酮色林抗内毒素休克的iNOS机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     感染性休克是由微生物及其代谢产物在机体内引起微循环障碍,导致细胞与器官代谢和功能损害的全身反应性综合征。当机体遭受微生物毒素侵入时,机体会分泌大量的炎症介质,如肿瘤坏死因子-α (TNF-α)、白介素-1(IL-1)、白介素-6(IL-6)以及一氧化氮(Nitric oxide, NO)等,导致机体血液循环遭到破坏,产生低血压,激活凝血途径等,最后致使器官损害甚至衰竭。目前,针对感染性休克的治疗方法有很多,包括积极治疗原发病,补充血容量,给予血管活性物质以及抗生素,拮抗细胞因子防治细胞损伤,甚至血液透析以保护重要器官功能防治衰竭等。尽管其病理过程以及其治疗措施已经取得了很大的进展,但是未能有效的应用于临床,如细胞因子拮抗剂或单克隆抗体在动物实验都能取得一定的效果,但其临床试验结果却令人失望;以及其高昂的治疗费用,愈后病人的生活质量等问题的存在,致使感染性休克成为非心血管重症监护病房的主要死因,死亡率高达40%-75%,并且每年都不断上升。因此,寻找新的行之有效的治疗方法以及其具体的作用机制就变得非常重要。
     酮色林(Ketanserin),作为一种5-羟色胺2A (5-hydroxytryptamine2A,5-HT2A)受体拮抗剂,大剂量时,对α1受体有阻断作用。因其具有良好的降压作用,在临床上一直被用来治疗高血压。近几年,研究者发现了5-HT2A在炎症反应和免疫反应中的作用,已在动物模型上研究了其拮抗剂对糖尿病肾病、关节炎等治疗作用。本课题组在教研室前期的研究基础上,已经证实了酮色林对内毒素休克有着良好的治疗作用,但是其具体的分子机制还未见报道。
     一氧化氮具有许多生物活性,一度成为研究者关注的焦点,许多研究已经证实了NO在感染性休克中的病理意义,是导致感染性休克病人低血压的关键分子。体内NO合成的基本底物是L-精氨酸(L-arginine)与O2,在一氧化氮合酶(nitric oxide synthase,NOS)的催化作用下生成NO与L-瓜氨酸(L-citrulline)。NOS又三种同工酶:主要存在于内皮细胞的eNOS (endothelial nitric oxide synthase),存在于神经细胞的nNOS (neuronalnitric oxide synthase),以及存在于巨噬细胞、角质细胞中等的可诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)。eNOS和nNOS统称为cNOS (constitutive nitricoxide synthase)。在感染性休克中,研究发现细菌毒素可诱导iNOS表达,进而产生千倍于生理基础的NO。这些过量的NO可激活平滑肌细胞内的可溶性鸟苷酸(sGC),持续产生大量的cGMP,舒张血管平滑肌,增加细胞通透性,降低血管对收缩因子的反应性,使血压更加降低,也可抑制心肌收缩力,加重休克。所以,降低NO含量应可成为治疗感染性休克的一种有效的方法。
     关于感染性休克病理过程的研究非常多也很深入,其中涉及其中的有核因子kappa B (nuclear factor kappa B, NF-κB)和丝裂原活化蛋白激酶(mitogen-activatedprotein kinases, MAPKs)等。
     因此,我们将酮色林内毒素休克的分子机制作为研究重点,提出假设:酮色林通过抑制iNOS表达,达到治疗内毒素休克的目的,其中涉及的信号转导分子有NF-κB和MAPKs。
     研究方法:
     本研究首先以内毒素诱导的休克小鼠为模型,利用整体动物实验方法研究酮色林对内毒素诱导的iNOS蛋白表达的作用,使用Western blotting和免疫组织化学的方法对iNOS表达进行检测;以及用Griess reagent法检测体内NO水平的变化。
     其次,利用小鼠巨噬细胞系(RAW264.7细胞),检测酮色林对内毒素刺激诱导其iNOS蛋白质和mRNA水平的影响,分别使用Western blotting法和RT-PCR法;并用ELISA法检测酮色林对其炎症因子(TNF-α、IL-6)水平的影响。
     最后,我们在RAW264.7细胞上研究酮色林抑制内毒素诱导iNOS表达的具体分子机制,观察5-HT2A、NF-κB以及MAPKs在整个过程发挥的作用,分别使用工具药研究方法和分子生物学检测方法。
     结果:
     1.以内毒素诱导的休克小鼠为模型,分别给予不同剂量(3mg/kg、10mg/kg)酮色林,检测其对iNOS表达以及NO水平的影响。结果显示酮色林在不同剂量时,可不同程度iNOS表达的抑制,降低NO水平,其中10mg/kg剂量组作用更为明显。
     2.在RAW264.7细胞上,给予内毒素(100ng/ml)刺激,共同孵育酮色林(10μM),不同时间(0-12h)检测其对iNOS蛋白表的作用,实验结果显示在内毒素诱导iNOS表达的初期可以明显抑制其表达,其中8小时作用最为明显;进一步,我们观察了不同剂量(0-10μM)酮色林对iNOS蛋白质和mRNA水平的影响,实验结果显示酮色林以剂量依赖性的抑制iNOS的表达。
     3.在RAW264.7细胞上,直接观察酮色林对内毒素刺激产生NO水平的作用。不同剂量(1μM、10μM)酮色林与内毒素(100ng/ml)共同作用8小时,采用流式细胞仪检测NO探针荧光的方法,发现酮色林可不同程度降低NO产生水平。
     4.在RAW264.7细胞上,发现酮色林可剂量依赖性和时间了依赖性地降低内毒素刺激后炎症因子分泌的水平。
     5.在RAW264.7细胞上,发现酮色林抑制内毒素刺激iNOS表达是通过拮抗5-HT2A受体实现的。分别使用5-HT2A受体和α1受体特异性拮抗剂,观察其对内毒素刺激iNOS表达的作用,实验结果显示,利坦色林对iNOS有抑制作用,但是哌唑嗪无抑制作用。
     6.在RAW264.7细胞上,使用内毒素刺激,我们检测了酮色林对MAPKs磷酸化程度的影响,实验结果显示酮色林可以抑制ERK1/2的磷酸化程度,对p38、JNK无明显进一步使用ERK1/2抑制剂(PD98059),发现酮色林抑制iNOS表达的作用取消了。因此,酮色林通过抑制ERK1/2的磷酸化抑制的iNOS表达水平。
