾希柏.水溶性有机物在土壤中的化学行为及其对环境的影响[J].中国生态农业学报,2007,15(5):206-211
    [97]吴明.人工林土壤碳库研究进展[J].世界林业研究,2005,18(3):20-24
    [98]McDowell WH, Likens GE. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. Ecol. Monogr.,1988,58:177~195
    [99]吴建国,徐德应.六盘山林区几种土地利用方式对土壤中可溶性有机碳浓度影响的初步研究[J].植物生态学报,2005,29(6):945-953
    [100]Huang WZ, Schoenau JJ. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand[J]. Geoderma,1998,81:251~264
    [101]Williams BL, Edwards AC. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils[J]. Chem. Ecol.,1993,8:203~215
    [102]Zsolnay A. Dissolved humus in soil waters. In:Piccolo Aeds. H umic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam.1996.171-223
    [103]Qualls RQ Haines BL, Swank WT. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology,1991,72:254~266
    [104]Dalva M, Moore TR. Sources and sinks of dissolved organic carbon in a forested swamp catchment[J]. Biogeochemistry,1991,15:1~19
    [105]Don A, Kalbitz K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages[J]. Soil Biol. Biochem.,2005,37:2171~2179
    [106]Matlou MC, Haynes RJ. Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study[J]. Applied Soil Ecology,2006,34: 160-167
    [107]徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,27(2):18-22
    [108]Deforest JL, Zak DR, Pregitzer KS, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillinin a northern hardwood forest[J]. Soil Biology & Biochemistry,2004,36:965~971
    [109]Piao HC, Hong YT, Yuan ZY. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China[J]. Biology & Fertility of Soils,2000,30:294~297
    [110]姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学,2002,38(6):6-11
    [111]Quideau SA, Bockheim JG. Biogeochemical cycling following planting to red pine on a sandy prairie soil[J]. J. Environ. Qua.,1997,26:1167~1175
    [112]李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123
    [113]Angers DA, Mehuys GR. Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil[J]. Can. J. Soil Sci.,1989,69:373~380
    [114]Tisdall JM, Oades JM. Organic matter and water-stable aggregate in soil[J]. Journal of Soil Science,1982,33(2): 141-163
    [115]Kaiser K, Kaupenjohann M. Influence of the soil solution composition on retention and release sulfate in acid forest soils[J]. Water Air and Soil Pollution,1998,101:363~376
    [116]杨佳波,曾希柏,李莲芳,等.3种土壤对水溶性有机物的吸附和解吸研究[J].中国农业科学,2008,41(11):3656-3663
    [117]Needelman BA, Wander MM, Bollero GA, et al. Interaction of tillage and soil texture:biologically active soil organic matter in Illinois[J]. Soil Sci. Soc. Amer.,1999,63:1326~34
    [118]Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science,1999,50:579~590
    [119]Kawahigashi M, Hiroaki S, Kazuhiko Y, et al. Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses[J]. Geoderma,2003,113:381~396
    [120]Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from up land UK moorland soils, investigated by a field manipulation experiment. Environment International,1999,25:83~95
    [121]汪伟,杨玉盛,陈光水,等.罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J].生态学杂志,2008,27(6):924-928
    [122]Nambu K, Yonebayashi K. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferious and broad leaf forest[J]. Soil Science and Plant Nutrition,1999,45:307~319
    [123]Dosskey MG, Pertsch PM. Transport of dissolved organic matter through a sandy forest soil[J]. Soil Science Society of America Journal,1997,61:920~927
    [124]王连峰,潘根兴,石盛莉,等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报,2002,8(1):29-34
    [125]汪文霞,周建斌,严德翼,等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报,2006,20(6):103-106,132
    [126]王清奎,汪思龙,冯宗炜.杉木人工林土壤可溶性有机质及其与土壤养分的关系[J].生态学报,2005,25(6):1299-1305
    [127]邬奇峰,姜培坤,王纪杰,等.板栗林集约经营过程中土壤活性碳演变规律研究[J].浙江林业科技,2005,25(5):7-9,16
    [128]Qualls RG, Haines BL, Swank WT, et al. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests[J]. Soil Sci. Soc. Am. J.,2000,64:1068~1077
    [129]Piirainen S, Finer L, Mannerkoski H, et al. Effects of forest clear-cutting on the carbon and nitrogen fluxes through podzolic soil horizons[J]. Plant and Soil,2002,239:301~311
    [130]Moore TR, Jackson RJ. Dynamics of dissolved organic carbon in forested and disturbed catchments, West land, New Zealand,2. Larry River[J]. Water Resour. Res.,1989,25:1331~1339
    [131]Lepisto A, Andersson L, Arheimer B, et al. Influence of catchment characteristics, forestry activities and deposit ion on nitrogen export from small forested catchments[J]. Water Air Soil Pollut.,1995,84:81~102
    [132]Borken W, Muhs A, Beese F. Changes in microbial and soil properties following compost treatment of degradedtemperate fo rest soils[J]. Soil Biol. Biochem.,2002,34:403~412
    [133]Chodak M, Borken W, Ludwig B, et al. Effect of temperature on the mineralisation of C and N of fresh and mature compost in sandy material[J]. J. Plant Nutr. Soil Sci.,2001,164:289-294
    [134]杨芳,吴家森,姜培坤,等.不同施肥雷竹林土壤水溶性有机碳动态变化[J].浙江林业科技,2006,26(3):34-37
    [135]Pregitzer KS, Zak DR, Burton AJ, et al. Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems[J]. Biogeochemistry,2004,68:179~197
    [136]Currie WS, Aber JD, McDowell WH, et al. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests[J]. Biogeochemistry,1996,35:471~505
    [137]Sinsabaugh RL, Zak DR, Gallo M, et al. Nitrogen deposition and dissolved organic carbon production in northern temperate forests[J]. Soil Biol. Biochem.,2004,36:1509~1515
    [138]Vestgarden LS, Abrahamsen G, Stuannes AO. Soil solution response to nitrogen and magnesium application in a Scots pine forest[J]. Soil Sci. Soc. Am. J.,2001,65:1812~1823
    [139]McDowell WH, Currie WS, Aber JD, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. Water Air Soil Pollut.,1998,105:175~182
    [140]何振立.土壤微生物量及其在养分循环和环境质量评估中的意义[J].土壤,1997,29(2):61-69
    [141]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报,2004,14(8):1334-1338
    [142]文倩,赵小蓉,陈焕伟,等.半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学,2004,37(10):1504-1509
    [143]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51
    [144]陈国潮,何振立.红壤不同利用方式下微生物量的研究[J].土壤通报,1998,29(6):276-278
    [145]Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews,1992,67:321-358
    [146]李延茂,胡江春,汪思龙,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学报,2004,15(10):1943-1946
    [147]周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用[J].生态学报,2001.21(10):1718-1723
    [148]王继红,刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳氨的影响[J].水土保持学报,2004,18(1):35-38
    [149]俞慎,李勇,王俊华,等.土壤微生物作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-421
    [150]Spedding TA, Hamel C, Mehuys GR, et al. Soil microbial dynamics in maize2growing soil under different tillage and residue management systems[J]. Soil Biology & Biochemistry,2004,36:499~512
    [151]Paul EA, Clark FE. Soil Microbiology and Biochemistry[M]. New York:Academic Press,1996.
