基于上转换荧光纳米探针的高灵敏微生物毒素检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素掺杂的上转换荧光纳米颗粒具有长波长激发(通常是近红外光或者红外光),短波长(紫外光或者可见光)发射的特殊光学性质,可以有效的避免生物样本自发荧光对检测的干扰,对于提高检测灵敏度和准确性具有重要意义。微生物毒素污染是引发食品安全问题的重要因素,对微生物毒素的检测也是食品安全分析中的重要指标。本论文研究了稀土元素掺杂的上转换荧光纳米颗粒作为新型荧光纳米标记物在微生物毒素检测中的应用。建立了一系列灵敏、快速、可靠以及多组分同时检测的新方法,为保障食品安全提供了有利手段。
     首先,通过水/溶剂热法合成了稀土元素掺杂的上转换荧光纳米颗粒,研究反应条件,得到发光性能好,形貌均匀,纳米级的上转换荧光颗粒。随后,利用硅烷化或者配体交换的方法对上转换颗粒的表面进行改性,使得材料在水相中分散性好,并且带有生物官能团,为进一步生物功能化修饰提供了条件。通过透射电镜,荧光光谱,X射线衍射,傅里叶变换红外光谱,紫外光谱等表征结果证明上转换荧光纳米颗粒的制备和修饰成功。
     其次,研究上转换荧光纳米颗粒在激光诱导荧光方法中的应用。将表面经过修饰的上转换纳米颗粒连接核酸片段,磁性纳米颗粒连接核酸适配体,通过核酸杂交使得上转换纳米颗粒与磁性纳米颗粒连接,加入被测物质后由于适配体与靶物质的特异性结合导致部分上转换颗粒与磁性颗粒解离,在外界磁场分离富集的作用下得到上转换和磁性颗粒的复合物,980nm红外激光激发下得到上转换荧光发射。通过该实验设计观察目标物赭曲霉毒素A浓度与荧光信号的关系,实现了上转换荧光纳米颗粒标记-适配体识别-磁富集的激光诱导荧光检测赭曲霉毒素A的新方法,检出限为0.0001ng·mL-1。
     第三,在上转换荧光纳米颗粒成功应用于单组分的激光诱导荧光检测的基础上研究了双色上转换荧光纳米颗粒标记技术。选择荧光光谱互相不重叠的两种上转换荧光纳米颗粒分别标记两种目标物质,在980nm红外激光激发下得到两组荧光发射峰,实现同时对两组目标物质进行定量检测。一方面,将两种上转换荧光纳米颗粒标记毒素人工抗体,在竞争免疫反应的模式下,成功建立了同时检测黄曲霉毒素B1和赭曲霉毒素A的新方法,检出限均为0.01ng·mL-1;另一方面,将两种上转换荧光纳米颗粒标记核酸序列,与目标核酸序列杂交识别,成功建立了同时检测两种手足口病病毒EV-71和CV-A16的新方法,检出限分别为20pmol/L和25pmol/L。本实验也为多色上转换荧光标记技术在定量分析检测中的发展打下了基础。
     第四,研究上转换荧光纳米颗粒作为荧光能量供体在荧光共振能量转移中的应用。分别将上转换荧光纳米颗粒和金纳米颗粒(作为荧光能量受体)标记在分子信标两端组成荧光共振能量转移体系,此模式下结合适配体识别和磁分离富集效应检测伏马菌毒素B1,检出限为0.01ng·mL-1。随后进一步深入探索了将双色上转换纳米颗粒同时作为荧光能量供体的模式,发现利用氧化石墨烯作为荧光能量受体,能够同时淬灭多种不同发射的上转换荧光,根据这种现象我们首次提出了多重荧光共振能量转移理论,即同一种荧光能量受体同时淬灭多种荧光能量供体。基于以上设计原理将伏马菌毒素B1和赭曲霉毒素A的适配体分别与两种上转换荧光纳米颗粒连接同时作为荧光能量供体,使其吸附到氧化石墨烯表面从而荧光淬灭,实现了多重荧光共振能量转移模式下同时对伏马菌毒素B1和赭曲霉毒素A的检测,检出限分别达到0.1ng·mL-1和0.02ng·mL-1。该研究工作扩大了荧光共振能量转移的应用,寻找发射光谱可被区分的荧光材料作为荧光能量供体,多重荧光共振能量转移模式可以应用于更多组分目标物质同时检测。
     第五,研究上转换荧光纳米颗粒配合激光诱导荧光检测技术中放大检测信号提高检测灵敏度的方法。除了利用磁性纳米颗粒分离富集外,还结合了一种酶催化目标物循环信号放大的方法。针对以适配体结合靶物质的识别模式,选择核酸外切酶I能够特异性的高效的酶切单链核酸适配体,从而导致本来与适配体结合的目标物质重新释放再与新的适配体结合,目标物质在检测体系中被循环利用,引起了信号的放大,提高了检测灵敏度。实验中以上转换荧光为信号检测了金黄色葡萄球菌肠毒素B,发现在核酸外切酶I的作用下灵敏度提高50倍,检出限为0.3pg·mL-1。激光诱导上转换荧光方法由于上转换荧光本身的特点其检测灵敏度非常高,结合酶催化信号放大可以进一步提高灵敏度,解决超痕量毒素难以被检测的问题。
     总之,本论文制备了稀土元素掺杂的上转换荧光纳米颗粒这一新型的荧光材料作为荧光标记物,利用其特殊的光学性质,配合以激光诱导荧光、荧光共振能量转移、适配体识别、免疫识别、分子杂交、磁分离富集、酶催化放大等等技术手段,构建了一系列新颖的、灵敏的、特异性的、稳定的、实用的分析方法用于食品中微生物毒素单一组分或多组分的同时检测,为保障食品安全提供了有力的技术支持。
Due to the unique property of rare earth doped UCNPs that emitted shorter wavelength(ultraviolet or visible light) under excitation by longer wavelength (usually near-infrared lightor infrared light) via a two-photon or multi-photon mechanism, the autofluorescence ofbiosamples could be effectively avoided. It had a profound significance on improving thesensitivity and accuracy of detection methods. Microbial toxins contamination are the primaryunsafety factors which causing food security problem, and the related detections were veryimportant to food safety analysis. In this dissertation, rare-earth-doped upconversionnanoparticles (UCNPs) were applied in microbial toxins analysis detection. The applicationsof UCNPs as a kind of novel fluorescent nano-labels were researched in quantitative analysisof microbial toxins in foods. Based on advantages of UCNPs, a series of sensitive, rapid,reliable and simultaneous analytical methods were developed, and those methods couldprovide a guarantee for food safety.
     Firstly, based on the solvothermal technology and optimization condition, therare-earth-doped nanoscale UCNPs which had good fluorescent property and uniformmorphology were synthesized. And the silanization groups or ligand exchange were thensuccessfully modified on the surface of UCNPs. Furthermore, the modified UCNPs wereapplicable for bio-functionalization due to their biological functional groups andwell-dispersed in aqueous solution. The synthesis and modified of UCNPs were characterizedby transmission electron microscope (TEM) image, fluorescence spectrum, X-ray diffraction(XRD), fourier transform infrared (FT-IR) and ultraviolet spectrophotometer (UV).
     Secondly, the applications of UCNPs in the field of laser induced fluorescence (LIF)detection were researched in this section. In brief, aptamers were immobilized onavidin-conjugated magnetic nanoparticles (MNPs), and their complementary DNA werelinked to avidin-conjugated UCNPs, then the aptamers hybridized with the complementaryDNA to form the duplex structure, therefore were assembled on to the surface of MNPsgiving a background fluorescent signal. In the presence of analyte, the aptamer preferentiallybond with analyte and caused the dissociation of some complementary DNA, liberating someUCNPs-labeled complementary DNA. Then the remaining of UCNPs-MNPs compoundswere separated with an external magnet, and excited by980nm infrared laser. Based onUCNPs labeling, aptamer affinity and magnetic separation, a novel analytical method hasbeen successfully applied to the detection of ochratoxin A (OTA) related to the intensity ofUCNPs and the detection limit was0.0001ng·mL-1.