     7.在RAW264.7细胞上,使用内毒素刺激,我们还检测了酮色林对NF-κB的影响,不同剂量(10μM、100μM)酮色林都对NF-κB活性有抑制作用。
     结论:酮色林通过拮抗5-HT2A受体,抑制ERK1/2的磷酸化,从未抑制iNOS表达,降低体内NO水平,达到治疗内毒素休克的目的。
Backgrounds and Objectives: Sepsis is a systemic inflammatory response to thepresence of infection, mediated via the production of many cytokines, including tumournecrosis factor α (TNF-α), interleukin (IL)-6, and IL-1, as well as nitric oxide (NO) whichcauses changes in the circulation, increases endothelial permeability and actives thecoagulation pathways. These mechanisms play roles during septic shock, but on a systemicscale, leading to diffuse endothelial disruptior vascular permeability, vasodilation, andthromnosis of end-organ capillaries. Endothelial damage itself can further activateinflammatory and coagulation cascades, creating a positive feedback loop, and leading tofurther endothelial and end-organ damage. Treatment of septic shock is based on support oforgan perfusion with fluids, administering vasoactive agents and antibiotics. Although, thepathophysiology of septic shock and the process of inflammation are understand moredeeply, the mortality rates are16%with sepsis,20%with severe sepsis, and46%withseptic shock. Therefore, it is important to find new strategies for septic shock treatment andaccurate mechanism.
     Ketanserin, an antihypertensive drug with a central sympathoinhitory action, is aselective5-HT2Areceptor antagonist with additional α1-adrenoceptor-blocking prooerties.Studies have demonstrated that ketanserin effectively lowers blood pressure (BP),decreases blood pressure variability (BPV) and enhances BRS in SHR. However, clinicalapplication of ketanserin was not limited to anti-hypertension. Research demonstrated thatintracoronary administration of ketanserin augments coronary collateral flow and decreasesmyocardial ischemia during balloon angioplasty. This could be of clinical significance inthe management of acute ischemic syndromes. Another clinical research showed thattreated with2%ketanserin ointment for8weeks, observed a significant decrease inrelative wound area compared with the placebo group in chronic leg ulcers patients. Theseresults indicate that ketanserin is a valuable therapy for difficult-to-treat leg ulcers. Thiseffect of ketanserin is through blocked of5-HT2Areceptor and improved microcirculation.Our previous study demonstrated that ketanserin could protect the organ damage in hypertension by restoring arterial baroreflex function. Furthermore, we had demonstratedthat ketanserin has a beneficial effect in septic shock through restoration of baroreflexfunction.