    [152]孙波,张桃林,赵其国.我国中亚热带缓丘区红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J].土壤学报,1999,36(2):203-217
    [153]Marumoto T. Nitrogen and microbial biomass in arable soils. In:Wada H, Tsuru S, eds. Soil biomass. Hakuyusya, Tokyo,1984.115~140
    [154]Sparling GP, Ross DJ. Biochemical methods to estimate soil microbial biomass:current developments and applications. In:Mulongoy K, Merckx R, eds. Soil organic matter dynamics and sustainability of tropical agriculture. Wiley-Sayce, Leuven,1993.21~17
    [155]Dalal RC, Henderson PA, Guasby JM. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage[J]. Soil Biology and Biochemistry,1991,23:435~441
    [156]Lin QM, Brookes PC. An evaluation of the substrate-induced respiration method[J]. Soil Biology and Biochemistry, 1999,31:1969~1983
    [157]Powlson DS. Measurement of soil microbial biomass provides a nearly indication of changes in total organic matter due to straw in corporation[J]. Soil Biology & Biochemistry,1987,19:159~164
    [158]王启兰,王长庭,杜岩功,等.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系[J].草业学报,2008,17(2):39-46
    [159]Haynes RJ. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand[J]. Soil Biology and Biochemistry,2000,32:211~219
    [160]彭佩钦,张文菊,童成立,等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49-53
    [161]Liang BC, Mackenzie AF, Schnitzer M, et al. Management induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biol. Fertil. Soils,1998,26:88~94
    [162]Sparling GP. The soil biomass. In:Vaughan D, Malcolm RE, eds. Soil organic matter and biological activity. Martinus Nijhoff/Dr W Junk Publishers, Dordrecht, Netherland,1985.223~265
    [163]张洁,姚宇卿,金轲,等.保护性耕作对坡耕地土壤微生物量碳、氮的影响[J].水土保持学报.2007,21(4):126-129
    [164]金发会,李世清,卢红玲,等.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异[J].生态学报,2008,28(1):227-236
    [165]Chen TH, Chiu CY, Tian GL. Seasonal dynamics of soil microbial biomass in coastal sand dune forest[J]. Pedobiologia,2005,49:645-653
    [166]Sparling GP, West AW. Importance of soil water content when estimating soil microbial C、N and P by the fumigation-extraction methods[J]. Soil Biology & Biochemistry,1989,21:245~253
    [167]Boone RD, Nadelhoffer KJ, Canary JD, et al. Roots exert a strong influence on the sensitivity of soil respiration[J]. Nature,1998,396:570~572
    [168]Hogberg P, Nordgren A, Buchmann N, et al. Large scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature,2001,411:789~791
    [169]Harte JC, Kinzig AP. Mutualism and competition between plants and decomposers:Implications for nutrient allocations in ecosystems[J]. American Naturalist,1993,141:829~846
    [170]Kaye JP, Hart SC. Competition for nitrogen between plants and soil microorganisms[J]. Trends in Ecology & Evolution,1997,12:139~143
    [171]Barbhuiya AR, Arunachalam A, Pandeyb HN, et al. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet evergreen forest[J]. European Journal of Soil Biology,2004,40:113~121
    [172]SmolanderA, Priha O, Paavolainen L, et al. Nitrogen and carbon transformations before and after clear-cutting in repeatedly N-fertilized and limed forest soil[J]. Soil Biology & Biochemistry,1998,30:477~490
    [173]Acea MJ, Carballas T. Principal components analysis of the soil microbial populations of humid zone of Galicia (Spain) [J]. Soil Biology & Biochemistry,1990,22:749~759
    [174]Diaz-Ravina M, Acea MJ, Carballas T. Seasonal changes in microbial biomass and nutrient flush in forest soils[J]. Biology & Fertility of Soils,1995,19:220~226
    [175]陈国潮,何振立,姚槐应.红壤微生物量的季节性变化研究[J].浙江大学学报(农业与生命科学版),1999,25(4):387-388
    [176]Compton JE, Watruda LS, Porteous L, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology and Management,2004,196:143~158
    [177]马秀枝,王艳芬,汪诗平,等.放牧对内蒙古锡林河流域草原土壤碳组分的影响[J].植物生态学报,2005,29(4):569-576
    [178]Bijayalaxmi ND, Yadava PS. Seasonal dynamics in soil microbial biomass C, N and P in amixed-oak forest ecosystem of Manipur, North-East India[J]. Applied soil Ecology,2006,31:220-227
    [179]王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用 生态学报,2008,19(1):37-42
    [180]Jenkinson DS, Powlson DS. The effects of biocidal treatments on metabolism in soil V. A method for measuring soil biomass[J]. Soil Biology & Biochemistry,1976,8:209~213
    [181]Srivastava SC, Singh JS. Microbial C, N and P in dry tropical forest soils:Effects of alternate land-uses and nutrient flux[J]. Soil Biol. Biochem.,1991,23:117~124
    [182]王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-75
    [183]Wang FE, Chen YX, Tian GM, et al. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China[J]. Nutrient Cycling in Agroecosystems,2004,68:181~189
    [184]毛艳玲,杨玉盛,崔纪超,等.土地利用方式对土壤活性有机碳分布的影响[J].福建林学院学报,2008,28(4):338-342
    [185]姜培坤,周国模.侵蚀型红壤植被恢复后土壤微生物量碳、氮的演变[J].水土保持学报,2003,17(1):112-114,127
    [186]朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19(4):523-526
    [187]Wang QK, Wang SL. Microbial biomass in subtropical forest soils:effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation[J]. Journal of Forestry Research,2006,17(3):197~200
    [188]何友军,王清奎,汪思龙,等.杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系[J].应用生态学报,2006,17(12):2292-2296
    [189]魏媛,张金池,喻理飞.退化喀斯特植被恢复过程中土壤微生物生物量碳的变化[J].南京林业大学学报(自然科学版),2008,32(5):71-75
    [190]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态意义[J].生态学杂志,1999,18(3):32-38
    [191]Whitbread AM, Lefroy RDB, Blair GJ. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Australian J. of Soil Res.,1998,36:669~681
    [192]Johns MM, Skogley EO. Application of carbonaceous resin capsules to soil organic matter testing and labile C identification[J]. Soil Sci. Soc. Am. J.,1994,58:751~757