     Thirdly, the applications of dual-colour UCNPs labeling were researched in this sectionbased on the UCNPs successfully used in single LIF detection. Two sets of emission peakswhich could be easily distinguished in spectrum by980nm laser, belonged to differentUCNPs were chosen as dual-colour labels for determination two kinds of analytes. In onedesign pattern, two kinds of UCNPs were used to conjunct with antibodies of aflatoxin B1(AFB1) and ochratoxin A (OTA) respectively. A novel competitive fluorescent immunoassayfor the simultaneous detection of AFB1and OTA using UCNPs as dual-colour labels was developed. The detection limit of AFB1and OTA were0.01ng·mL-1. In another designpattern, two kinds of UCNPs were firstly used to conjunct with the signal nucleic acids, andthen hybridized with target nucleic acids. A novel sandwich type fluorescence analysis forsensitive and selective detection of enterovirus71(EV-71) and coxsackievirus A16(CV-A16)by dual-colour UCNPs labeling technology was also successfully established, and thedetection limit was20pmol/L and25pmol/L, respectively. The results suggested thatdual-colour UCNPs labeling-based fluorescent assay was applicable and promising for thesensitive detection. This assay could also be extended to the detection for various analytesbased on multicolour labeling of UCNPs.
     Fourthly, the applications of UCNPs as fluorescent energy donors in fluorescenceresonance energy transfer (FRET) were researched in this section. In one design pattern, wepresented a new aptasensor for fumonisin B1(FB1) based on FRET between UCNPs and goldnanoparticles (AuNPs). The quenchers (AuNPs) were attached to the5’ end of the molecularbeacon (MB), and the donors (UCNPs) were attached to the3’end of the MB. The good resultof detection was benefited from UCNPs labeling, aptamer affinity and magnetic concentration.The detection limit was0.01ng·mL-1. Furthermore, the new FRET system based ondual-colour UCNPs as fluorescent energy donors was explored. Graphene oxide (GO) werefound as the entire and effective acceptor because of a good overlap between the fluorescenceemission of dual-colour UCNPs and the absorption spectrum of GO. Hence, a multiplexedFRET system has been first presented and applied on the basis of multiplexed energy donorsto the entire energy acceptor. We have constructed a novel sensor for the simultaneousdetermination of ochratoxin A(OTA) and fumonisin B1(FB1) using a multiplexed FRET fromaptamers modified dual-colour UCNPs on the surface of graphene oxide, and the detectionlimit was0.1ng·mL-1and0.02ng·mL-1, respectively. Our study has paved the way to widenthe applications of FRET systems: the multiplexed FRET-based detection can be used forvarious targets with fluorescence nanoparticles of which emission spectra can bedistinguished as donors.
     Fifthly, the signal amplification of UCNPs by laser induced fluorescence method wasresearched in this section. Enzyme-catalysed target recycling strategy was an effectiveamplification approach except for magnetic separation and concentration. Against to thecomplex of aptamer and target, exonuclease I, an exonuclease specific to single-strandedDNA, was used to amplify the signal of UCNPs and improve the sensitivity of detection byselectively digesting a particular DNA for analyte recycling. An ultrasensitive bioassay wasdeveloped to detect staphylococcal enterotoxin B (SEB) using UCNPs labeling and anexcellent limit of detection of0.3pg·mL-1was obtained by exonuclease-catalysed targetrecycling strategy. The sensitivity of LIF method was high because of the advanced propertyof UCNPs, and even higher sensitivity was displayed because of exonuclease-catalysed targetrecycling strategy. It was a significant method to solve the problem of ultratrace toxins hard todetect in foodstuffs.
     In conclusion, lanthanide doped upconversion nanoparticles were synthesized asfluorescent labels in this study. Based on its unique luminescent properties, a series of novel,sensitive, specific, stable and practical assays were developed for the determination of microbial toxins in food coupled with laser induced fluorescence, FRET, aptamer recognition,immnuo-recognition, DNA hybridization, MNPs separation and concentration, andexonuclease-catalysed target recycling strategys. Moreover, multicolor UCNPs fluorescentlabels were successfully applied in food safety analysis and detection, which provide atechnical support for guaranteeing food safety.
引文
1.金征宇,彭池方.食品安全[M].浙江大学出版社,2008.
    2.尤如玉.食品安全与质量控制[M].中国轻工业出版社,2008.
    3.易粪相食.中国食品安全状况调查[EB/OL]. http://www.zccw.info/report,2011-6-17.
    4.周勍.民以何食为天—中国食品安全现状调查[M].中国工人出版社,2007.
    5.赵笑虹.食品安全学概论[M].中国轻工业出版社,2010.
    6.杨世亚,邱景富.食品中真菌毒素的污染状况与检测方法研究进展[J].现代预防医学,2012,39(22):5897–5900.
    7.苏福荣,王松雪,孙辉等.国内外粮食中真菌毒素限量标准制定的现状与分析[J].粮油食品科技,2007,15(6):57–59.
    8.孙利霍,蒋莲,崔维刚等.粮食产品中真菌毒素的色谱质谱检测技术研究进展[J].食品科学,2012-12-5:1–14.
    9. Schothorst R C, Jekel A A. Determination of trichothecenes in wheat by capillary gas chromatographywith flame ionization detection. Food Chem,2001,73(1):111–117.
    10. Tanaka T, Yoneda A, Inoue S, et al. Simultaneous determination of trichothecene mycotoxins andzearalenone in cereals by gas chromatography–mass spectrometry. J Chromatogra A,2000,882(1-2):23–28.
    11. Brenn-Struckhofova Z, Cichna-Markl M, B hm C, et al. Selective Sample Cleanup by ReusableSol-Gel Immunoaffinity Columns for Determination of Deoxynivalenol in Food and Feed Samples.Anal Chem,2007,79(2):710–717.
    12. Wang J S, Zhou Y, Wang Q M. Analysis of mycotoxin fumonisins in corn products byhigh-performance liquid chromatography coupled with evaporative light scattering detection. FoodChem,2008,107(2):970–976.
    13. Sulyok M, Krska R, Schuhmacher R. A liquid chromatography/tandem mass spectrometricmulti-mycotoxin method for the quantification of87analytes and its application to semi-quantitativescreening of moldy food samples. Anal Bioanal Chem,2007,389(5):1505–1523.
    14. Ediage E N, Mavungu J D, Monbaliu S, et al. A validated multianalyte LC-MS/MS method forquantification of25mycotoxins in cassava flour, peanut cake and maize samples. J Agric Food Chem,2011,59(10):5173–5180.
    15. Yalow R S, Berson S A. Assay of plasma insulin in human subjects by immunological methods. Nature,1959,184:1648–1649.
    16.张宇吴,杨琳,马良.真菌毒素同时检测方法研究进展[J].中国粮油学报,2011,26(6):123–126.
    17. Thirumala-Devi K, Mayo M A, Reddy G, et al. Production of polyclonal antibodies against ochratoxinAand its detection in chilies by ELISA. J Agric Food Chem,2000,48(10):5079–5082.
    18. Schneider L, Piehler H, Krska R. An enzyme linked immunoassay for the determination ofdeoxyuivalenol in wheat based on chicken egg yolk antibodies. Fresenius J Anal Chem,2000,367(1):98–110.
    19. Offiah N, Adesiyun A. Occurrence of aflatoxins in peanuts, milk, and animal feed in Trinidad. J FoodProt,2007,70(3):771–775.
    20.张艺兵,张鹏,赵卫东等.荧光光度法快速检测食品中的黄曲霉毒素[J].检验检疫科学,1999,9(6):25–27.
    21. Chiavaro E, Lepiani A, Colla F, et al. Ochratoxin A determination in ham by immunoaffinity clean-upand a quick fluorometric method. Food Addit Contam,2002,19(6):575–581.
    22.赵晓联,龚燕,孙秀兰等.金标免疫层析法检侧黄曲霉毒素B1的方法[J].粮油食品科技,2005,13(6):49–51.
    23. Carter R, Jaeobs M, Lubrano M B. Rapid detection of aflatoxinB1with Immunochemical optrodes.Anal Lett,1997,30(8):1465–1482.
    24.姚冬生.多壁碳纳米管固定化生物酶修饰电极检测杂色曲霉素的初步研究[J]生物工程学报,2004,20(4):601–606.
    25.郭亚银.生物传感器在食品工业中的应用[J].包装与食品机械,2003,21(6):22–25.
    26. Tudos A J, Lucas-van den Bos E R, Stigter E C. A Rapid surface plasmon resonance-based inhibitionassay of deoxynivalenol. J Agric Food Chem,2003,51(20):5843–5848.
    27.王希春.农产品中两种真菌毒素蛋白质芯片检测技术的研究[D]:[博士学位论文].南京:南京农业大学,2010.
    28. Abdou M A, Awny N M, Abozeid A A M. Prevalence of toxicogenic bacteria in some foods anddetection of and enterotoxin genes using multiplex PCR. Annals of Microbiology,2012,62(2):569–580.
    29. Rall V L M, Vieira F P, Rall R, et al. PCR detection of staphylococcal enterotoxin genes inStaphylococcus aureus strains isolated from raw and pasteurized milk. Veterinary Microbiology,2008,132(3-4):408–413.