     Nitric oxide (NO) is one of many vasoactive substances released, from a variety ofcells, under conditions of endotoxaemia and sepsis. Under physiological conditions it isproduced by two constitutive calcium-dependent enzymes (nitric oxide synthase; NOS) inneurons (nNOS) and endothelial cells (eNOS) and has functions ranging fromneurotransmission and vasodilatation to inhibition of platelet adhesion and aggregation.Following bacterial infection, especially with Gram-negative organisms, the formation ofNO from L-arginine is enhanced due to the induction of a NOS enzyme (iNOS) in cardiacmyocytes and vascular smooth muscle cells. Studies ascertained that the excess NO formedby iNOS resulted in the pathophysiology of sepsis shock, including haemorrhage,vasodilation, intravascular coagulation, and hypotension.
     When infection occurs, many signaling molecules are activated, such as nuclearfactor-κB (NF-κB), cyclic AMP responsive element-binding protein (CREB) andmitogen-activated protein kinases (MAPKs) family, which are classified into at least threecomponents: extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK),and p38MAPK. Recaent studies have implicated that NF-κB and MAPKs induce therelease of immune-related cytotoxic factors such as iNOS, COX-2, and proinflammatorycytokines.
     Considering the critical role of iNOS in the sepsis shock, we hypothesized thatketanserin cures the sepsis shock via inhibiting the expression of iNOS. Furthermore, weexplained the molecular mechanism.
     Methods: The study was based on the model of endotoxin-induced shock mice andRAW264.7stimulated by LPS. Kunming mice were injected with LPS (30mg/kg, i.p.) toinduce septic shock. Ketanserin was administered (3mg/kg,10mg/kg, i.p.) immediatelyafter injuected with LPS for12hours. The expression of iNOS was detected by Westernblot and immunohistochemistry. The level of NO was measured by Griess reagent. RAW264.7cells were pre-treated with indicated ketanserin for10minutes, then stimulatedwith LPS (100ng/ml) for indicated time. Then, the expression of iNOS protein andMAPKs were detected using Western blot. The level of iNOS mRNA was measured byreal-time PCR. The cells were treated with different dosage of ritanserin or prazosin for10minutes and stimulated with LPS (100ng/ml) for8hours in order to measure the role onthe expression of iNOS. Moreover, the activity of NF-κB was measured using EMSA.
     Results:
     1. Kunming mice were injected with LPS (30mg/kg, i.p.) to induce septic shock,then injected ketanserin (3mg/kg,10mg/kg, i.p.) immediately after injected withLPS for12hours. Results showed that ketanserin could both inhibited theexpression of iNOS protein and decreased the level of NO, especially the dosge of10mg/kg.
     2. RAW264.7cells were pre-treated with ketanserin (10μM) for10min andstimulated with LPS (100ng/ml) for indicated time (0-12h).The expression ofiNOS was inhibited at the early time period of the iNOS induced, especially at8hours after stimulated with LPS. Furthermore, RAW264.7cells were pre-treatedwith ketanserin (0.1-10μM) and stimulated with LPS (100ng/ml) for8hours.Results show that ketanserin could inhibit the expression of iNOS and the level ofNO dose-inpendently
     3. RAW264.7cells were pre-treated with ketanserin (1μM,10μM) for10min andstimulated with LPS (100ng/ml) for5hours. The level of iNOS mRNA wasdecreased by ketanserin significantly.
     4. RAW264.7cells were pre-treated with ketanserin (0.1-10μM) for10minutes andstimulated with LPS (100ng/ml) for indicated time. The level TNF-α and IL-6were significantly decreased by ketanserin.
     5. RAW264.7cells were pre-incubated with ritanserin (0-10μM) or prazosin(0-1μM) for10minutes, then stimulated with LPS (100ng/ml) for8hours. Theexpression of iNOS was examined by western blotting. Ritanserin, a specific antagonist of5-HT2A receptor, could significantly inhibit the expression of iNOSin RAW264.7cells stimulated with LPS. However, prazosin which is a specificantagonist of α1receptor, failed to inhibit the expression of iNOS.