    [193]Skjemstad JO, Clarke P, Taylor JA, et al. The chemistry and nature of protected carbon in soil[J]. Australian Journal of Soil Research,1996,34:251~271
    [194]Christensen BT. Carbon in primary and secondary organomineral complexes. In:Carter MR, Stewart AB, eds. Structure and organic matter storage in agricultural soils. Boca Raton, Florida:CRC Press,1996.97~165
    [195]Blair GJ, Lefroy R, Whitbread A, et al. The development of the oxidation technique to determine labile carbon in soil and its use in a carbon management index. In:Lal R, Kimble JM, Follett RF, et al., eds. Assessment methods for soil carbon. Boca Raton, Florida:Lewis Publishers,2001.323~337
    [196]Lefroy RDB, Blair GJ, Strong WM. Changes in soil organic matter with cropping as measured by organic C fractions and 13C natural isotope abundance[J]. Plant and Soil,1993,156:399~402
    [197]Coleman DC, Reid CPP, Colo C. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research,1983(13):1-55
    [198]Wandet MM, Traina SJ, Stinner BR, et al. The effects of organic and conventional management on biologically active soil organic matter fraction[J]. Soil Sci. Am. J.,1994,58:1130~1139
    [199]Khanna PK, Ludwig B, Bauhus J, et al. Assessment and significance of labile organic C pools in forest soils. In:Lai R, Kimble JM, Follett RF, et al., eds. Assessment methods for soil carbon. Boca Raton, Florida:Lewis Publishers, 2001.167~182
    [200]Post WM, Kwon KC. Soil carbon sequestration and land use change:processes and potential[J]. Global Change Biology,2000,6:317-327
    [201]Mendham DS, O'Connell AM, Grove TS. Organic matter characteristics under native forest, long term pasture, and recent conversion to eucalyptus plantations in western Australia:microbial biomass, soil respiration and permanganate oxidation[J]. Australian Journal of Soil Research,2002.40:859~872
    [202]Blair GJ, Lefroy RDB. Singh BP, et al. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate. In:Cadisch G, Giller KE, eds. Drive by nature:plant litter quality and decomposition. Wallingford:CAB International,1997.273~281
    [203]Nelson PN, Baldock JA, Oades JM. Change in dispersible clay content, organic carbon contents and electrolyte composition following incubation of sodic soil[J]. Australian Journal of Soil Research,1998,36:883~897
    [204]Blair GJ, Crocker GJ. Crop rotation effects on soil carbon and physical fertility of two Australian soils[J]. Australian Journal of Soil Research,2000,38:71~84
    [205]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5):657-664
    [206]戴全厚,刘国彬,薛箑,等.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响[J].水土保持研究,2008,15(3):61-64
    [207]陈兰,唐晓红,魏朝富.土壤腐殖质结构的光谱学研究进展[J].中国农学通报,2007,23(8):233-239
    [208]Stevenson FJ. Humus Chemistry. USA:John Wiley and Sons,1982.195~220
    [209]钱成,彭岳林,贾钧彦,等.西藏高原退化土壤的生物学肥力及其变化特征[J].应用生态学报,2006,17(7):1185-1190
    [210]李文芳,卜晓英,黄美娥,等.土壤腐殖质的降解及其结构[J].安徽农业科学,2005,33(3):494-495
    [211]于淑芳,杨力,张玉兰,等.长期施肥对土壤腐殖质组成的影响[J].土壤通报,2002,33(3):165-167
    [212]Wu WZ, Xu Y, Scharmm KW, et al. Effect of Natural Dissolved Humic material on bioavailability and acute toxicity of fenpropathrin to the Grass Carp, Ctenopharyngodon idellus[J]. Ecotoxiclogy and Environmental Safety, 1999,42:203~206
    [213]Xing B. Sorption of naphthalene and phenanthrene by soil humic acids[J]. Environmental Pollution,2001,111: 303~309
    [214]张付申.土娄土和黄绵土长期施肥的腐殖质组分及其与肥力的关系[J].西北农业学报,1997,6(3):33-36
    [215]王先华,胡应高,方小宁.不同培肥措施对黔东几种土类土壤腐殖质的影响[J].铜仁职业技术学院学报(自然科学版),2007,5(3):5-8
    [216]韩志卿,张电学,陈洪斌,等.长期定位施肥小麦—玉米轮作制度下土壤有机质质量演变规律[J].河北职业技术师范学院学报,2003,17(4):10-14
    [217]窦森,肖彦春,张晋京.土壤胡敏素各组分数量及结构特征初步研究[J].土壤学报,2006,43(6):934-940
    [218]熊毅,李庆逵.中国土壤:第二版[M].北京:科学出版社,1990.
    [219]李维福,解宏图,郑立臣.土壤有机质分组方法研究进展[J].农业系统科学与综合研究,2008,24(3):338-343
    [220]胥清利.枫香与杉木、马尾松混交林土壤有机质和腐殖质碳的研究[J].福建林业科技,2007,34(4):42-45
    [221]杨玉盛,邱仁辉,俞新妥,等.不同栽植代数29年生杉木林土壤腐殖质及结合形态的研究[J].林业科学,1999,35(3):116-119
    [222]倪进治,徐建民,谢正苗.土壤轻组有机质[J].环境污染治理技术与设备,2000,1(2):58-64
    [223]Golchin A, Oades JM, Skjemstad JO, et al. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy[J]. Australian Journal of Soil Research, 1994,32:285-309
    [224]Dalal RC, Mayer RJ. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. IV. Loss of organic carbon from different density fractions[J]. A ust. J. Soil Res.,1986,24: 301~309
    [225]Oades JM, Vassallo AM, Waters AG, et al. Characterization of organic matter in particle size and density fractions from Red-brown Earth by solid2state 13C NMR[J]. Australia Journal of Soil Research,1987,25:71-82
    [226]Solomon D, Lehmann J, Zech W. Land use effects on soil organic matter properties of chromic Luvisols in semi-arid northern Tanzania:carbon, nitrogen, lignin and carbohydrates[J]. Agriculture Ecosystem Environment, 2000,78:203~213
    [227]Spycher G, Sollins P, Rose S. Carbon and nitrogen in the light fraction of a forest soil vertical distribution and seasonal patterns[J]. Soil Science,1983,135(2):79~87
    [228]Janzen HH, Campbell CA, Brandt SA, et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Sci. Soc. Am. J.,1992,56:1799~1806
    [229]Christensen BT. Physical fraction of soil and organic matter in primary particle size and density separates[J]. Advances in Soil Science. Springer Verlag, New York, Inc.1992,20:1-90
    [230]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):21-29
    [231]Skjemstad JO, Vallis I, Mayers RJ. Decomposition of soil organic nitrogen. In:Henzell EF, ed. Advances in nitrogen cycling in agricultural ecosystems. CAB Int., Wallingford, England,1988.134~144
