基于固定化酶-MWNT修饰铂电极检测黄曲霉毒素传感器的研制及其条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素(AFB_1)是一种强致癌致畸的真菌毒素。目前国内外已有多种AFB_1的检测方法的报道。其中基于黄曲霉毒素解毒酶(ADTZ)对黄曲霉毒素B_1和黄曲霉毒素B_1结构类似物杂色曲霉素(ST)的酶生物传感器检测,是本研究所新近报告的方法。
     本研究的目的是针对组装的酶生物传感器检测AFB_1、ST尚未进行的稳定性、使用寿命连续检测特性,以及提高检测灵敏度等开展研究,探索可用于多次使用并能用于连续分析AFB_1的酶生物传感器的构建方法。
     方法:制备高纯度和高比活的rADTZ,作为传感器的识别元件。组装和比较三种不同方式的传感器:①rADTZ/EDC&NHS/MWNT电极(共价交联固定rADTZ于MWNT修饰电极)②rADTZ&sol-gel电极(sol-gel溶胶凝胶包埋rADTZ直接固定于铂电极表面)③rADTZ&sol-gel/MWNT电极(sol-gel溶胶凝胶包埋rADTZ固定于MWNT修饰电极)用循环伏安法(CV),微分脉冲伏安法(DPV)和计时电流分析法(TB),表征修饰电极的检测性能及检测条件优化。
     结果:
     1.常压蛋白纯化系统两步法纯化出来的rADTZ酶活为95.8U/g,纯度达到76.10%,为制备酶修饰电极提供必要的实验材料。
     2.rADTZ&sol-gel/MWNT修饰电极具有良好的抗甲醇干扰能力。良好的重复性和稳定性,4℃保存28天后,峰电流差值标准偏差为2.1%。
     3.计时电流分析实验结果表明,此酶修饰电极具有较为快速的响应,平均响应时间为44s,当C_(AFB1)大于45μg/L以上时,电流响应时间小于30s。并且能连续稳定检测5小时以上。对AFB_1的检测线性范围为:5×10~(-6)g/L~2.5×10~(-5)g/L,3×10~(-5)g/L~7×10~(-5)g/L,表明rADTZ&sol-gel/MWNT修饰电极是一种理想的,且具有与流动注射FIA分析结合,进行AFB_1在线动态检测的手段和方式。
AFB_1 was a kind of mycotoxin having strong cancerigenic mutant abilities. Several methodsfor AFB_1 detecting had been reported in both domestic and foreign articles. Among the articles, thedetections of AFB_1 and its structural analogue ST with enzyme biosensor based on ADTZ was a newmethod firstly reported by our instititute.
     The objectives of our study were developing researches on improving the constancy, servicelife, detecting continuity and sensitivity of the assembled enzyme biosensor for AFB_1 and STdetections, so as to find out a method for the construction of an enzyme biosensor which coulddetect AFB_1 continuously.
     Methods: rADTZ with high purity and high special activity was used as a recognizing element toassemble and compare three biosensors constructed in three different ways①rADTZ/EDC&NHS/MWNT electrode (covalently cross linking rADTZ on MWNT modifiedelectrode)②rADTZ&sol-gel electrode(immobilizing the sol-gel which had embedded rADTZ inadvance directly on the surface of Pt electrode)③rADTZ&sol-gel/MWNT electrode(immobilizingsol-gel-embedded rADTZ on MWNT modified electrode). Cyclic voltammetry (CV), differentiatedpulse voltammetry (DPV) and single potential time base (TB) were employed to analyze electricalsignals detected, to characterize this modified electrode and to optimize detecting conditions of thebiosensor.
     Results:
     (1) rADTZ was purified with the special activity of 95.8U/g and the purity of 76.10% by atwo-step procedure using ordinary pressure purification system providing necessary materials for thepreparation of the enzyme-modified electrode.
     (2) rADTZ/sol-gel/MWNT modified electrode could resist the interference of methanol fairlywell, having good reproducibility and constancy. After being placed at 4℃for 28 days, the electrodehad a stable response current with a standard deviation of 2.1%.