     6. RAW264.7cells were pre-treated with ketanserin (10μM) for10min andstimulated with LPS (100ng/ml) for indicated time (0-2hours). The effect ofketanserin on the phosphorylation of MAPKs was detected by Western blot. Theresults showed ketanserin could inhibit the phosphorylation of ERK1/2, while hadno effect on that of p38and JNK. Moreover, RAW264.7cells were pre-treatedwith ketanserin (10μM) or PD98059(40μM) for10min and stimulated withLPS (100ng/ml) for8h. The effect of ketanserin on iNOS was canceled.
     7. RAW264.7cells were pre-treated with ketanserin (10μM,100μM) for10minutes and stimulated with LPS (100ng/ml) for8hours. Result showed that theactivity of NF-κB was inhibited by ketanserin.
     Conclusion: Ketanserin could bind with5-HT2Areceptor and inhibit iNOS pathwaythrough ERK1/2signaling pathway.
引文
[1] Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC,Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ,Marshall J,Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL,Vincent JL; International Surviving Sepsis Campaign Guidelines Committee; AmericanAssociation of Critical-Care Nurses; American College of Chest Physicians; American College ofEmergency Physicians; Canadian Critical Care Society; European Society of ClinicalMicrobiology and Infectious Diseases; European Society of Intensive Care Medicine; EuropeanRespiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine;Japanese Society of Intensive Care Medicine;Society of Critical Care Medicine; Society ofHospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive andCritical Care Medicine. Surviving Sepsis Campaign: international guidelines for management ofsevere sepsis and septic shock:2008. Crit Care Med2008;36(1):296-327.
    [2] Matot I, Sprung CL: Definition of sepsis. Intensive Care Med2001;27Suppl1:S3-9.
    [3] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United Statesfrom1979through2000. N Engl J Med2003;348(16):1546-54.
    [4] Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med2000;26Suppl1:S64-74.
    [5] Soares M, Welton N, Harrison D, Peura P, Hari M, Harvey S, Madan J, Ades A, Palmer S,Rowan K. An evaluation of the feasibility, cost and value of information of a multicentrerandomized controlled trial of intravenous immunoglobulin for sepsis (severe sepsis and septicshock): mincorporating a systematic review, meta-analysis and value of information analysis.Health Technol Assess2012;16(7):1-186.
    [6] Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK,Poelstra K. Removal of phosphate from lipid A as a strategy to detoxify. Shock2002;18(6):561-6.
    [7] Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med2003;348(2):138-50.
    [8] Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functionaldisability among survivors of severe sepsis. JAMA2010;304(16):1787-94.
    [9] Paakkari I, Lindsberg P. Nitric oxide in the central nervous system. Ann Med1995;27(3):369-77.
    [10] Papapetropoulos A, Rudic RD, Sessa WC. Molecular control of nitric oxide synthases in thecardiovascular system. Cardiovasc Res1999;43(3):509-20.
    [11] F rstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F.Isoforms of nitric oxide synthase: Characterization and purification from different cell types.Biochem Pharmacol1991;42(10):1849-57.
    [12] Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu RevPhysiol1995;57:707-36.
    [13] Szabó, C. Alterations in nitric oxide production in various forms of circulatory shock.New Horiz1995;3(1):2-32.
    [14] Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB1992;6(12):3051-64.
    [15] Nathan, C., Xie, Q. W. Nitric oxide synthases: roles, tolls and controls. Cell1994;78(6):915-8.
    [16] Evans T, Carpenter A, Kinderman H, Cohen J. Evidence of increased nitric oxide production inpatients with the sepsis syndrome. Circ Shock1993;41:77-81.
    [17] Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL Peitzman AB. Nitrogenoxide levels in patients after trauma and during sepsis. Ann Surg1991;214(5):621-6.
    [18] Gomez-Jimenez J, Salgado A, Mourelle M, Martin MC, Segura RM Peracaula R, Moncada S.L-Arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med1995;23(2):253-8.
    [19] Liu SF, Barnes PJ, Evans TW. Time course and cellular localization oflipopolysaccharide-induced inducible nitric oxide synthase messenger RNA expression in the ratin vivo. Crit Care Med1997;25(3):512-8.
    [20] Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol1995;57:737-69.
    [21] Li L, Crockett E, Wang DH, Galligan JJ, Fink GD, Chen AF. Gene transfer of endothelial NOsynthase and manganese superoxide dismutase on arterialvascular cell adhesion molecule-1expression and superoxide production in deoxycorticosteroneacetate-salt hypertension.Arterioscler Thromb Vasc Biol2002;22(2):249-55.