    [232]Gregorich EG, Carter MR, A ngers DA, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Can. J. Soil Sci.,1994,74:376~385
    [233]Gregorich EG, Janzen HH. Storage of soil carbon in the light fraction and macro organic matter. In:Carter MR, Stewart BA. Eds., Advances in soil science. Structure and organic matter storage in agriculture soils. CRC Lewis Publishers, Boca Raton,1996.167-190
    [234]Boone RD. Light fraction soil organic matter:origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry,1994,26:1459~1468
    [235]Six J, Conant RT, Paul EA, et al. Stabilization mechanism a of soil organic matter:Implications for C saturation of soils[J]. Plant and Soil,2002,241:155-176
    [236]Turchenek LW, Oades JM. Fractionation of Organo-mineral complexes by sedimentation and density techniques[J]. Geoderma,1979,21:311-343
    [237]Skjemstad JO, Dalal RC, Barron PF. Spectroscopic investigations of cultivation effects on organic matter of vertisols[J]. Soil Sci. Soc. Am. J.,1986,50:354~359
    [238]Janzen HH. Soil organic matter characteristics after long-term cropping to various sp ring wheat rotations[J]. Can. J. Soil Sci.,1987,67:845~856
    [239]Mueller T, Jensen LS, Nielsen NE, et al. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field[J]. Soil Biology & Biochemistry, 1998,30:561-571
    [240]Magid J. In search of the elusive active fraction of soil organic matter:three size density fractionation methods for tracing the fate of homogeneously 14C labelled plant materials[J]. Soil Biology & Biochemistry,1996,28:89~99
    [241]谢锦升,杨玉盛,解明曙,等.植被恢复对退化红壤轻组有机质的影响[J]. 地壤学报, 2008,45(1):170-175
    [242]谢锦升,杨玉盛,杨智杰,等.退化红壤植被恢复后土壤轻组有机质的季节动态[J].应用生态学报,2008,19(3):557-563
    [243]杨玉盛,刘艳丽,陈光水,等.格氏栲天然林与人工林土壤非保护性有机C含量及分配[J].生态学报,2004,24(1):1-8
    [244]毛艳玲,杨玉盛,邢世和,等.土地利用变化对土壤水稳性团聚体轻组有机碳的影响[J].福建农林大学学报(自然科学版),2008,37(5):532-538
    [245]Dalal RC, Mayer RJ. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern queensland. VI. loss of total nitrogen from different particle-size and density fractions[J]. Australian Journal of Soil Research,1987,25:83-93
    [246]Conteh A, Blair GJ, Macleod DA, et al. Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation[J]. Australian Journal of Agricultural Research,1997,48:1049-1058
    [247]Sollins P, Spycher G, Glassman CA. Net nitrogen mineralization from light and heavy-fraction forest soil organic matter[J]. Soil Biology and Biochemistry,1984,16:31~37
    [248]陈庆强,沈承德,孙彦敏,等.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报,2005,42(1):1-8
    [249]Rosell RA, Galantini JA, Suner LG. Long-term crop rotation effect on organic carbon, nitrogen, and phosphorus in Haplustoll soil fractions[J]. Arid Soil Research and Rehabilitation,2000,14:309~315
    [250]Cambardella CA, Elliott ET. Particulate soil organic matter changes across a grassland cultivation sequence[J]. Soil Sci. Soc. AM. J.,1992,56:777-783
    [251]苏永中.黑河中游边缘绿洲农田退耕还草的土壤碳、氮固存效应[J].环境科学,2006,27(7):1312-1318
    [252]Marriott EE, Wander M. Qualitative and quantitative differences in particulate organic matter fractions in organic and conventional farming systems[J]. Soil Biology and Biochemistry,2006,38:1527~1536
    [253]于建光,李辉信,陈小云,等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响[J].应用生态学报,2007,18(4):818-824
    [254]李维福,解宏图,何红波,等.颗粒有机质的来源、测定及其影响因素[J].生态学杂志,2007,26(11):1849-1856
    [255]张履勤,章明奎.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J].土壤通报,2006,37(4):662-665
    [256]Wander MM, Yang XM. Influence of tillage on the dynamics of loose and occluded-particulate and humified organic matter fractions[J]. Soil Biology and Biochemistry,2000,32:1151~1160
    [257]Chan KY, Heenan DP, Oates A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J]. Soil and Tillage Research,2002,63:133~139
    [258]Gregorich EG, Ellert BH, Monreal CM. Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance[J]. Canadian Journal of Soil Science,1995,75:161~167
    [259]Gregorich EG, Ellert BH, Drury CF, et al. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Science Society of America Journal,1996,60:472-476
    [260]Franzluebbers AJ, Stuedemann JA. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA[J]. Environmental Pollution,2002,116:53~62
    [261]Gregorich EG, Drury CF, Ellert BH. Fertilization effects on physically protected light fraction organic matter[J]. Soil Science Society of America Journal,1997,61:482~484
    [262]Franzluebbers AJ, Arshad MA. Particulate organic carbon content and potential minerlization as affected by tillage and texture[J]. Soil Science Society of America Journal,1997,61:1382~1386
    [263]Chan KY. Consequences of changes in particulate organic carbon in vertisols under pasture and cropping[J]. Soil Science Society of America Journal,1997,61:1376-1382
    [264]漆良华,张旭东,彭镇华,等.湘西北退化侵蚀地植被恢复区土壤养分、微生物与酶活性的典范相关分析[J].林业科学,2008,44(9):1-6
    [265]李玥,张金池,李奕建,等.上海市沿海防护林下土壤养分、微生物及酶的典型相关关系[J].生态环境学报,2010,19(2):360-366
    [266]Kandeler E, Stemmer M, Klimanek EM. Response of soil microbial biomass urease and xylanase within particle size fractions to long-term soil management [J]. Soil Biology and Biochemistry,1999,31:261~273
    [267]Stockdole EA, Brookes PC. Detection and quantification of the soil microbial biomass impacts on the man agement of agricultural soils[J]. Journal of Agricultural Science,2006,144:285~302
    [268]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109
    [269]薛立,傅静丹,郑卫国,等.3种人工幼林的土壤微生物和酶活性研究[J].中南林业科技大学学报,2008,28(4):98-100
    [270]中国标准出版社.中国林业标准汇编(营造林卷)[M].北京:中国标准出版社,1998.