     (3) The TB experiment showed that the enzyme-modified electrode had a rather sensitiveresponse with an average response time of 44s. Moreover when C_(AFB1) is more than 45μg·L~(-1), theresponse time will be less than 30s and the biosensor could last detecting stably for more than 5 hours. Two linear range of 5×10~(-6)g/L~2.5×10~(-5)g/L and 3×10~(-5)g/L~7×10~(-5)g/L were gotwhile AFB_1 was detected. The linear range was already within the detecting limit of AFB_1 allowedin feed and feed additives in China, which manifested that the rADTZ/sol-gel/MWNT modifiedelectrode was an ideal method and means to detect AFB1 online with the ability to combine withFIA.
引文
[1] 王喜萍,粮油食品中黄曲霉毒素的污染及预防措施。食品工业科技 2004(09):142.
    [2] 新版《饲料卫生标准》养殖与饲料 2005,7:44.
    [3] Vargas E A. Co-occurrence of aflatoxins B_1, B_2, G_1, G_2 zearalenone and fumonisin B_1 in Brazilian corn. Food Addit Contam 2001,11:981.
    [4] 张鹏,张艺兵,赵卫东.花生中黄曲霉毒素B_1、B_2、G_1、G_2的多功能净化柱.高效薄层色谱分析。分析测试学报 1999,18(6):62-64.
    [5] 焦炳华,谢正旸.现代微生物毒素学福州:福建科学技术出版社 2000,339-374.
    [6] Cepeda, Franco C M, Fente C A, et al. Postcolumn excitation of aflatoxins using cyclodextrins in Liquid chromatography for food analysis. Chromatogr A 1996, (721): 69-74.
    [7] Wei J, Okerberg E, Dunlap J, et al. Determination of Biological toxins using capillary electrokinetic chromatography with multiphoton-excited fluorescence. Anal Chem 2000, 72:1360-1363.
    [8] Reddy S V, Mayi D K, Reddy M U, et al. AflatoxinB_1 in different grades of chillies in India as deteminded by indirect competitive ELISA. Food Addit Cont 2001, 6:553-558.
    [9] 刘滨磊,刘兴.四种ELISA方法检测食品中的黄曲霉毒素B_1的对比研究。卫生研究 1990,19(4):28-32.
    [10] 食品中黄曲霉毒素B1的测定GB/T 5009.22-2003.
    [11] 焦炳华,谢正旸.现代微生物毒素学。福建科学技术出版社 2000,339-374
    [12] 王晶,王林,黄晓蓉.食品安全快速检测技术。化学工业出版社 2002,85-102.
    [13] 王中民.免疫层析技术研究进展。国外医学临床生物化学与检验学分册 2001, (2):96-97.
    [14] Ho J A, Wauchope R D. A Strip Liposome Immunoassay for Aflatoxin B_11. Anal Chem 2002, 74: 1493-1496.
    [15] Liu D L, Yao D S, Chen M F. Study on detoxification of aflatoxin B_11 by the crude extract of fungi E—20. Academic Journal of Guangdong College of Pharmacy 1995, 11(2): 92-94.
    [16] Liu D L, Yao D S, Liang R et al. Detoxification of aflatoxin Bl by enzymes isolated from Armil. Food and Chemical Toxicology 1998, 36:563-574.
    [17] Liu D L, Yao D S, Liang Y Q, et al. Production, purification ,and characterization of an intracellar aflatoxin-detoxifizyme from Armil(E-20). Food and Chemical Toxi -cology 2001,39:461-466.
    [18] 刘大岭,姚冬生,陈敏峰.真菌提取液对黄曲霉毒素解毒作用的研究。广东药学院学报 1995,11(2):92-94.
    [19] 姚冬生,刘大岭,陈伟强等.假密环菌活性蛋白抗AFB1致肝急性损伤的病理学研究。深圳中西医结合杂志 1997,7(2):23-25.
    [20] Yao D S, et al. Screening of the fungus whose multienzyme system has catalytic detoxification activity towards aflatoxin B_1 (Part Ⅰ). Ann. N. Y. Acad. Sci 1998, 864: 579-585.
    [21] Liu D L, et al. Armillariella tabescen enzymatic detoxification of aflatoxin B_1 (Part Ⅱ). Ann. N. Y. Acad. Sci 1998, 864: 586-591.
    [22] Liu D L, Yao D S, Liang Y Q. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella (E-20). Food and Chemical Toxicology 2001, 39: 461-466.
    [23] 文圣梅,姚冬生,刘大岭等.多壁碳纳米管固定化生物酶修饰电极检测杂色曲霉素的初步研究。生物工程学报 2004,7:601~605.