    [22] Stefanovic-Racic M, Stadler J, Evans CH. Nitric oxide and arthritis. Arthritis Rheum1993;36(8):1036-44.
    [23] Connor JR, Manning PT, Settle SL, Moore WM, Jerome GM, Webber RK, Tjoeng FS, CurrieMG. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxidesynthase. Eur J Pharmacol1995;273(1-2):15-24.
    [24] Tousoulis D, Briasoulis A, Papageorgiou N, Tsioufis C, Tsiamis E, Toutouzas K, Stefanadis C.Oxidative stress and endothelial function: therapeutic interventions. Recent Pat Cardiovasc DrugDiscov2011;6(2):103-14.
    [25] Xu J, Zou MH. Molecular insights amd therapeutic targets for diabetic dysfunction. Circulation2009;120(13):1266-86.
    [26] Hollenberg SM, Broussard M, Osman J, Parrillo JE. Increased microvascular reactivity andimproved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res2000;86(7):774-8.
    [27] MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, XieQW, Sokol K, Hutchinson N. Altered responses to bacterial infection and endotoxic shock in micelacking inducible nitric oxide synthase. Cell1995,81(4):641-50.
    [28] Thiemermann C. Nitric oxide and septic shock. Gen Pharmacol1997;29(2):159-66.
    [29] Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee KT.Inhibition of LPS-induced NO and PGE2production by asiatic acid via NF-kappa B inactivationin RAW264.7macrophages: possible involvement of the IKK and MAPK pathways. IntImmunopharmacol2008;8(3):431-41.
    [30] Barakat W, Herrmann O, Baumann B, Schwaninger M. NF-kappaB induces PGE2-synthesizingenzymes in neurons. Naunyn Schmiedebergs Arch Pharmacol2009;380(2):153-60.
    [31] Wong F, Bernardi M, Balk R, Christman B, Moreau R, Garcia-Tsao G, Patch D, Soriano G, HoefsJ, Navasa M; International Ascites Club. Sepsis in cirrhosis: report on the7th meeting of theInternational International Ascites Club. Gut2005;54(5):718-25.
    [32] Ito T, Ikeda U, Shimpo M, Yamamoto K, Shimada K. Serotonin increases interleukin-6synthesis in human vascular smooth muscle cells. Circulation2000;102(20):2522-7.
    [33] Wei H, Chen Y, Hong Y. The contribution of peripheral5-hydroxytryptamine2A receptor tocarrageenan-evoked hyperalgesia, inflammation and spinal Fos protein expression in the rat.Neuroscience2005;132(4):1073-82.
    [34] Huang J, Fan Y, Jia Y, Hong Y. Antagonism of5-HT(2A) receptors inhibits the expression ofpronociceptive mediator and enhances endogenous opioid mechanism in carrageenan-inducedinflammation in rats. Eur J Pharmacol2011;654(1):33-41.
    [35] Huang J, Cai Q, Chen Y, Hong Y. Treatment with ketanserin produces opioid-mediatedhypoalgesia in the late phase of carrageenan-induced inflammatory hyperalgesia in rats. BrainRes2009;1303:39-47.
    [36] Baek YH, Choi DY, Yang HI, Park DS. Analgesic effect of electroacupuncture on inflammatorypain in the rat model of collagen-inducedarthritis: mediation by cholinergic and serotonergicreceptors. Brain Res2005;1057(1-2):181-5.
    [37] Nishiyama T. Effects of a5-HT2A receptor antagonist, sarpogrelate on thermal or inflammatorypain. Eur J Pharmacol2005;516(1):18-22.
    [38] Kobayashi S, Satoh M, Namikoshi T, Haruna Y, Fujimoto S, Arakawa S, Komai N, Tomita N, SasakiT, Kashihara N. Blockade of serotonin2A receptor improves glomerular endothelial function in ratswithstreptozotocin-induced diabetic nephropathy. Clin Exp Nephrol2008;12(2):119-25.
    [39] Hong Y, Ji H, Wei H. Topical ketanserin attenuates hyperalgesia and inflammation in arthritis in rats.Pain2006;124(1-2):27-33.