    [271]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986
    [272]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986
    [273]Jimenez MD, Horra AM, Pruzzo L, et al. Soil quality:a new index based on microbiological and biochemical parameters[J]. Biology and Fertility of Soils,2002,35(4):302~306
    [274]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570
    [275]Gianfrda L, Sannino F, Violante A. Pesticide effects on the activity of free, immobilized and invertase[J]. Soil Biology and Biochemistry,1995,27:1201~1208
    [276]汪景宽,汤方栋,张继宏,等.不同肥力棕壤及其微团聚体中酶活性比较[J].沈阳农业大学学报,2000,31(2):185-189
    [277]姚静,张永娥,王瑞良,等.不同利用方式对鲁南地区耕地土壤养分状况的影响[J].安徽农业科学,2010,38(14):7431-7434
    [278]陈桂秋,黄道友,苏以荣,等.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,2005,24(2):256-260
    [279]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,17(4):15-171
    [280]郭彦军,韩建国.农牧交错带退耕还草对土壤化学性质的影响[J].草地学报,2008,16(4):386-391
    [281]高国雄,周心澄,史常青,等.北川河流域低位脑山区退耕还林的土壤效应[J].干旱地区农业研究,2008,26(5):205-211
    [282]Harris JA. Measurements of the soil microbial community for estimating the success of restoration[J]. Europe Journal of Soil Science,2003,54:801~808
    [283]漆良华,张旭东,周金星,等.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J].林业科学,2009,45(8):14-20
    [284]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [285]周礼恺.土壤酶活性的测定方法[J].土壤通报,1980(5):37-38
    [286]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285
    [287]方晰,田大伦,秦国宣,等.杉木林采伐迹地连栽和撂荒对林地土壤养分与酶活性的影响[J].林业科学,2009,45(12):65-71
    [288]王理平,刘再清.杉木桤木混交林土壤酶与土壤肥力的研究[J].林业科技通讯,1998(2):28-30
    [289]魏丹.土壤酶对改土培肥和土壤有机污染物的净化作用[J].黑龙江农业科学,1999(4):48-50
    [290]刘世荣,鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22
    [291]蒋秋怡.林木地上部分的持水性能及其对林地水文学性质的影响[J].浙江林学院学报,1989,6(2):176-181
    [292]陈卓梅,郑郁善,黄先华.秃杉混交林水源涵养功能的研究[J].福建林学院学报,2002,22(3):266-269
    [293]于志明,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1991:32-37
    [294]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].水土保持学报,1998,4(2):23-28
    [295]胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和土壤层水文效应研究[J].水土保持学报,2008,22(1):146-150
    [296]宋轩,李树人,姜风岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76-79
    [297]张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报,2003,17(3):55-59
    [298]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学.2003,39(5):147-151
    [299]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2006,19(3):139-143
    [300]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):3685-3695
    [301]宫阿都,何毓蓉.金沙江干热河谷典型区(云南)退化土壤的结构性与形成机制[J].山地学报,2001,19(3):213-219
    [302]姜培坤,俞益武,徐秋芳.商品林地土壤物理性质演变与抗蚀性能的评价[J].水土保持学报,2002,16(1):112-115
    [303]何腾兵.贵州山区土壤物理性质对土壤侵蚀影响的研究[J].土壤侵蚀与水土保持学报,1995,1(1):85-95
    [304]李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林枯落物持水性能的研究[J].水土保持学报,2005,]9(1):44-48
    [305]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后枯落物层持水特性研究[J].水土保持学报,2006,20(3):51-55
    [306]宫渊波,麻泽龙,陈林武,等.嘉陵江上游低山暴雨区不同水土保持林结构模式水源涵养效益研究[J].水土保持学报,2004,18(3):28-30
    [307]雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究[J].西北林学院学报,1984(1):19-32
    [308]林波,刘庆.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能[J].应用与环境生物学报,2002,8(3):234-238
    [309]贾守信,梁志广,梁淑兰,等.长白山北坡原始林采伐对土壤性质影响的研究[J].土壤学报,1984,21(4):426-433
    [310]王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44
    [311]张昌顺,范少辉,谢高地.闽北毛竹林枯落物层持水功能研究[J].林业科学研究,2010,23(2):259-265
    [312]周晓峰.帽儿山、凉水森林水分循环的研究,中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994,213-222
    [313]李洪勋.草带在防治坡耕地土壤侵蚀中的作用[J].草业科学,2005,22(1):94-97
    [314]杨正礼.我国退耕还林研究进展与基本途径探讨[J].林业科学研究,2004,17(4):512-518
    [315]杨玉盛,何宗明,林光跃,等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):36-42
    [316]王品,丁德蓉,何丙辉,等.三峡库区撑绿竹护岸林土壤抗蚀性能研究[J].水土保持学报,2004,18(6):38-40
    [317]刘孝义,依艳丽.土壤物理学基础及其研究法[M].沈阳:东北大学出版社,1998
    [318]苏永中,赵文智.土壤有机碳动态:风蚀效应[J].生态学报,2005,25(8):2049-2054
    [319]史晓梅,史东梅,文卓立.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究[J].水土保持学报,2007,21(4):63-66
    [320]杨玉盛,陈光水,彭加才,等.不同栽杉代数土壤抗蚀性的变化[J].山地学报,1999,17(2):163-167
    [321]查小春,唐克丽.黄土丘陵林区开垦地人为加速侵蚀与土壤物理力学性质的时间变化[J].水土保持学报,2001,15(3):20-23
    [322]常庆瑞,安韶山,刘京,等.黄土高原恢复植被防止土地退化效益研究[J].土壤侵蚀与水土保持学报,1999,5(4):6-9,44
    [323]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤团粒结构的分形特征[J].植物生态学报,2007,31(1):56-65
    [324]龚伟,颜晓元,蔡祖聪,等.长期施肥对小麦-玉米作物系统土壤颗粒有机碳和氮的影响[J].应用生态学报,2008,19(11):2375-2381
    [325]Su YZ, Zhao HL, Zhao WZ, et al. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma,2004,122:43~49
    [326]Wang X, Li M, Liu S, et al. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China[J]. Geoderma,2006,134:56-61
    [327]Zhao S, Su J, Yang Y, et al. A fractal method of estimating soil structure changes under different vegetations on Ziwuling Mountains of the Loess Plateau, China[J]. Agricultural Sciences in China,2006,5:530-538
    [328]缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,18(9):1987-1993
    [329]梁士楚,董鸣,王伯荪,等.英罗港红树林土壤粒径分布的分形特征[J].应用生态学报,2003,14(1):11-14
    [330]Arya LM, Paris JF. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal,1981,45:1023~1031
    [331]Turcotte DL. Fractals and fragmentation[J]. Journal of Geophysical Research,1986,91:1921~1926
    [332]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    [333]贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究.2007,26(3):518-525
    [334]文海燕,傅华,赵哈林.退化沙质草地开垦和围封过程中的土壤颗粒分形特征[J].应用生态学报,2006,17(1):55-59
    [335]赵勇钢,赵世伟,曹丽花,等.半干旱典型草原区退耕地土壤结构特征及其对入渗的影响[J].农业工程学报,2008,24(6):14-20
    [336]杨玉盛,李振问,俞新妥,等.杉木—油桐—仙人草复合经营土壤结构特性与水分性质研究[J].南京林业大学学报,1993,17(3):75-79
    [337]周金星,漆良华,张旭东,等.不同植被恢复模式土壤结构特征与健康评价[J].中南林学院学报,2006,26(6):32-37
    [338]沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,14(2):60-65
    [339]廖尔华,张世熔,邓良基,等.丘陵区土壤颗粒的分形维数及其应用[J].四川农业大学学报,2002,20(3):242-245,281
    [340]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162-171