    [24] Turner A P F. Biosensor: Fundamental and Application. Oxford University Press: Oxford 1989.
    [25] 汪尔康,21世纪的分析化学。科学出版社1999年5月.
    [26] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Aad.Sci 1962, 102: 29-45.
    [27] Updike S J, Hicks J P. The enzyme electrode. Nature 1967, 214: 986—988.
    [28] Crowen J A, Stolzman B, et al. Magnetic Phase Transitionsin Nanocrystalline Erbium. Appl. Phys 1987, 61(8): 3317.
    [29] Gavalas V G, Chaniotakis N A. Polyelectrolyte stabilized oxidase based biosensor: effect of diethylaminoethy-dextran on the stabilization of glucose and lactate oxidase into porous conductive carbon. Analytica Chimica Acta 2000, 404: 67-73.
    [30] Pedano M L, Rivas GA. Amperometric biosensor for the quantification of gentisic acid using poly phenol oxidase modified carbon paste electrode. Talanta 2000, 53: 489-495.
    [31] Yamamoto K, Ohgaru T, Torimura M, et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry. Analytica Chimica Acta 2000, 406: 201-207.
    [32] Centonze D, Losito I, Malitesta C. Electrochemical immobilisaton of enzymes on conducing organic salt electrode: characterisation of an oxygen independent and interferrance-free glucose biosensor. Electroanalytical Chemistry 1997, 435: 103-111.
    [33] Sugawra K, Takano T, Fukashi H. Glucose sensing by a carbon-paste electrode containing chitin modified with gluose oxidase. Journal of Electroanaltical Chemistry 2000, 482: 81-86.
    [34] 马全红,邓家祺.苯醌介体修饰的葡萄糖生物传感器.复旦学报 2000,39(4):400-404.
    [35] Junio L R, Goliveriran N, Fermande J R. Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole-glutaraldehyde matrix. Talanta 2000, 51: 547-557.
    [36] Piro B, Dangl A, Pham M C. A glucose biosensor based on modified - enzyme incorporated with electropolymerised poly(3, 4-ethylene - dioxythiophene) (PEDT) films. Journal of Electroanalytical Chemistry 2001, 512: 101-109.
    [37] Gawara K S, Kushi F H, Hoshi S. Electrochemical sensing of glucose at a platinum electrode with a chitin/glucose oxidase Film. Analytical Sciences 2000, 16(6): 1139-1142.
    [38] 钱江红,刘永成,刘海鹰.再生丝素固定葡萄糖氧化酶及其传感器的应用。高等学校化学学报 1996,17(1):52-54.
    [39] 吴霞琴,郭小明,王荣,等.普鲁士兰修饰铂盘电极的胆固醇传感器的研制。分析化学2001,29(11):1273-1275.
    [40] 吴辉煌,吴宝璋.环糊精聚合物的分子包合作用及在酶电极中的应用。电化学 1998,210-216
    [41] Wang H Y, Mu S L. Bioelectrochemical response of the polyaniline ascorbate oxidase electrode. Electroanalytical Chemistry 1997, 436: 43-48.
    [42] Reddy S M, Vadga P. Entrapment of glucose oxidase in non-porous poly(vinyl chloride). Analytica Chimica Acta 2002, 461: 57-64.
    [43] Zheng H, Xue H G, Zhang Y F. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earthcatalyst. Biosensors and Bioelectronics 2002, 17: 541-545.
    [44] 何亚明,张维成,王志茹.测酚用的酪氨酸酶媒体玻碳电极的研制。分析测试学报 1999,18(4):76-78.
    [45] Tatsuma T, Ogawa Y, Sato R, et al. Peroxidase—incorporated sulfonated polyaniline—polycation complexes for electrochemical sensing of H_2O_2. Electroanalytical Chemistry 2001, 501: 180-185.
    [46] 董绍俊,车广礼,谢远武.化学修饰电极。北京:科学出版社1995,13:490-493.
    [47] 寇文朋,李彬,邓青,等.聚乙烯醇与4-乙烯基吡啶和丙烯酰胺的共接枝凝胶用于制备葡萄糖生物传感器。分析化学1998,25(1):73-76.
    [48] Braun S, Rappoport S, Zusman R, et al. Biochemically active sol-gel glasses: the trapping of enzymes. Mater Lett 1990, 10: 1-5.
    [49] Kunzelmann U, Bottcher H. Biosensor properties of glucose oxidase immobilized within SiO_2 gels. Sensors and Actuators B 1997, 38: 222-228.