    [40] Timmons S, Huzoor-Akbar, Grabarek J, Kloczewiak M, Hawiger J Mechanism of human plateletactivation by endotoxic glycolipid-bearing mutant Re595of Salmonella minnesota. Blood1986;68(5):1015-23.
    [41] Sternberg EM, Trial J, Parker CW. Effect of serotonin on murine macrophages: suppression of Iaexpression by serotonin and its reversal by5-HT2serotonergic receptor antagonists. J Immunol1986;137(1):276-82.
    [42] Clo z-Tayarani I, Petit-Bertron AF, Venters HD, Cavaillon JM. Differential effect of serotonin oncytokine production in lipopolysaccharide-stimulated humanperipheral blood mononuclear cells:involvement of5-hydroxytryptamine2A receptors.Int Immunol2003;15(2):233-40.
    [43] Liu C, Zhang GF, Song SW, Cai GJ, Liu WH, Miao CY, Su DF. Effects of ketanserin on endotoxicshock and baroreflex function in rodents. J Infect Dis2011;204(10):1605-12.
    [44] Thiemermann C, Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced bybacteriallipopolysaccharides in the rat in vivo. Eur J Pharmacol1990;182(3):591-5.
    [45] Kilbourn RG, Jubran A, Gross SS, Griffith OW, Levi R, Adams J, Lodato RF. Reversal ofendotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. BiochemBiophys Res Commun1990;172(3):1132-8.
    [46] Kilbourn RG, Gross SS, Jubran A, Adams J, Griffith OW, Levi R, Lodato RF.NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for theinvolvement of nitric oxide. Proc Natl Acad Sci1990;87(9):3629-32.
    [47] Billiar TR, Curran RD, Harbrecht BG, Stuehr DJ, Demetris AJ, Simmons RL. Modulation of nitrogenoxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin-induced nitrate/nitratebiosynthesis while promoting hepatic damage. J Leukoc Biol1990;48(6):565-9.
    [48] MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW,Sokol K, Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lackinginducible nitric oxide synthase. Cell1995;81(4):641-50.
    [1] Dathlpf B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol2010;105(1Suppl):3A-9A.
    [2] Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. NatMed2011;17(11):1410-22.
    [3] Ross R. Atherosclerosis is an inflammatory disease. Am Heart J1999;138(5Pt2):S419-20.
    [4] Cai GJ,Miao CY, Xie HH, Lu LH, Su DF. Arterial baroreflex dysfunction promotes atherosclerosisin rats. Atherosclerosis2005;183(1):41-7.
    [5] Yu YS, Xie HH, Li L, Song SW, Han P, Cai GJ, Su DF. Effects of low-dose ketanserin onatherosclerosis in rats and rabbits. Can J Physiol Pharmacol2010;88(11):1054-60.
    [6] Tracey KJ. The inflammatory reflex. Nature2002;420(6971):853-9.
    [7] Bencherif M, Lippiello MP, Lucas R, Marrero BM. Alpha7nicotinic receptors as novel therapeutictargets for inflammation-based diseasea. Cell Mol Life Sci2011;68(6):931-49.
    [8] Peter Libby et al. Inflammation in Atherosclerosis: Transition: From Theory to Practice. Circ J2010;74(2):213-20.
    [9] Libert C. Inflammation: A nervous connection. Nature2003;421(6921):328-9.
    [10] Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemicinflammatory response to endotoxin. Nature2000;405(6785):458-62.
    [11] Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor a7subunit is an essentialregulator of inflammation. Nature2003;421:384-8.
    [12] Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev2006;86(2):515-81.
    [13] Ohta H, Wada H, Niwa T, et al. Disruption of tumor necrosis factor-alpha gene diminishes thedevelopment of atherosclerosis in ApoE-deficient mice. Atherosclerosis2005;180(1):11-7.
    [14]张运.关于动脉粥样硬化(AS)的新治疗靶点.医学研究杂志2011;40(6):1-3.
    [15] Ferrè S, Baldoli E, Leidi M, Maier JA. Magnesium deficiency promotes a pro-atherogenicphenotype in cultured human endothelial cells via activation of NFkB. Biochim BiophysActa2010;1802(11):952-8.
    [16] Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human diseases. J ClinInvest2001;107(1):3-6.
    [17] Cercek B, Yamashita M, Dimayuga P, et al. Nuclear factor-kappa B activity and arterial response toballoon injury. Atherosclerosis1997;131(1):59-66.