    [341]Acosta-Martinez V, Zobeck T M, Gill T E, et al. Enzyme activities and microbial community structure in semiarid agricultural soils[J]. Biology and Fertility of Soils,2003,3:216~227
    [342]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167
    [343]李军锋,赵秀海.分形理论在集材道土壤团聚体研究中的应用[J].应用生态学报,2005,16(9):1795-1797
    [344]邱仁辉,杨玉盛,俞新妥.不同栽植代数杉木林土壤结构特性的研究[J].北京林业大学学报,1998,20(4):6-11
    [345]宁丽丹,石辉,周海军,等.岷江上游不同植被下土壤团聚体特征分析[J].应用生态学报,2005,16(8):1405-1410
    [346]罗珠珠,黄高宝,辛平,等.陇中旱地不同保护性耕作方式表层土壤结构和有机碳含量比较分析[J].干旱地区农业研究,2008,26(4):53-58
    [347]孙天聪,李世清,邵明安.半湿润区长期施肥对土壤结构体分形特征的影响[J].植物营养与肥料学报,2007,13(3):417-422
    [348]柳云龙,吕军,王人潮,等.低丘侵蚀红壤垦种绿化后土壤结构,养分积聚和持水性能[J].水土保持学报,2000,14(4):79-82,98
    [349]苏里坦,宋郁东,陶辉.不同风沙土壤颗粒的分形特征[J].土壤通报,2008,39(2):244-248
    [350]刘永辉,崔德杰.长期定位施肥对潮土分形维数的影响[J].土壤通报,2005,36(3):324-327
    [351]李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10
    [352]周萍,刘国彬,侯喜禄.黄土丘陵区不同土地利用方式土壤团粒结构分形特征[J].中国水土保持科学,2008,6(2):75-82
    [353]Castrignano A, Stelluti M. Fractal geometry and geostatistics for describing the field variability of soil aggregation[J]. Journal of Agricultural Engineering Research,1999,73:13~18
    [354]汪景宽,于树,李丛,等.不同肥力土壤各级微团聚体中主要营养元素含量的变化[J].水土保持学报,2007,21(6):122-125
    [355]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报,2002,22(2):197-205
    [356]范燕敏,朱进忠,武红旗.北疆退化荒漠草地土壤颗粒的分形特征[J].草原与草坪,2008(4):10-13,19
    [357]林开旺.宁化禾口紫色土不同治理措施土壤结构特性[J].福建水土保持.2002,14(2):57-60
    [358]李尚妙.营造台湾相思水土保持林对土壤结构和养分的影响[J].福建林业科技,1999,26(2):34-36
    [359]安韶山,常庆瑞,李壁成,等.不同林龄植被培肥改良土壤效益研究[J].水土保持通报,2001,21(3):75-77
    [360]钟继洪,郭庆荣,谭军,等.坡地赤红壤物理退化及其机理研究Ⅰ.土壤结构退化研究[J].热带亚热带土壤科学,1998,7(2):154-160
    [361]程先富,史学正,王洪杰.红壤丘陵区耕层土壤颗粒的分形特征[J].地理科学,2003,12(5):617-621
    [362]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,
    [363]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-7439(2):221-226
    [364]周先容,陈劲松.川西亚高山针叶林土壤颗粒的分形特征[J].生态学杂志,2006,25(8):891-894
    [365]刘秉儒.红砂植被盖度对土壤不同形态碳、氮及细菌多样性的影响[J].干旱地区农业研究,2009,27(4):155-162
    [366]徐华勤,章家恩,冯丽芳,等.广东省不同土地利用方式对土壤微生物量碳氮的影响[J].生态学报,2009,29(8):4112-4118
    [367]Warder DAA. Comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Review,1992,67,321~356
    [368]Tate RL Ⅲ. Soil Microbiology 2nd edn. John Wiley,2000, New York
    [369]汪娟,蔡立群,毕冬梅,等.保护性耕作对麦-豆轮作土壤有机碳全氮及微生物量碳氮的影响[J].农业环境科学学报,2009,28(7):1516~1521
    [370]Chantigny MH. Dissolved and water-extractable organic matter in soils:a review on the influence of land use and management practices[J]. Geoderma,2003,113:357~380
    [371]宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013-2016
    [372]Wander MM., Trmna SJ., Stinner BR., et al. The effects of organic and conventional management on biologically active soil organic matter fractions[J]. Soil Sci. Soc. Am. J.,1994,58:1130~1139
    [373]Haynes RJ. Labile organic matter fractions as central components of the quality of agricultural soils:all overview[J]. Adv. Agron.,2005,85:221~268
    [374]方华军,杨学明,张晓平,等.坡地黑土有机碳分布特征与土壤碳损失量计算[J].中国环境科学,2005,25(6):81-84
    [375]贾松伟,贺秀斌,陈云明.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响[J].水土保持学报,2004,18(3):78-80
    [376]苏永中,刘文杰,杨荣,等.河西走廊中段绿洲退化土地退耕种植苜蓿的固碳效应[J].生态学报,2009,29(12):6385-6391
    [377]Christensen BT. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science,2001,52:345-353
    [378]Gregorich EQ Ellert BH. Light fraction and macroorganic matter in mineral soils. In:Carter MR, eds. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science Boca Raton. FL:Lewis Publishers, Division of CRC Press,1993,397~405
    [379]武天云,Schoenau JJ,李凤民,等.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响[J].应用生态学报,2003,14(12):2213-2218
    [380]Richard TC, Six J, Paustain K. Land use effects on soil carbon fractions in the southeastern United States. II. Changes in soil carbon fractions along a forest to pasture chronosequence[J]. Biology and Fertility of Soils,2004,40: 194~200
    [381]Yakovchenko VP, Sikora LJ, Millner PD. Carbon and nitrogen mineralization of added particulate and macroorganic matter[J]. Soil Biology and Biochemistry,1998,30:2139~2146
    [382]Swift RS. Sequestration of carbon by soil[J]. Soil Science.2001.166:858-871
    [383]高洪军,窦森,朱平,等.长期施肥对黑土腐殖质组分的影响[J].吉林农业大学学报,2008,30(6):825-829
    [384]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质理化性质的影响[J].中国农业科学,2002,35(2):174-180
    [385]徐金忠,孟凯,崔晓阳,等.不同施肥处理对黑土腐殖质组成的影响[J].东北林业大学学报,2009,37(11):84-85
    [386]裴海昆,朱志红,乔有明,等.不同草甸植被类型下土壤腐殖质及有机磷类型探讨[J].草业学报,2001,10(4):18-23
    [387]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质含量的影响[J].土壤肥料,2002,(1):15-19,22
    [388]张晋京,张大军,窦森,等.田间定位施肥对土壤腐殖质组分数量与特性的影响[J].土壤通报,2006,37(6):1243-1246
    [389]龚伟,颜晓元,王景燕,等.长期施肥对小麦-玉米作物系统土壤腐殖质组分碳和氮的影响[J].植物营养与肥料学报,2009,15(6):1245-1252
    [390]阎德仁.落叶松人工林土壤腐殖质特征和土壤酶活性的研究[J].辽宁林业科技,1994,(1):56-59
    [391]陈立新,肖洋.大兴安岭林区落叶松林地不同发育阶段土壤肥力演变与评价[J].中国水土保持科学,2006,4(5):50-55
    [392]陈涛,郝晓晖,杜丽君,等.长期施肥对水稻土土壤有机碳矿化的影响[J].应用生态学报,2008,19(7):1494-1500
    [393]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304: 1623~1627
    [394]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552
    [395]苗淑杰,周连仁,乔云发,等.长期施肥对黑土有机碳矿化和团聚体碳分布的影响[J].土壤学报,2009,46(6):1068-1075
    [396]Ingestad T. Plant growth in relation to nitrogen supply. Terrestrial Nitrogen Cycle,1981,33:268~271
    [397]Das AK, Tripath RS, Pandey HN. Nitrogen mineralization and microbial biomass N in a subtropical humid forest of Meghalaya, India[J]. Soil Biology and Biochemistry,1997,29:1609~1612
    [398]赵光,唐晓红,罗友进,等.保护性耕作对四川紫色水稻土团聚体组成及有机碳含量与分布的影响[J].江苏农业
    [399]安韶山,张玄,张扬,等.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J].水土保持学报,2007,21(6):109-113科学,2010(1):288-292
    [400]孙天聪,李世清,邵明安.半湿润农田生态系统长期施肥对土壤团聚体中有机氮组分的影响[J].应用生态学报,2007,18(10):2233-2238
    [401]徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中O、N、P含量与分配的影响[J].中国农业科学,2000,33(5):65-71