    [50] Niu J J, Lee J Y. Reagentless mediated biosensors based on polyeletrolyte and sol-gel derived silica matrix. Sensors and Actuators B 2002, 82: 250-258.
    [51] Liu Z J, Liu B H, Kong J L, et al. Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Anlytical Chemistry 2000, 72: 4707-4712.
    [52] Liu Z J, Liu B H, Zhang M. Al_2O_3-sol - gel derived amperometric biosensor for glucose. Analytica Chimica Acta 1999, 392: 135-141.
    [53] Chen X, Cheng G J, Dong S J. Amperometric tyrosinase biosensor based on a sol - gel- derived titanium oxide - copolymercomposite matrix for detection of phenolic compounds. Analyst 2001, 126: 1728-1732.
    [54] Wang B Q, Dong S J. Sol - gel - derived amperometric biosensor for hydrogen peroxide based on methylene green incorporation in Nation film. Talanta 2000,51: 562-572.
    [55] 孟宪伟,唐芳琼,冉均国,等.纳米颗粒复合材料增强的葡萄糖生物传感器。化学通报2001.6:365-367.
    [56] Iijima S. Helical microtubles of graphitic carbon. Nature 1991, 354(6348): 56~58.
    [57] Wong S S, Woolley A T. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. Am. Chem. Soc 1998, 120(33):8557—8558.
    [58] Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science 2001,293: 77-79.
    [59] Wong S S, Joselevich E, Woolley A T, et al. Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature 1998, 394:52-55.
    [60] Collins P G, Zettl A, Sando H, et al. Nanotube nanodevice. Science 1997, 278(5335): 100-102.
    [61] Iijima S, Helical microtubes of graphitic carbon. Nature 1991, 354:56-58.
    [62] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363:603-605.
    [63] Qiang X, Lu Z, Jing Z. Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical depositionmethod. Phys Chem B 2003, 107:8294-8296.
    [64] Dorte N M, Kristian M, Ramona M, Anne M R, Michael B, Claus J H, Peter B. Soldering of nanotubes onto microelectrodes. Nano. Lett 2003, 3(1): 47-49.
    [65] Liu J W, Shao M W, Tang Q, Zhang S, Qian Y T. Synthesis of carbon nanotubes and nanobelts through a medial-Reduction method. Phys. Chem. B 2003,107:6329-6332.
    [66] Christopher A D, James M T, Solvent-free functionalization of carbon nanotubes. Am. Chem. Soc 2003,125(5):1156-1157.
    [67] Cheng W, Mahesh W, Xin W, Jason M T, Robert C H, Yan Y S. Proton exchange membrane fuel cells with carbon nanorube based electrodes. Nano. Letters 2004, 4(2):345-348.
    [68] Alireza N, Gregory W L, Shu P, Kyeongjae C R, Fabian W P. A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett 2003, 3(10): 1469-1470.
    [69] Wang X B, Liu Y Q, Zhu D B, Zhang L, Ma H Z, Yao N, Zhang B L. Controllable growth, structure, and low field emission of well-aligned CNT nanotubes. Phys. Chem. B 2002, 106(9):2186-2190.
    [70] David M, Javey A, Jing K, Qian W, Hong J D. Ballistic transport in metallicnanotubes with reliable Pd ohmic contacts. Nano Lett 2003, 3 {11): 1541-1544.
    [71] Liu L, Fan S S. Isotope labeling of carbon nanotubes and formation of 12C-13C nanotube junctions. Am. Chem. Soc 2001, 123(46): 11502-11503.
    [72] Toshiya O, Kazutomo S, Kaon H, Shunji B, Iijima S, Shinohara H. Real time reaction dynamics in carbon nanotubes. Am. Chem.Soc 2001, 123(39):9673-9674.
    [73] Li W Z, Xie S S, Qian L X, Large-scale syntyesis of aligned carbon nanotubes. Science 1996, 274 (5293):1701-1703.
    [74] Cattien V N, Delzeit L, Alan M C, Jun L, Jie H, Meyyappan M. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett 2002,10(2): 1079-1081.
    [75] Tsang S C, Chen Y K, Green M L. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372:159-162.
    [76] Lago R M, Tsang S C, Green M L. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. Chem. Commu 1995, 1:355-356.
    [77] Hiura H, Ebbesen T W, Opening and purification of carbon nanotubes in high yields. Adv. Mater 1995,7:275-276.