    30. Tyler S D, Johnson W M, Huang J C, et al. Streptococcal erythrogenic toxin genes: detection bypolymerase chain reaction and association with disease in strains isolated in Canada from1940to1991.Journal of clinical microbiology,1992,30(12):3127–3131.
    31. Ashton A C, Crowther J S, Dolly J O. A sensitive and useful radioimmunoassay for neurotoxin and itshaemagglutinin complex from Clostridium botulinum. Toxicon,1985,23(2):235–246.
    32. Ekong T A, McLellan K, Sesardic D. Immunological detection of Clostridium botulinum toxin type Ain therapeutic preparations. Journal of immunological methods,1995,180(2):181–191.
    33. Lyubavina I A, Valyakina T I, Grishin E V. Monoclonal Antibodies Labeled with Colloidal Gold forImmunochromatographic Express Analysis of Diphtheria Toxin. Russian Journal of BioorganicChemistry,2011,37(3):326–332.
    34. Salmain M, Ghasemi M, Boujday S, et al. Piezoelectric immunosensor for direct and rapid detection ofstaphylococcal enterotoxinA(SEA) at the ng level. Biosens Bioelectron,2011,29(1):140–144.
    35. Cheng L W, Stanker L H. Detection of Botulinum Neurotoxin Serotypes A and B Using aChemiluminescent versus Electrochemiluminescent Immunoassay in Food and Serum. J Agric FoodChem,2013,61(3):755–760.
    36. Grate J W, Warner M G, Ozanich R M J, et al. Renewable surface fluorescence sandwich immunoassaybiosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. Analyst,2009,134(5):987–996.
    37. Sameiro M, Goncalves T. Fluorescent Labeling of Biomolecules with Organic Probes. ChemicalReviews,2009,109(1):190–212.
    38. Feynman R P. There’s plenty of room at the bottom. California Institute of Technology Joumal ofEngineering and Scienee,1960,4(2):23–36.
    39.陈翌庆,石瑛.纳米材料学基础[M].中南大学出版社,2009.
    40. Jun Y W, Choi J S, Cheon J. Shape control of semiconductor and metal oxide nanocrystals throughnonhydrolytic colloidal routes. Angew Chem Int Ed,2006,45(21):3414–3439.
    41.翟庆洲.兵器工业出版社,2006.
    42.姜忠义,成国祥.纳米生物技术.化学工业出版社,2003.
    43. Mahmudi-Azer S, Lacy P, Bablitz B, et al. Inhibition of nonspecific binding of fluorescent-labelledantibodies to human eosinophils. J Immunol Methods,1998,217(1-2):113–119.
    44. Wang L Y, Li Y D. Controlled synthesis and luminescence of lanthanide doped NaYF4nanocrystals.Chem Mat,2007,19(4):727–734.
    45. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev,2004,104(1):139–173.
    46. Bloembergen N. Solid state infrared quantum counters. Phys Rev Lett,1959,2(3):84–85.
    47. Auzel F E. Materials and devices using double–pumped phosphors with energy transfer. Proc IEEE,1973,61(6):758–786.
    48. Gamelin D R, Gudel H U. Upconversion proeesses in transition metal and rare earth metal systems,Top Curr Chem,2001,214:1–56.
    49. Joubert M F. Photon avalanche upconversion in rare earth laser materials. Opt Mater,1999,11(2-3):181–203.
    50. Chivian J S, Case W E, Eden D D. The Photon avalanche: a new phenomenonin Pr3+-based infraredquantum counters. Phys Rev Lett,1979,35(2):124–125.
    51.杨建虎,戴世勋,姜中宏.稀上离子的上转换发光及研究进展[J],物理学进展,2003,23(3):284–298.
    52.刘光华.稀土材料学[M],化学工业出版社,2007,267–279.
    53.张中太,张俊英.无机光致发光材料及应用[M],化学工业出版社,2005,267–279.
    54. Markus H, Helmut S. Upconverting Nanoparticles. Angew Chem Int Ed,2011,50(26):5808–5829.
    55.王猛,密丛丛,王单等. NaYF4:Yb, Er上转换荧光纳米颗粒的共沉淀法合成及表征[J],光谱学与光谱分析,2009,29(12):3327–3331.
    56. Yi G S, Lu H C, Zhao S Y, et al. Synthesis, charaeterization, and biological application ofsize-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible upconversion phosphors. Nano Lett,2004,4(11):2191–2196.
    57. Wei Y. Lu F Q, Zhang X R, et al. Synthesis and characterization of efficient near-infrared upconversionYb and Tm codoped NaYF4nanocrystal reporter. J Alloys Compd,2007,427(l-2):333–340.
    58. Jun Y W, Lee J H, Choi J S, et al. Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemicalsynthesis and shape. J Phys Chem. B,2005,109(31):14795–14806.
    59. Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3triangular nanoplates from asingle-source precursor. J AmChem Soc,2005,127(10):3260–3261.
    60. Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4nanocrystals dopedwith Er3+, Yb3+and Tm3+, Yb3+via thermal decomposition of lanthanide trifluoroacetate preeursors. JAm Chem Soc,2006,128(23):7444–7445.
    61. Wei Y, Lu F Q, Zhang X R, et al. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shapedNaYF4: Yb, Er nanoplates. Chem Mater,2006,18(24):5733–5737.
    62. Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: controlledsynthesis and optical properties. J Am Chem Soc,2006,128(19):6426–6436.
    63. Yi G S, Chow G M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystalswith efficient up-conversion fluorescence. Adv Funct Mater,2006,16(18):2324–2329.
    64. Feng S H, Xu R R. New materials in hydrothermal synthesis. Acc Chem Res,2001,34(3),239–247.
    65. SunY J, Chen Y, Tian L J, et al. Controlled synthesis and morphology dependent upconversionluminescence of NaYF4: Yb, Er nanoerystals. Nanotechnology,2007,18(27):275–609.
    66. Wang Z J, Tao F, Yao L Z, et al. Selected synthesis of cubic and hexagonal NaYF4crystals via acomplex-assisted hydrothermal route. J Cryst Growth,2006,290(1):296–300.
    67. Zhuang J L, Liang L F, Sung H H Y, et al. Controlled hydrothermal growth and up-conversion emissionof NaLnF(4)(Ln=Y, Dy-Yb). Inorg Chem,2007,46(13):5404–5410.
    68. Li C X, Quan Z W, Yang J, et al. Highly uniform and monodisperse beta-NaYF4: Ln(3+)(Ln=Eu, Tb,Yb/Er, and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties.Inorg Chem,2007,46(16):6329–6337.
    69. Zhao J W, Sun Y J, Kong X G, et al. Controlled Synthesis, Formation Mechanism, and GreatEnhancement of Red Upconversion Luminescence of NaYF(4):Yb(3+), Er(3+)Nanocrystals/Submicroplates at Low Doping Level. J Phys Chem B,2008,112(49):15666–15672.
    70. Zeng J H, Su J, Li Z H, et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+, phosphors of controlled size and morphology. Adv Mater,2005,17(17):2119–2123.
    71. Li Z G, Zhang Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4nanocrystals withmulticolor upconversion fluorescence emission. Angew Chem Int Ed,2006,45(46):7732–7735.
    72. Wang F, Chatterjee D K, Li Z Q, et al. Synthesis of polyethylenimine/NaYF4nanoparticles withupconversion fluorescence. Nanotechnology,2006,17(23):5786–5791.
    73. Jiang S, Gnanasammandhan M K, Zhang Y. Optical imaging-guided cancer therapy with fluorescentnanoparticles. J R Interface,2010,7(42):3–18.
    74. Nyk M, Kumar R, Ohulehanskyy T Y, et al. High contrast in vitro and in vivo photo luminescencebioimaging using near infrared to near infrared up-conversionin Tm3+andYb3+doped fluoridenanophosphors. Nano Lett,2008,8(11):3834–383.
    75. Wang M, Mi C C, Wang W X, et al. Immunolabeling and NIR-Excited Fluorescent Imaging of HeLaCells by Using NaYF4: Yb, Er Upconversion Nanoparticles. ACS Nano,2009,3(6):1580–1586.
    76. Chen J, Guo C R, Wang M, et al. Controllable synthesis of NaYF4: Yb,Er upconversionnanophosphors and their application to in vivo imaging of Caenorhabditis elegans. J Mater Chem,2011,21(8):2632–2638.
    77. Jalil R A, Zhang Y. Biocompatibility of silica coated NaYF4upconversion fluorescent nanocrystals.Biomaterials2008,29(30),4122–4128.