    [402]毛艳玲,杨玉盛,邢世和.细柄阿丁枫天然林与杉木人工林土壤水稳性团聚体有机碳比较[J].华侨大学学报(自然科学版),2008,29(1):106-110
    [403]Puget P, Angers DA, Chenu C. Nature of carbohydrates associated with water-stable aggregates o f two cultivated soils[J]. Soil Biol. Biochem.,1999,31(1):55-63
    [404]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429
    [405]李恋卿,张旭辉,潘根兴.退化土壤植被恢复中表层土壤微团聚体及其有机碳的储备变化[J].土壤通报,2000,31(5):193-195
    [406]Six J, Paustain K, Elliot ET, et al. Soil structure and organic matter:I. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Sci. So c. Am. J.,2000,64(2):681~689
    [407]朱捍华,黄道友,刘守龙,等.稻草易地还土对丘陵红壤团聚体碳氮分布的影响[J].水土保持学报,2008,22(2):135-140
    [408]Jiang PK, Xu QF, Xu ZH, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. Forest Ecology and Management,2006, 236:30~36
    [409]陈国潮,何振立,祝军,等.红壤微生物量氮的测定研究[J].土壤通报,1998,29(4):185-187
    [410]张迪,韩晓增,李海波,等.不同植被覆盖与施肥管理对黑土活性有机碳及碳库管理指数的影响[J].生态与农村环境学报,2008,24(4):1-5
    [411]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [412]Garten Jr CT. Post III WM, Hanson PJ, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistrv,1999,45:115~145
    [413]赵哈林,李玉强,周瑞莲.沙漠化对科尔沁沙质草地生态系统碳氮储量的影响[J].应用生态学报,2007,18(11):2412-2417
    [414]方华军,杨学明,张晓平,等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J].生态学报,2006,26(9):2847-2854
    [415]Yang LX, Pan JJ, Yuan SF. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J]. Journal of forestry research,2006,17:39~43
    [416]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.50-56
    [417]Jenkison DS. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987,19:703~707
    [418]Liang BC, Mackenzie AF, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils,1997,26:88~94
    [419]Guggenberger G, Glaser B, Zech W. Heavy metal binding hydrophobie and hydrophilie dissolved organic carbon fractions in Spodozol A and B horizon[J]. Water, Air, and Soil Pollution,1993,72:111-127
    [420]沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究[J].自然资源学报,1999,14(3):206-211
    [421]王晶,张仁陟,李爱宗.耕作方式对土壤活性有机碳和碳库管理指数的影响[J].干旱地区农业研究,2008, 26(6):8-12
    [422]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504
    [423]于建光,李辉信,胡锋,等.施用秸秆及接种蚯蚓对土壤颗粒有机碳及矿物结合有机碳的影响[J].生态环境,2006,15(3):606-610]
    [424]孟凡乔,况星,张轩.土地利用方式和栽培措施对农田土壤不同组分有机碳的影响[J].农业环境科学学报,2009,28(12):2512-2519
    [425]刘世全,高丽丽,蒲玉琳,等.西藏土壤有机质和氮素状况及其影响因素分析[J].水土保持学报,2004,18(6):54-57,67
    [426]王清奎,汪思龙,冯宗炜,等.杉木人工林土壤有机质研究[J].应用生态学报,2004,15(10):1947-1952
    [427]江泽普,黄绍民,韦广泼,等.不同免耕模式对水稻产量及土壤理化性状的影响[J].中国农学通报,2007,23(12):362-365
    [428]孙维纶,王立德,金维生,等.秸秆直接还田对苏州地区潴育型水稻土腐殖质组成的影响[J].土壤通报,1994,25(4):172-174
    [429]陈立新,宋志韬,纪萱.红松人工林腐殖质组成及其结合形态研究[J].中国水土保持科学,2007,5(3):39-44
    [430]林明海,赖庆旺.不同熟化度红壤及红壤性水稻土的腐殖质组成及其特性[J].土壤学报,1982,19(3):237-247
    [431]Hu RG, Hatano R, Kusa K, et al. Soil resp iration and net ecosystem p roduction in an onion field in central Hokkaido, Japan[J]. Soil Science and Plant Nutrition,2003,50:27~33
    [432]陈吉,赵炳梓,张佳宝,等.长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究[J].土壤,2009,41(5):719-725
    [433]Robertson GP, Wedin D, Groffman PM, et al. Soil carbon and nitrogen availability. In:Robertson GP, Bledsoe CS, Coleman DC, eds. Standard soil methods for long-term ecological research. New York:Oxford University Press, 1999.258-271
    [434]陈蝉伟,陈立新,刘伟琦.不同森林类型土壤氮矿化的研究[J].东北林业大学学报,1999,27(1):5-9
    [435]王敬国.植物营养的土壤化学[M].北京:北京农业大学出版社,1995.63-85
    [436]周才平,欧阳华.长白山两种主要林型下土壤氮矿化速率与度的关系[J].生态学报,2001,21(9):1469-1473
    [437]Montagnini F, Buschbacher R. Nitrification rates in two undisturbed tropical rain forests and three slash and burn sites of the Venezuelan Amazon[J]. Biotropica,1989,21:9-14
    [438]杨小红,董云社,齐玉春,等.锡林河流域温带草原土壤的净氮矿化研究[J].农业工程学报,2005,21(12):179-182
    [439]张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20(2):16-19
    [440]肖复明,范少辉一,汪思龙.毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J].水土保持学报,2008,22(2):131-134,181
    [441]Baldock JA, Oades JM, Waters AG, el al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry.1992,15:1-42
    [442]韩永伟,韩建国,王垫,等.农牧交错带退耕还草对土壤微生物量C N的影响[J].农业环境科学学报,2004,23(5):993-997
    [443]薛箑,刘国彬,戴全厚,等.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J].自然资源学报,2007,22(1):20-27
    [444]吴建国,艾丽.祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量[J].植物生态学报,2008,32(2):465-476
    [445]刘秉儒.贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J].生态环境学报,2010,19(4):883-888
    [446]Anderson TH, Domseh KH. Ratio of microbial biomass carbon to total organic carbon in arable soil[J]. Soil Biology and Biochemisty,1989,21:471~479
    [447]任天志,Stefano G.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75
    [448]张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学,2006(3):340-344
    [449]Franchini JC, Crispino CC, Souza RA, et al. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research,2006. http://www.elsevier. com/locate/eeolind
    [450]Marinari S, Mancinelli R, Campiglia E, et al. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators,2005. http://www.Elsevier. com/locate/ecolind
    [451]Bonde AT, Schniirer J, Rosswall T, et al. Microbial biomass as a fraction of potentially mineralizable N in soil from long-term field experiments[J]. Soil Biol, Biochem.,1988,20(4):447-452
    [452]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11
    [453]倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003,12(1):71-75
    [454]Gregorich EG, Liang BC, Drury CF, et al. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agriculture soils[J]. Soil Biology & Biochemistry,2000,32:581~587
    [455]张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学,2005,25(3):343-347
    [456]李守中,徐文程,许鹏程.闽侯郊区不同土地利用方式对土壤活性碳的影响[J].安徽农业科学,2008,36(31):13733-13734,1377
    [457]张剑,汪思龙,王清奎,等.不同森林植被下土壤活性有机碳含量及其季节变化[J].中国生态农业学报,2009,17(1):41-47
    [458]Berger TW., Neubauer C., Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies)and mixed species stands in Austria[J]. Forest Ecology and Management,2002,159:3-14