    [78] Jia Z J, Wang Z Y, Liang J, Wei B Q, Wu D H. Production of short mufti-walled carbon nanotubes. Carbon 1999,37: 903-906.
    [79] Hou P X, Bai S, Yang Q H, Liu C, Chen H M. Mufti-step purification of carbon nanotubes. Carbon 2002, 40:81-85.
    [80] Liu P F, Hu J H. Carbon nanotube powder microelectrodes for nitrite detection. Sensors and Actuators B 2002,84(2-3):194-199.
    [81] Joseph W, Mustafa M. Carbonnanotube/teflon composite eElectrochemical sensors and biosensors. Anal. Chem 2003, 75:2075-2079.
    [82] Liu Z L, Lee J Y, Chen W X, et al. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbonsupported PzRu nanoparticles. Langmuir 2004, 20(1):181-186.
    [83] Gooding J J, Rahmat W, Liu J Q, Yang W R, Dusan L, Shannon O, Freya J M, Joe G S, Hibbert D B. Proteinelectrochemistry using aligned carbon nanotube Arrays. Am. Chem. Soc 2003,125(30): 9006-9007.
    [84] Luca S D, Florescu M, Ghica M E, Lupua A, Palleschi G ,Brett C M A, Compagnonec D. Carbon film electrodes for oxidase-based enzymesensors in food analysis. Talanta 2005, 68:171-178.
    [85] Joseph W, Mustafa M. Carbonnanotubeteflon composite electrochemical sensors and biosensors. Anal. Chem 2003, 75:2075-2079.
    [86] Zhao Y D, Zhang W D, Chen H, Luo Q M. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sensors and Actuators B 2003, 92(3):279-285.
    [87] 陈荣生,肖华,黄卫华,童华,王宗礼,程介克.单壁碳纳米管修饰的高灵敏纳米碳纤维电极。高等学校化学学报2003,24(5):808-810.
    [88] Joseph W, Mustafa M. Solubilization of carbon nanotubes by nation toward the preparation of amperometric biosensors. Am. Chem. Soc 2003,125(9):2408-2409.
    [89] Guo M L, Chen J H, Liu D Y, Nie L H, Yao S Z. DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry 2004, 62:29-35.
    [90] Kyung W P, Yung E S, Han S J, Yun Y K, Taeghwan H. Origin of the enhanced catalytic activity of carbon nanocoil-supported ptRu alloy electrocatalysts. Phys. Chem B 2004, 108: 939-944.
    [91] Jason J D, Richard C H, Allen O H. Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry 1997, 440:279-282.
    [92] 王歌云,王宗花,肖素芳,王义明,罗国安.碳纳米管修饰电极对多巴胺和。肾上腺素的电分离及同时测定。分析化学 2001,31(11):1281-1285.
    [93] 王宗花,刘军,颜流水,王义明,罗国安.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响。高等学校化学学报2003,24(2):236-240.
    [94] Wu K B, Fei J J, Hu S S, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a fillm of carbon nanotubes. Analytical Biochemistry 2003, 318: 100-106.
    [95] Zhao Q, Gu Z N, Zhuang Q K. Electrochemical study of tetra-phenyl-porphyrin on the SWl'Ts film modified glassy carbon electrode. Electrochemistry Communications 2004, 6:83-86.
    [96] 罗红霞,施祖进,李南强,顾镇南,庄乾坤.梭基化单层碳纳米管修饰电极的电化学表征及其电催化作用。高等学校化学学报 2000,21(9):1372-1374.
    [97] Luo H X, Shi Z J, Li N Q, Gu Z N, Zhuang Q K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem 2001, 73: 915-920.
    [98] Britto P J, Santhanam K S, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics 1996, 41:121-125.
    [99] Federica V, Aziz A, Silvia O, Maria L T, Giuseppe Palleschi. Carbon Nanotube Purification: Preparation and characterization of carbon nanotube paste electrodes. Anal. Chem 2003, 75: 5413-5421.
    [100] Mafia D R, Gustavo A R. Carbon nanotubes paste electrode. Electrochemistry Communications 2003, 5: 689-694.
    [101] 鞠烷先,电分析化学与生物传感技术。科学出版社第一版 2006,4:280~285.
    [102] 腾岛 昭等著,陈震等译.电化学测定方法。北京大学出版社第一版 1995,76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700