    78. Xiong L Q, Yang T S, Yang Y, et al. Long-term in vivo biodistribution imaging and toxicity ofpolyacrylic acid-coated upconversion nanophosphors. Biomaterials,2010,31(27):7078–7085.
    79. Chatterjee D K, Gnanasammandhan M K, Zhang Y. Upconverting Fluorescent Nanoparticles forBiomedical Applications. Small,2010,6(24):2781–2795.
    80. Chatteriee D K, Rufalhah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animalsusing lanthanide doped nanocrystals. Biomaterials,2008,29(7):937–943.
    81.程亮.上转换发光纳米材料在生物医学中的应用.[D]:[博士学位论文].苏州:苏州大学,2012.
    82. Wang L Y, Yan, R X, Hao Z Y, et al. Fluorescence resonant energy transfer biosensor based onupconversion-luminescent nanoparticles. Angew Chem Int Ed,2005,44(37):60546057.
    83. Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Basedon Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4: Yb, ErUpconversion Fluorescent Nanoparticles and Gold Nanoparticles. Anal. Chem.2009,81(21):8783–8789.
    84. Chen Z, Chen H, Hu H, et al. Versatile Synthesis Strategy for Carboxylic Acid-functionalizedUpconverting Nanophosphors as Biological Labels. J.Am. Chem. Soc2008,130(10),3023–3029.
    85. Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection. Chem Commun.2006,24:2557–2559.
    86. Shen J, Sun L D, Zhang Y W, et al. Superparamagnetic and upconversion emitting Fe3O4/NaYF4: Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun,2010,46(31):5731–5733.
    87. Konan Y N, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamictherapy. J Photochem Photobiol B,2002,66(2):89–106.
    88. Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo photodynamic therapy using upconversionnanoparticles as remote-controlled nanotransducers. Nature Medicine,2012,18(10):1580–U190.
    1.李凤琴,计融.赭曲霉毒素A与人类健康关系研究进展[J].卫生研究,2003,32(2):172–175.
    2. Czerwiecki L, Czajkowska D, Witkowska-Gwiazdowska. On ochratoxin A and fungal flora in Polishcereals from conventional and ecological farms-Part1: Occurrence of ochratoxin A and fungi incereals in1997. Food Addit Contam,2002,19(5):1051–1057.
    3. Otteneder H, Majerus P. Ochratoxin A (OTA) in coffee: nation-wide evaluation of data collected byGerman Food Control1995-1999. Food Addit Contam,2001,18(5):431–435.
    4. Obrecht-Pflumio S, Chassat T, Dirheimer G, et al. Genotoxicity of ochratoxin A by Salmonellamytagenicity test after bioactivation by mouse kidney microsomes. Mutat Res,1999,446(1):95–102.
    5. O’Brien E, Dietrich D R. Ochratoxin A: The continuing enigma. Crit Rev Toxicol,2002,35(1):33–60.
    6. Ghali R, Hmaissia-Khlifa K, Ghorbel H. HPLC determination of ochratoxin A in high consumptionTunisian foods. Food Control,2009,20(8):716–720.
    7. Flajs D, Domijan A M, Ivic D. ELISA and HPLC analysis of ochratoxin A in red wines of Croatia.Food Control,2009,20(6):590–592.
    8. Bacaloni A, Cavaliere C, Faberi A. Automated on-line solid-phase extraction-liquidchromatography-electrospray tandem mass spectrometry method for the determination of ochratoxin Ain wine and beer. J Agric Food Chem,2005,53(14):5518–5525.
    9. Ghali R, Hmaissia-Khlifa K, Mezigh C H, et al. HPLC determination of ochratoxin a in a low volumeof human blood serum. Anal Lett,2008,41(5):757–766.
    10. Entwisle A C, Williams A C, Mann P J, et al. Liquid chromatographic method with immunoaffinitycolumn cleanup for determination of ochratoxin A in barley: collaborative study. Journal of AOACInternational,2000,83(6):1377–1383.
    11. Entwisle A C, Williams A C, Mann P J, et al. Combined phenyl silane and immunoaffinity columncleanup with liquid chromatography for determination of ochratoxin A in roasted coffee: collaborativestudy. Journal of AOAC International,2001,84(2):444-450.
    12. Fu X H. Surface plasmon resonance immunoassay for ochratoxin a based on nanogold hollow ballswith dendritic surface. Anal Lett,2007,40(14):2641-2652.
    13. Alarcon S H, Micheli L, Palleschi G, et al. Development of an electrochemical immunosensor forochratoxin A. Anal Lett,2004,37(8):1545–1558.
    14. Zezza F, Longobardi F, Pascale M. et al. Fluorescence polarization immunoassay for rapid screening ofochratoxin A in red wine. Anal Bioanal Chem,2009,395(5):1317–1323.
    15. Wang Z P, Duan N, Hun X, et al. Electrochemiluminescent aptamer biosensor for the determination ofochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminolas a luminescent label. Anal Bioanal Chem,2010,398(5):2125–2132.
    16. Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6289):818–822.
    17. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands tobacteriophage T4DNA polymerase. Science,1990,249(4968):505–510.
    18. Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. Annu Rev Biochem,1999,68(1):611–647.
    19. Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. ClinChem,1999,45(9):1628–1650.
    20. Famulok M, Mayer G. Chemical biology-Aptamers in nanoland. Nature,2006,439(7077):666–669.
    21. Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science,2000,287(5454):820–825.
    22. Li F, Zhang J, Cao X N, et al. Adenosine detection by using gold nanoparticles and designed aptamersequences. Analyst,2009,134(7):1355–1360.
    23. Lu N, Shao C Y, Deng Z X. Colorimetric Hg(2+) detection with a label-free and fully DNA-structuredsensor assembly incorporating G-quadruplex halves. Analyst,2009,134(9):1822–1825.
    24. Jin Y, Bai J Y, Li H Y. Label-free protein recognition using aptamer-based fluorescence assay. Analyst,2010,135(7):1731–1735.
    25. Cruz-Aguado J A, Penner G. Determination of Ochratoxin A with a DNA Aptamer. J Agric FoodChem,2008,56(22):10456–10461.
    26. Cruz-Aguado J A, Penner G. Fluorescence Polarization Based Displacement Assay for theDetermination of Small Molecules with Aptamers. Anal Chem,2008,80(22):8853–8855.
    27. Dada O O, Essaka D C, Hindsgaul O, et al. Nine Orders of Magnitude Dynamic Range: Picomolar toMillimolar Concentration Measurement in Capillary Electrophoresis with Laser Induced FluorescenceDetection Employing Cascaded Avalanche Photodiode Photon Counters. Anal Chem,2011,83(7):2748–2753.
    28. Pacheco P E, Hill S M, Henriques S M. The novel use of intraoperative laser-induced fluorescence ofindocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructivesurgery. Am J Surg,2013,205(3):349–353.
    29. Brambilla D, Verpillot R, Taverna M, et al. New Method Based on Capillary Electrophoresis withLaser-Induced Fluorescence Detection (CE-LIF) to Monitor Interaction between Nanoparticles and theAmyloid-beta Peptide. Anal Chem,2010,82(24):10083–10089.
    30. Wang L Y, Yan R X, Hao Z Y, et al. Fluorescence Resonant Energy Transfer Biosensor Based onUpconversion-Luminescent Nanoparticles. Angew Chem Int Ed,2005,44(37):6054–6057.
    31. Stalder K, St ber W. Haemolytic Activity of Suspensions of Different Silica Modifications and InertDusts. Nature,1965,207(999):874–875.
    32. Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalizedmagnetite nanoparticles and hollow nanospheres. Chem–A Eur J,2006,12(24):6341–6347.
    33.李卫丽.高效液相色谱法测定小麦粉中的赭曲霉毒素[J].中国卫生检验杂志,2009,19(5):1154.
    34. Haase M, Schaefer, H. Upconverting Nanoparticles. Angew Chem Int Ed,2011,50(26):5808–5829.
    35. Grzechnik A, Bouvier P, Crichton W A, et al. Metastable NaYF4fluorite at high pressures and hightemperatures. Solid State Sci,2002,4(7):895–899.
    36. Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application ofsize-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett,2004,4(11):2191–2196.
    37. Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Basedon Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4:Yb, ErUpconversion Fluorescent Nanoparticles and Gold Nanoparticles. Anal Chem,2009,81(21):8783–8789.
    38. Tamanaha C R, Mulvaney S P, Rife J, et al. Magnetic labeling, detection, and system integration.Biosens Bioelectron,2008,24(1):1–13.
    39. Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation,biointeraction, and drug delivery. J Am Chem Soc,2005,127(20):7316–7317.