    [459]戴全厚,刘国彬,薛萐,等.侵蚀环境退耕撂荒地土壤活性有机碳与碳库管理指数演变[J].西北林学院学报,2008,23(6):24-28
    [460]蔡立群,齐鹏,张仁陟,等.不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响[J].中国生态农业学报,2009,17(1):1-6
    [461]戴全厚,刘国彬,薛箑,等.侵蚀环境人工灌木林土壤活性有机碳与碳库管理指数演变[J].西北农业学报,2008,17(5):215-219
    [462]徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465
    [463]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173
    [464]Dalal RC, Chan KY. Soil organic matter in rainfed cropping Systems of the Australian cereal belt[J]. Australian Journal of Soil Research,2001,39(3):435-464
    [465]Cadisch G, Imhof H, Urquiaga S, et al. Carbon turnover(13C)and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing. Soil Biology and Biochemistry,1996,28:1555-1567
    [466]Yang CM, Yang LZ, Ouyang Z. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes[J]. Geoderma,2005,124,133~142
    [467]Barrios E, Buresh RJ, Sprent JI. Organic matter in soil particle size and density fractions from maize and legume cropping systems[J]. Soil Biology and Biochemistry,1996,28:185~193
    [468]Greenland DJ, Ford GW. Separation of partially humified organic materials by ultrasonic dispersion. In Trans. Int. Cong. Soil Sci.8th, Bucharest.31 Aug-9 Sept.1964. Vol.3. Rompresfilatelia, Bucharest.137-148
    [469]Quiroga AR, Busehiazzo DE, Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas[J]. Soil Sci,1996,161:104-108
    [470]Wander MM, Bollero GA. Soil quality assessment of tillage impacts in Illinois[J]. Soil Sci Soc A M J,1999,63: 961-971
    [471]张平良,李小刚,李银科,等.高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响[J].甘肃农业大学学报,2007,42(2):98-102
    [472]Camerdella CA, Elliotte ET. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of American Journal.1994,58:123~130
    [473]Hassink J. Decomposition rate constants of size and density fractions of soil organic matter[J]. Soil Science Society of America Journal,1995,59:1631~1635
    [474]李玉琴,夏建国.土地利用方式对川西低山区土壤腐殖质组成以及结合形态的影响[J].安徽农业科学,2008,36(6):2441-2444
    [475]Cornelius S. Investigating humic acids in soils[J]. Analytical Chemistry,2002,74(11):327-335
    [476]李楠,吴景贵,夏海丰.傅立叶变换红外光谱法表征玉米秆茬培肥土壤胡敏酸的变化[J].植物营养与肥料学报,2007,13(5):974-978
    [477]李海波,韩晓增,王风,等.不同土地利用下黑土密度分组中碳、氮的分配变化[J].土壤学报,2008,45(1):112-119
    [478]赵兰坡,王杰,刘景双,等.不同肥力条件下黑土及其有机无机复合体的腐殖质组成[J].应用生态学报,2005,15(1):93-99
    [479]Ross, DJ, K. R. Tate,N. A. Scott & C. W. Feltham. Landuse change:effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology & Biochemistry,1999,31:803-813
    [480]Bending GD, Turner MK, Jones J E. Interaction between crop residue and soil organic matter quality and functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry,2002,34:1073-1082
    [481]Hassink J. Density fractions of soil macro-organic matter and microbial biomass as predictors of C and N mineralization[J]. Soil Biology and Biochemistry,1995,27:1099~1108
    [482]Updegraff KJ, Pastor SD, Bridgham CA. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands[J]. Ecological Applications,1995,5:151~163
    [483]Motavalli P, Discekici PH, Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer[J]. Agriculture Ecosystems and Environment,2000,79:17~27
    [484]吴建国,张小全,徐德应.六盘山林区几种士地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530-538
    [485]戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志.2007,26(7):1021-1026
    [486]Alvarez R, Alvarez CR.. Soil organic matter pools and their associations with carbon mineralization kinetics[J]. Soil Science Society of America Journal,2000,64:184~189
    [487]苏永中,赵哈林,张铜会,等.不同退化沙地土壤碳的矿化潜力[J].生态学报,2004,24(2):372-377
    [488]Franzluebbers AJ, Stuedemann JA, Schomberg HH, et al. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA[J]. Soil Biology & Biochemistry,2000,32(4):469~478
    [489]李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30(5):1217-1226
    [490]吴建国,艾丽,朱高,等.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素[J].草地学报,2007,15(1):20-28
    [491]Sanchez LF, Garcia miragaya J, Chacon N. Nitrogen mineralization in soil under grasses and under trees in a protected Venezuelan savanna[J]. Acta Ecologia,1997,18(1):27~37
    [492]Bremer E, Kuikman P. Influence of competition for nitrogen in soil on net mineralization of nitrogen[J]. Plant and Soil,1997,190:119~126
    [493]李明锐,沙丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究[J].应用生态学报,2005,16(1):54-58
    [494]傅民杰,王传宽,王颖,等.四种温带森林土壤氮矿化与硝化时空格局[J].生态学报,2009,29(7):3747-3758
    [495]李贵才,韩兴国,黄建辉.哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征[J].植物生态学报,2001,25(2):210-217
    [496]Knoepp JD. Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians[J]. Plant Soil,1998,204(2):235-24
    [497]谢锦升,杨玉盛,陈光水,等.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008,28(2):703-709
    [498]Oades JM. Soil organic matter and structural stability:mechanisms and implications for management[J]. Plant and Soil,1984,76(1-3):319~337
    [499]孔雨光,张金池,张东海,等.土地利用变化对土壤及团聚体结合有机碳的影响[J].中南林业科技大学学报,2009,29(2):39-44
    [500]Gale WJ, Cambardela CA, Bailey TB. Root-derived carbon and the formation and stabilization of aggregates[J]. Soil Sci. Soc. Am. J.,2000,64:201~207
    [501]Cambardella CA, Elliott ET. Carbon and nitrogen distribution in aggregates from cultivated and native grassland[J] soils. Soil Sci. Soc. Am. J.,1993,57:1071~1076
    [502]Gregorich EG, Kachanoski RG, Voroney RP. Carbon mineralization in soil size fractions after various amounts of aggregate disruption[J]. J. Soil Sci.,1989,40:649-659
    [503]郭菊花,陈小云,刘满强,等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J].土壤,2007,39(5):787-793
    [504]李江涛,张斌,彭新华,等.施肥对红壤水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):913-917
    [505]Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science,2000,51:595~605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700