    1. Marcin N, Rajiv K, Tymish Y O, et al. High Contrast in Vitro and in Vivo PhotoluminescenceBioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+and Yb3+Doped FluorideNanophosphors. Nano Lett,2008,8(11):3834–3838.
    2. Hu H, Xiong L Q, Zhou J, et al. Multimodal-Luminescence Core-Shell Nanocomposites for TargetedImaging of Tumor Cells. Chem–A Eur J,2009,15(14):3577–3584.
    3. Wang M, Mi C C, Zhang Y X, et al. NIR-Responsive Silica-Coated NaYbF4: Er/Tm/Ho UpconversionFluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabelingand Fluorescent Imaging of Cancer Cells. J Phys Chem C,2009,113(44):19021–19027.
    4. Zhang Q B, Wang X, Zhu Y M. Multicolor upconverted luminescence-encoded superparticles viacontrolling self-assembly based on hydrophobic lanthanide-doped NaYF4nanocrystals. J Mater Chem,2011,21(32):12132–12138.
    5. Li Z Q, Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4Nanocrystals withMulticolor Upconversion Fluorescence Emission. Angew Chem Int Ed,2006,4(46):7732–7735.
    6. Spensley P C. Aflatoxin, the active principle in turkey 'X' disease. Endeavour,1963,22:75–79.
    7. Massey T E, Stewart R K, Daniels J M, et a1. Biochemical and molecular aspects of mammaliansusceptibilityto aflatoxin Blcarcinogenicity. Proceed Soc Exp Biol Med,1995,28(3):213–227.
    8. Gabal M A, Azzam A H. Interaction of aflatoxin in the feed and immunization against selectedinfectious disease in poultry.Effect on one-day-old layer chicks simultaneously vaccinated againstNewcastle disease, infectious bronchitis and infectious bursal disease. Avian Pathol,1998,27(3):290–295.
    9. Sduelber V, Huming D, Trucco C, et a1. A dominant-negative mutant of humam poly(ADP-ribose)polymerase afects cell recovery, apoptosis and sister chromatid exchange following DNA damage.Proc Natl Acad Sci,1995,92(11):4753–4757.
    10. Ueng Y F, Shimada T, Yamazaki H, et al. Aflatoxin B1oxidation by human cytochrome P450s. JToxicol Sci,1998,23(2):132–135.
    11. H.P.van Egmond. Worldwide regulations for mycotoxins in food and feed in2003[M]. FAO Food andNutrition paper, Rome,2004:81.
    12. Dunne C, Meaney M, Smyth M, et al. Multimycotoxin detection and clean-up method for aflatoxins,ochratoxin and zearalenone in animal feed ingredients using high-performance liquid chromatographyand gelpermeation chromatography. Chromatography,1993,629(2):229–235.
    13. Victor S S, Jee W D. Cleanup predure for determination of aflatoxins in major agriculturalcommodities by liquid chromatograph. Journal of AOAC International,2002,85(3):642.
    14. Sheibani A, Tabrizchi M, Ghaziaskar H S. Determination of aflatoxins B1and B2using ion mobilityspectrometry. Talanta,2008,75(1):233–238.
    15. Ben R I, Arduini F, Arvinte A, et al. Development of a bio-electrochemical assay for AFB1detection inolive oil. Biosens Bioelectron,2009,24(7):1962–1968.
    16. Wang M, Mi C C, Zhang Y X, et al. Immunolabeling and NIR-Excited Fluorescent Imaging of HeLaCells by Using NaYF4: Yb, Er Upconversion Nanoparticles. ACS Nano,2009,3(12):1580–1586.
    17. Li D, Dong B, Bai X, et al. Influence of the TGA Modification on Upconversion Luminescence ofHexagonal-Phase NaYF3+4: Yb3+, ErNanoparticles. J Phys Chem C,2010,114(18):8219–8226.
    18. Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalizedmagnetite nanoparticles and hollow nanospheres. Chem–A Eur J,2006,12(24):6341–6347.
    19. Hun X, Zhang Z J. Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels influoroimmunoassay for IL-62007. Biosens Bioelectron,2007,22(11):2743–2748.
    20. Stalder K, St ber W. Haemolytic Activity of Suspensions of Different Silica Modifications and InertDusts. Nature,1965,207(999):874–875.
    21. Dong H F, Yan F, Ji H X, et al. Quantum-Dot-Functionalized Poly(styrene-co-acrylic acid) Microbeads:Step-Wise Self-Assembly, Characterization, and Applications for Sub-femtomolar ElectrochemicalDetection of DNA Hybridization. Adv Funct Mater,2010,20(7):1173–1179.
    22. Tang D P, Yu Y L, Niessner R, et al. Magnetic bead-based fluorescence immunoassay for aflatoxinB-1in food using biofunctionalized rhodamine B-doped silica nanoparticles. Analyst,2010,135(10):2661–2667.
    1. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281(5385):2013–2016.
    2. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016–2018.
    3. Lingerfelt B M, Mattoussi H, Goldman E R, et al. Preparation of quantum dot-biotin conjugates andtheir use in immunochromatography assays. Anal Chem,2003,75(16):4043–4049.
    4. Green M. Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed,2004,43(32):4129–4131.
    5. Diamente P R, Burke R D, van Veggel F. Bioconjugation of Ln(3+)-doped LaF3nanoparticles to avidin.Langmuir,2006,22(4):1782–1788.
    6. Meiser F, Cortez C, Caruso F. Biofunctionalization of fluorescent rare-earth-doped lanthanumphosphate colloidal nanoparticles. Angew Chem Int Edit,2004,43(44):5954–5957.
    7. Tapec R, Zhao X J J, Tan W H. Development of organic dye-doped silica nanoparticles for bioanalysisand biosensors. J Nanosci Nanotechnol,2002,2(3-4):405–409.
    8. Yang S T, Cao L, Luo P G, et al. Carbon Dots for Optical Imaging in Vivo. J Am Chem Soc,2009,131(32):11308–11309.
    9. Ray S C, Saha A, Jana N R, et al. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, andBioimagingApplication. J Phys Chem C,2009,113(43):18546–18551.
    10. Sun Y P, Zhou B, Lin Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J AmChem Soc,2006,128(24):7756–7757.
    11. Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection, Chem Commun,2006,(24):2557–2559.
    12. Kumar M, Zhang P. Highly sensitive and selective label-free optical detection of mercuric ions usingphoton upconverting nanoparticles. Biosens Bioelectron,2010,25(11):2431–2435.
    13. Chen Z, Chen H, Hu H, et al. Versatile Synthesis Strategy for Carboxylic Acid-functionalizedUpconverting Nanophosphors as Biological Labels. J Am Chem Soc,2008,130(10):3023–3029.
    14. Wong S S Y, Yip C C Y, Lau S K P, et al. Human enterovirus71and hand, foot and mouth disease.Epidemiol Infect,2010,138(8):1071–1089.
    15. Park S K, Park B, Ki M, et al. Transmission of Seasonal Outbreak of Childhood Enteroviral AsepticMeningitis and Hand-foot-mouth Disease. J Korean Med Sci,2010,25(5):677–683.
    16. Coemgenus. Hands, foot and mouth disease. Clin Med (London, England),2005,5(5):533–534.
    17. Rabenau H F, Richter M D, Hans W. Hand, foot and mouth disease: seroprevalence of Coxsackie A16and Enterovirus71in Germany. Med Microbiol Immun,2010,199(1):45–51.
    18. Zhang Y, Tan X J, Wang H Y. An outbreak of hand, foot, and mouth disease associated withsubgenotype C4of human enterovirus71in Shandong, China. J Clin Virol,2009,44(4):262–267.
    19. Ang LW, Koh B K W, Chan K P, et al. Epidemiology and Control of Hand, Foot and Mouth Disease inSingapore,2001-2007. AnnAcad Med Singap,2009,38(2):106–112.
    20. Iwai M, Masaki A, Hasegawa S, et al. Genetic Changes of Coxsackievirus A16and Enterovirus71Isolated from Hand, Foot, and Mouth Disease Patients in Toyama, Japan between1981and2007.Japan J Infect Dis,2009,6(24):254–259.
    21. Brown B A, Oberste M S, Alexander J PJr, et al. Molecular epidemiology and evolution of enterovirus71strains isolated from1970to1998. J Virol,1999,73(12):9969–9975.
    22. Chang L Y, Lin T Y, Huang Y C, et al. Comparison of enterovirus71and coxsackie-virus A16clinicalillnesses during the Taiwan enterovirus epidemic,1998. Pediatr Infect Dis J,1999,18(12):1092–1096.
    23. Lim K A, Benyesh-Melnick M. Typing of viruses by combinations of antiserum pools. Application totyping of enteroviruses (Coxsackie and ECHO). J Immun (Baltimore, Md.:1950),1960,84:309–317.
    24. Nix W A, Oberste M S, Pallansch M A. Sensitive, seminested PCR amplification of VP1sequences fordirect identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol,2006,44(8):2698–2704.
    25. Tsao K C, Chang P Y, Ning H C, et al. Use of molecular assay in diagnosis of hand, foot and mouthdisease caused by enterovirus71or coxsackievirus A16. J Virol Methods,2002,102(1-2):9–14.
    26. Chen L, Mou X Z, Zhang Q, et al. Detection of human enterovirus71and coxsackievirus A16inchildren with hand, foot and mouth disease in China. Mol Med Rep,2012,5(4):1001–1004.
    27. Zhong T Y, Chen Q, Hu Z. Detection of enterovirus RNA by fluorescent quantitative PCR in childrenwith hand-foot-mouth disease. Chinese J Contem Pediatr,2010,12(2):145–146.
    28. Stalder K, St ber W. Haemolytic Activity of Suspensions of Different Silica Modifications and InertDusts. Nature,1965,207(999):874–875.
    29. Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalizedmagnetite nanoparticles and hollow nanospheres. Chem–A Eur J,2006,12(24):6341–6347.
    30. Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.Chem Soc Rev,2009,38(4):976–989.
    31. Dong H F, Yan F, Ji H X, et al. Quantum-Dot-Functionalized Poly(styrene-co-acrylic acid) Microbeads:Step-Wise Self-Assembly, Characterization, and Applications for Sub-femtomolar ElectrochemicalDetection of DNA Hybridization. Adv Funct Mater,2010,20(7):1173–1179.
    1. Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transfer analysis:Beyond traditional donor-acceptor combinations. Angew Chem Int Ed,2006,45(28):45624588.
    2. Selvin P R. The renaissance of fluorescence resonance energy transfer. Nat Struct Mol Bio,2000,7(9):730734.
    3. Somogyi B, Lakos Z, Szarka A, et al. Protein flexibility as revealed by fluorescence resonance energytransfer: an extension of the method for systems with multiple labels. J Photoch Photobio B, Biology,2000,59(1-3):2632.
    4. Nampalli S, Khot M, Kumar S. Fluorescence resonance energy transfer terminators for DNAsequencing. Tetrahedron Lett,2000,41(46):88678871.
    5. Lilley D M, Wilson T J. Fluorescence resonance energy transfer as a structural tool for nucleic acids.Curr Opin Chem Biol.2000,4(5):507517.
    6. Nieminen J, Kuno A, Hirabayashi J, et al. Visualization of galectin-3oligomerization on the surface ofneutrophils and endothelial cells using fluorescence resonance energy transfer. J Biol Chem.2007,282(2):13741383.
    7. Nakayama H, Arakaki A, Maruyama K, et al. Single-nucleotide polymorphism analysis usingfluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate,and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng,2003,84(1):96102.
    8. Li H L, Luo Y L, Sun X P. Fluorescence resonance energy transfer dye-labeled probe forfluorescence-enhanced DNA detection: An effective strategy to greatly improve discrimination abilitytoward single-base mismatch. Biosens Bioelectron,2011,27(1):167171.
    9. Han Z X, Zhang X B, Zhuo L, et al. Efficient Fluorescence Resonance Energy Transfer-BasedRatiometric Fluorescent Cellular Imaging Probe for Zn2+Using a Rhodamine Spirolactam as a Trigger.Anal Chem,2010,82(8):31083113.
    10. Takashi A, Tomoko I, Hiroyuki O, et al. Fluorescence resonance energy transfer-based assay forDNA-binding protein tagged by green fluorescent protein. Bioscience Biotechnol Biochem,70(8):19211927.
    11. Ge S G, Lu J J, Yan M. Fluorescence resonance energy transfer sensor between quantum dot donorsand neutral red acceptors and its detection of BSA in micelles. Dyes and Pigments,2011,91(3):304308.
    12. Shi L F, Rosenzweig N, Rosenzweig Z. Luminescent quantum dots fluorescence resonance energytransfer-based probes for enzymatic activity and enzyme inhibitors. Anal Chem,2007,79(1):208214.
    13. Pons T, Medintz I L, Wang X, et al. Solution-phase single quantum dot fluorescence resonance energytransfer. J Am Chem Soc,2006,128(47):1532415331.
    14. Saleh S M, Mueller R, Mader H S, et al. Novel multicolor fluorescently labeled silica nanoparticles forinterface fluorescence resonance energy transfer to and from labeled avidin. Anal Bioanal Chem,2010,398(4):16151623.
    15. Morrison, L E. Time-resolved detection of energy transfer: theory and application to immunoassays.Anal Biochem,1988,174(1):101120.
    16. Wang L Y, Yan R X, Hao Z Y, et al. Fluorescence resonant energy transfer biosensor based onupconversion-luminescent nanoparticles. Angew Chem Int Ed,2005,44(37):60546057.
    17. Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Basedon Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4:Yb, ErUpconversion Fluorescent Nanoparticles and Gold Nanoparticles. Anal Chem,2009,81(21):8783–8789.
    18. Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol,1996,14(3):303–308.
    19. Fang X, Li J J, Perlette J. Molecular beacons: novel fluorescent probes. Anal Chem,2000,72(23):747A–753A.
    20. Chen W, Martinez G, Mulchandani A. Molecular beacons: a real-time polymerase chain reaction assayfor detecting Salmonella. Anal Biochem,2000,280(1):166–172.
    21. Lewin S R, Vesanen M, Kostrikis L, et al. Use of real-time PCR and molecular beacons to detect virusreplication in human immunodeficiency virus type1-infected individuals on prolonged effectiveantiretroviral therapy. J Virol,1999,73(7):6099–6103.
    22. Fortin N Y, Mulchandani A, Chen W. Use of real-time polymerase chain reaction and molecularbeacons for the detection of Escherichia coli O157:H7. Anal Biochem,2001,289(2):281–288.
    23. Tyagi S, Bratu D P, Kramer F R, et al. Multicolor molecular beacons for allele discrimination. NatureBiotechnol,1998,16(1):49–53.
    24. Piatek A S, Tyagi S, Pol A C. Molecular beacon sequence analysis for detecting drug resistance inMycobacterium tuberculosis. Nature Biotechnol,1998,16(4):359–363.
    25. Vet J A, Majithia A R, Marras S A, et al. Multiplex detection of four pathogenic retroviruses usingmolecular beacons. Proc Natl Acad Sci,1999,96(11):6394–6399.
    26. Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymaticcleavage of single-stranded DNA. Nucleic Acids Res,2000,28(11): E52.
    27. Marasas W F, Kellerman T S, Gelderblom W C, et al. Leukoencephalomalacia in a horse induced byfumonisin B1isolated from Fusarium moniliforme. The Onderstepoort J Vet,1988,55(4):197–203.
    28. Alberts J F, Gelderblom W C, Thiel P G, et al. Effects of temperature and incubation period onproduction of fumonisin B1by Fusarium moniliforme. Appl Environ Microb,1999,56(6):1729–1733.
    29. Chamberlain W J, Bacon C W, Norred W P, et al. Levels of fumonisin B1in corn naturallycontaminated with aflatoxins. Food Chem Toxicol,1993,31(12):995–998.
    30. Harrison L R, Colvin B M, Greene J T, et al. Pulmonary edema and hydrothorax in swine produced byfumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Invest,1990,2(3):217.
    31. Wilson T M, Ross P F, Rice L G, et al. Fumonisin B1levels associated with an epizootic of equineleukoencephalomalacia. J Vet Diagn Invest,1990,2(3):213–216.
    32. Gelderblom W C, Kriek N P, Marasas W F, et al. Toxicity and carcinogenicity of the Fusariummoniliforme metabolite, fumonisin B1, in rats. Carcinogenesis,1991,12(7):1247–1251.
    33. Chu F S, Li G Y. Simultaneous occurrence of fumonisin B1and other mycotoxins in moldy corncollected from the People's Republic of China in regions with high incidences of esophageal cancer.Appl Environ Microb,1994,60(3):847–852.
    34. Shephard G S, Thiel P G, Sydenham E W. Determination of fumonisin B1in plasma and urine byhigh-performance liquid chromatography. J Chromatogr,1992,574(2):299–304.
    35. Preis R A, Vargas E A. A method for determining fumonisin B1in corn using immunoaffinity columnclean-up and thin layer chromatography/densitometry. Food Addit Contam,2000,17(6):463–468.
    36. Paepens C, De Saeger S, Van Poucke C, et al. Development of a liquid chromatography/tandem massspectrometry method for the quantification of fumonisin B(1), B(2) and B(3) in cornflakes. RapidCommun Mass Sp,2005,19(14):2021–2029.
    37. McKeague M, Bradley C R, De Girolamo A, et al. Screening and Initial Binding Assessment ofFumonisin B-1Aptamers. Inter J Mol Sci,2010,11(12):4864–4881.
    38. Liu J, Sun Z K, Deng Y H, et al. Highly Water-Dispersible Biocompatible Magnetite Particles withLow Cytotoxicity Stabilized by Citrate Groups. Angew Chem Int Ed,2009,48(32):5875-5879.
    39. Cai M, Li F, Zhang Y, et al. One-Pot Polymerase Chain Reaction with Gold Nanoparticles for Rapidand Ultrasensitive DNA Detection. Nano Res,2010,3(8):557–563.
    40. Liu J W, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetricsensing of analytes. Nature Protoc,2006,1(1):246–252.
    41. Wang J L, Munir A, Zhou H S. Au NPs-aptamer conjugates as a powerful competitive reagent forultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta,2009,79(1):72–76.
    42. Li Z G, Zhang Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4nanocrystals withmulticolor upconversion fluorescence emission. Angew Chem Int Ed,2006,45(46):7732–7735.
    43. Cha J Y, Cui P, Lee J K. A simple method to synthesize multifunctional silica nanocomposites,NPs@SiO2, using polyvinylpyrrolidone (PVP) as a mediator. J Mater Chem,2010,20(26):5533–5537.
    44. Zhang T R, Lu R, Liu X L, et al. Photochromic polyoxotungstoeuropate K12[EuP5W30O110]/polyvinylpyrrolidone nanocomposite films. J Solid State Chem,2003,172(2):458–463.
    45. Manju S, Sreenivasan K. Synthesis and Characterization of a Cytotoxic CationicPolyvinylpyrrolidone-Curcumin Conjugate. Journal of Pharm Sci,2011,100(2):504–511.
    46. Xiao S J, Hu P P, Li Y F, et al. Aptamer-mediated turn-on fluorescence assay for prion protein basedon guanine quenched fluophor. Talanta,2009,79(5):1283–1286.
    47. Miyachi Y, Shimizu N, Ogino C, et al. Selection of a DNA aptamer that binds8-OHdG usingGMP-agarose. Bioorg Med Chem,2009,19(13):3619–3622.
    48. Guo Z J, Ren J T, Wang J H, et al. Single-walled carbon nanotubes based quenching of freeFAM-aptamer for selective determination of ochratoxin A. Talanta,2011,85(5):2517–2521.
    1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films.Science,2004,306(5696):666669.
    2. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions ingraphene. Nature,2005,438(7065):197200.
    3. Nilsson J, Neto A H G, Guinea F, et al. Electronic properties of graphene multilayers. Phys Rev Lett,2006,97(26):266801.
    4. Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys RevLett,2006,97(18):187401.
    5. Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene. Science,2007,315(5817):13791379.
    6. Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: Semiconductor with a gaptunable by the electric field effect. Phy Rev Lett,2007,99(21):216802.
    7. Ohno Y, Maehashi K, Matsumoto K. Label-Free Biosensors Based on Aptamer-Modified GrapheneField-Effect Transistors. J Am Chem Soc,2010,132(51):1801218013.
    8. Liu S, Tian J Q, Wang L, et al. Stable Aqueous Dispersion of Graphene Nanosheets: NoncovalentFunctionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with AgNanoparticles for Enzymeless Hydrogen Peroxide Detection. Macromolecules,2010,43(23):1007810083.
    9. Brownson D A C, Banks C E. Graphene electrochemistry: an overview of potential applications.Analyst,135(11):27682778.
    10. Chen X P, Ye H Z, Wang W Z, et al. Electrochemiluminescence Biosensor for Glucose Based onGraphene/Nafion/GOD Film Modified Glassy Carbon Electrode. Electroanalysis,2010,22(20):23472352.
    11. Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing.Trac-Trend Anal Chem,2010,29(9):954965.
    12. Terrones M, Botello-Mendez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons:Morphology, properties, synthesis, defects and applications. Nano Today,2010,5(4):351372.
    13. Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper.Nature,2007,448(7152):457460.
    14. Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemicalreduction of exfoliated graphite oxide. Carbon,2007,45(7):15581565.
    15. Gomez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individualchemically reduced graphene oxide sheets. Nano Lett,2007,7(11):34993503.
    16. Sun X M, Liu Z, Welsher K, et al. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery.Nano Res,2008,1(3):203212.
    17. Yang X Y, Zhang X Y, Ma Y F, et al. Superparamagnetic graphene oxide-Fe3O4nanoparticles hybridfor controlled targeted drug carriers. J Mater Chem,2009,19(18):27102714.
    18. Zhou M, Zhai Y M, Dong S J. Electrochemical Sensing and Biosensing Platform Based on ChemicallyReduced Graphene Oxide. Anal Chem,2009,81(14):56035613.
    19. Xu C, Wang X. Fabrication of Flexible Metal-Nanoparticte Film Using Graphene Oxide Sheets asSubstrates. Small,2009,5(19):22122217.
    20. Wang Y, Lu J, Tang L H, et al. Graphene Oxide Amplified Electrogenerated Chemiluminescence ofQuantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. AnalChem,2009,81(23):97109715.
    21. Swathi R S, Sebastian K L. Resonance energy transfer from a dye molecule to graphene. J Chem Phys,2008,129(5):054703.
    22. Chang H X, Tang L H, Wang Ying, et al. Graphene Fluorescence Resonance Energy TransferAptasensor for the Thrombin Detection. Anal Chem,2010,82(6):23412346.
    23. Dong H F, Gao W C, Yan F, et al. Fluorescence Resonance Energy Transfer between Quantum Dotsand Graphene Oxide for Sensing Biomolecules. Anal Chem,2010,82(13):55115517.
    24. Liu C H, Wang Z, Jia H X, et al. Efficient fluorescence resonance energy transfer betweenupconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. ChemCommun,2011,47(16):46614663.
    25. Zhang C L, Yuan Y X, Zhang S M, et al. Biosensing Platform Based on Fluorescence ResonanceEnergy Transfer from Upconverting Nanocrystals to Graphene Oxide. Angew Chem Int Ed,2011,50(30):68516854.
    26. Qiu H L, Chen G Y, Sun L, et al. Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis ofmulticolor lanthanide doped BaYF5upconversion nanocrystals. J Mater Chem,2011,21(43):1720217208.
    27. Hummers W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc,1958,80:1339.
    28. Wang Y, Li Z H, Hu D H, et al. Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probingin Living Cells. J Am Chem Soc,2010,132(27):92749276.
    29. Niu N, Yang P P, Liu Y C, et al. Controllable synthesis and up-conversion properties of tetragonalBaYF5: Yb/Ln (Ln=Er, Tm, and Ho) nanocrystals. Journal of Colloid and Interface Science,2011,362(2):389396.
    30. Sun J Y, Xian J B, Zhang X Y, et al. Size and shape controllable synthesis of oil-dispersible BaYF5:Yb3+/Er3+upconversion fluorescent nanocrystals. Journal of Alloy Comp,2011,509(5):23482354.
    1. Koksch M, Rothe G, Kiefel V, et al. Fluorescence resonance energy transfer as a new method for theepitope-specific characterization of anti-platelet antibodies. J Immunol Methods,1995,187(1):53–67.
    2. Sohn H W, Tolar P, Jin T, et al. Fluorescence resonance energy transfer in living cells revealsdynamicmembrane changes in the initiation of B cell signaling. Proc Natl Acad Sci,2006,103(21):8143–8148.
    3. Clegg R M, Murchie A I, Zechel A, et al. Fluorescence resonance energy transfer analysis of thestructure of the four-way DNA junction. Biochemistry,1992,31(20):4846–4856.
    4. Parkhurst K M, Parkhurst L J. Kinetic studies by fluorescence resonance energy transfer employing adouble-labeled oligonucleotide: hybridization to the oligonucleotide complement and tosingle-stranded DNA. Biochemistry,1995,34(1):285–292.
    5. Chen X L, Estevez M C, Zhu Z, et al. Using Aptamer-Conjugated Fluorescence Resonance EnergyTransfer Nanoparticles for Multiplexed Cancer Cell Monitoring. Anal Chem,2009,81(16):7009–7014.
    6. Clegg R M. Fluorescence resonance energy transfer. Curr Opin biotechnol,1995,6(1):103–110.
    7. Strasburger C J, Amir-Zaltsman Y, Kohen F. The avidin-biotin reaction as a universal amplificationsystem in immunoassays. Progress in Clinical and Biological Research,1988,285:79–100.
    8. Lowry O H, Passonneau J V, Schulz D W, et al. The measurement of pyridine nucleotides byenzymatic cycling. J Biol Chem,1966,236:2746–2755.
    9. Kim B B, Pisarev V V, Egorov A M. A comparative study of peroxidases from horse radish andArthromyces ramosus as labels in luminol-mediated chemiluminescent assays. Anal Biochem,1991,199(1):1–6.
    10. Raghunath P, Karunasagar I, Karunasagar I. Evaluation of an alkaline phosphatase-labeledoligonucleotide probe for detection and enumeration of vibrio spp from shrimp hatchery environment.Mol Cellr Probe,2007,21(4):312–315.
    11. Lai G S, Yan F, Ju H X. Dual Signal Amplification of Glucose Oxidase-FunctionalizedNanocomposites as a Trace Label for Ultrasensitive Simultaneous Multiplexed ElectrochemicalDetection of Tumor Markers. Anal Chem,2009,81(23):9730–9736.
    12. Haugg M, Schein C H. The DNA sequences of the human and hamster secretory ribonucleasesdetermined with the polymerase chain reaction (PCR). Nucleic Acids Res,1992,20(3):612.
    13. Zhou Y H, Zhang X P, Ebright R H. Random mutagenesis of gene-sized DNA molecules by use ofPCR with Taq DNA polymerase. Nucleic Acids Res,1991,19(21):6052.
    14. Xu W, Xie X J, Li D W, et al. Ultrasensitive Colorimetric DNA Detection using a Combination ofRolling Circle Amplification and Nicking Endonuclease-Assisted Nanoparticle Amplification(NEANA). Small,2012,8(12):1846–1850.
    15. Guo Y S, Jia X P, Zhang S S. DNA cycle amplification device on magnetic microbeads fordetermination of thrombin based on graphene oxide enhancing signal-on electrochemiluminescence.Chem Commun,2011,47(2):725–727.
    16. Bi S, Zhang J L, Zhang, S S. Ultrasensitive and selective DNA detection based on nickingendonuclease assisted signal amplification and its application in cancer cell detection. Cheml Commun,2010,46(30):5509–5511.
    17. Jie G F, Wang L, Yuan J X, et al. Versatile Electrochemiluminescence Assays for Cancer Cells Basedon Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters. Anal Chem,2011,83(10):3873–3880
    18. Tong P, Zhang L, Xu J J, et al. Simply amplified electrochemical aptasensor of Ochratoxin A based onexonuclease-catalyzed target recycling. Biosenrs Bioelectron,2011,29(1):97–101.
    19. Yang C Y J, Cui L, Huang J H, et al. Linear molecular beacons for highly sensitive bioanalysis basedon cyclic Exo III enzymatic amplification. Biosens Bioelectron,2011,27(1):119–124.
    20. Miao P, Ning L M, Li X X, et al. An electrochemical alkaline phosphatase biosensor fabricated withtwo DNA probes coupled with lambda exonuclease. Biosens Bioelectron,2011,27(1):178–182.
    21. Wang F, Elbaz J, Orbach R, et al. Amplified Analysis of DNA by the Autonomous Assembly ofPolymers Consisting of DNAzyme Wires. J Am Chem Soc,2011,133(43):17149–17151.
    22. Wang F, Elbaz J, Teller C, et al. Amplified Detection of DNA through an Autocatalytic and CatabolicDNAzyme-Mediated Process. Angew Chem Int Ed,2011,50(1):295–299.
    23. Balaban N, Rasooly A. Staphylococcal enterotoxins. Inter J Food Microbiol,2000,61(1):1–10.
    24. Lee A C, Robbins R N, Reiser R F, et al. Isolation of specific and common antibodies tostaphylococcal enterotoxins B, C1, and C2. Infect Immun,1980,27(2):431–434.
    25. Hall H E, Angelotti R, Lewis K H. Detection of the Staphylococcal Enterotoxins in Food. Health LabSci,1965,2:179–191.
    26. Archer D L, Young F E. Contemporary issues: diseases with a food vector. Clin Microbiol Rev,1988,1(4):377–398.
    27. Rosenbloom M, Leikin J B, Vogel S N, et al. Biological and chemical agents: a brief synopsis. Am JTher,2002,9(1):5–14.
    28. Hahn I F, Pickenhahn P, Lenz W, et al. An avidin-biotin ELISA for the detection of staphylococcalenterotoxins A and B. J Immunol Methods,1986,92(1):25–29.
    29. Miller B A, Reiser R F, Bergdoll M S. Detection of staphylococcal enterotoxins A, B, C, D, and E infoods by radioimnunoassay, using staphyloccal cells containing protein A as immunoadsorbent. ApplEnviron Microb,1978,6(3):421–426.
    30. Chatrathi M P, Wang J, Collins G E. Sandwich electrochemical immunoassay for the detection ofStaphylococcal enterotoxin B based on immobilized thiolated antibodies. Biosens Bioelectron,2007,22(12):2932–2938.
    31. Chen L L, Zhang Z J, Zhang X M, et al. A novel chemiluminescence immunoassay of staphylococcalenterotoxin B using HRP-functionalised mesoporous silica nanoparticle as label. Food Chem,2012,135(1):208–212.
    32. Haes A J, Terray A, Collins G E. Bead-assisted displacement immunoassay for staphylococcalenterotoxin B on a microchip. Anal Chem,2006,78(24):8412–8420.
    33. Rasooly A. Surface plasmon resonance analysis of staphylococcal enterotoxin B in food. J FoodProtect,2001,64(1):37–43.
    34. Vinayaka A C, Thakur M S. An immunoreactor-based competitive fluoroimmunoassay for monitoringstaphylococcal enterotoxin B using bioconjugated quantum dots. Analyst,2012,137(18):4343–4348.
    35. Ruan C M, Zeng K F, Varghese O K, et al. A staphylococcal enterotoxin B magnetoelasticimmunosensor. Biosens Bioelectron,2004,20(3):585–591.
    36. Natesan M, Cooper M A, Tran J P, et al. Quantitative Detection of Staphylococcal Enterotoxin B byResonant Acoustic Profiling. Anal Chem,2009,81(10):3896–3902.
    37. DeGrasse J A. A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureusEnterotoxin B. Plos one,2012,7(3): e33410.
    38. Kushner S R, Nagaishi H, Templin A, et al. Genetic recombination in Escherichia coli: the role ofexonuclease I. Proc Natl Acad Sci,1971,68(4):824–827.
    39. Tian G, Gu Z J, Zhou L J, et al. Mn2+Dopant-Controlled Synthesis of NaYF4: Yb/Er UpconversionNanoparticles for in vivo Imaging and Drug Delivery. Adv Mater,2012,24(9):1226–1231.
    40. Liu C H, Wang H, Li X, et al. Monodisperse, size-tunable and highly efficient beta-NaYF4: Yb, Er(Tm)up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J MaterChemy,2009,19(21):3546–3553.
    41. Wang M, Mi C C, Wang W X, et al. Immunolabeling and NIR-Excited Fluorescent Imaging of HeLaCells by Using NaYF4:Yb,Er Upconversion Nanoparticles. ACS Nano,2009,3(6):1580–1586.
    42. Homola J, Dostalek J, Chen S F, et al. Spectral surface plasmon resonance biosensor for detection ofstaphylococcal enterotoxin B in milk. Inter J Food Microbiol,2002,75(1-2):61–69.
    43. Yi G S, Chow G M. Colloidal LaF3: Yb, Er, LaF3: Yb, Ho and LaF3: Yb, Tm nanocrystals withupconversion fluorescence. J Mater Chem,2005,15(41):4460–4464.
    44. Wang X S, Dykstra T E, Salvador M R, et al. Surface passivation of luminescent colloidal quantumdots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. J Am Chem Soc,2004,126(25):7784–7785.
    45. Chen Z G, Chen H L, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalizedupconverting nanophosphors as biological labels. J AmChem Soc,2008,130(10):3023–3029.
    46. Yang M H, Bruck H A, Kostov Y D, et al. Biological Semiconductor Based on Electrical Percolation,Anal Chem,2010,82(9):3567–3572.
    47. Rong-Hwa S, Shiao-Shek T, Der-Jiang C, et al. Gold nanoparticle-based lateral flow assay fordetection of staphylococcal enterotoxin B. Food Chem,2010,118(2):462–466.
    48. Sospedra I, Marin R, Manes J, et al. Rapid whole protein quantification of staphylococcal enterotoxinB by liquid chromatography. Food Chem,2012,133(1):163–166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700