    [18] Rithie ME. Nuclear factor kappaB is selectively and markedly activated in humans with unstableangina pectoris. Circulation1998;98(17):1707-13.
    [19] Wilund KR, Rosenblat M, Chung HR, Volkova N, Kaplan M, Woods JA, Aviram M. Macrophagesfrom alpha7nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterolaccumulation and decreased cellular paraoxonase expression: A possible link between the nervoussystem and atherosclerosis development. Biochem Biophys Res Commun2009;390(1):148-54.
    [20] Inanagaa K, Ichiki T, Miyazaki R, Takedaa K, Hashimotoa T, Matsuuraa H, Sunagawaa K.Acetylcholinesterase inhibitors attenuate atherogenesis in apolipoproteinE-knockout mice.Atherosclerosis2010;213:52-8.
    [21] Saeed RW, Varma S, Peng-Nemeroff T, et al.Cholinergic stimulation blocks endothelial cellactivation and leukocyte recruitment during inflammation. JEM2005;201(7):1113-23.
    [22] Shen FM, Guan YF, Xie HH, Su DF. Arterial baroreflex function determines the survival time inlipopolysaccharide-induced shock in rats.Shock2004;21:556-60.
    [23] Yu JG, Song SW, Shu H, et al. Baroreflex deficiency hampers angiogenesis after myocardialinfarction via acetylcholine-a7-nicotinic ACh receptor in rats. Eur Heart J2011;Aug17.
    [1] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from1979through2000. N Engl J Med2003;348:1546-54.
    [2] Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC,Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ,Marshall J,Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL,Vincent JL; International Surviving Sepsis Campaign Guidelines Committee; American Associationof Critical-Care Nurses; American College of Chest Physicians; American College of EmergencyPhysicians; Canadian Critical Care Society; European Society of Clinical Microbiology andInfectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society;International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society ofIntensive Care Medicine;Society of Critical Care Medicine; Society of Hospital Medicine; SurgicalInfection Society; World Federation of Societies of Intensive and Critical Care Medicine. SurvivingSepsis Campaign: international guidelines for management of severe sepsis and septic shock:2008.Crit Care Med2008;36(1):296-327.
    [3] Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functionaldisability among survivors of severe sepsis. JAMA2010;304(16):1787-94.
    [4] Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, PoelstraK. Removal of phosphate from lipid A as a strategy to detoxify. Shock2002;18(6):561-6.
    [5] Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med2003;348(2):138-50.
    [6] Paakkari I, Lindsberg P. Nitric oxide in the central nervous system. Ann Med1995;27(3):369-77.
    [7] Papapetropoulos A, Rudic RD, Sessa WC. Molecular control of nitric oxide synthases in thecardiovascular system. Cardiovasc Res1999;43(3):509-20.
    [8] Li L, Crockett E, Wang DH, Galligan JJ, Fink GD, Chen AF. Gene transfer of endothelial NOsynthase and manganese superoxide dismutase on arterialvascular cell adhesion molecule-1expression and superoxide production in deoxycorticosteroneacetate-salt hypertension. ArteriosclerThromb Vasc Biol2002;22(2):249-55.
    [9] Tousoulis D, Briasoulis A, Papageorgiou N, Tsioufis C, Tsiamis E, Toutouzas K, Stefanadis C.Oxidative stress and endothelial function: therapeutic interventions. Recent Pat Cardiovasc DrugDiscov2011;6(2):103-14.
    [10]Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA, Selby R, Madariaga J, Simmons RL.Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin.J Exp Med1992;176(1):261-4.
    [11]Salzman AL, Menconi MJ, Unno N, Ezzell RM, Casey DM, Gonzalez PK, Fink MP. Nitric oxidedilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. AmJ Physiol1995Feb;268(2Pt1):G361-73.
    [12]MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW,Sokol K, Hutchinson N. Altered responses to bacterial infection and endotoxic shock in micelacking inducible nitric oxide synthase. Cell1995,81(4):641-50.
    [13]Cauwels A, Brouckaert P. Nitrite regulation of shock. Cardiovasc Res2011;89(3):553-9.
    [14]Umans, J. G., M. E. Wylam, R. W. Samsel, J. Edwards, and P. T. Schumacker.1993. Effects ofendotoxin in vivo on endothelial and smooth-muscle function in rabbit and rat aorta. Am Rev RespirDis148:1638-45.
    [15]Feihl F, Waeber B, Liaudet L. Is nitric oxide overproduction the target of choice for themanagement of septic shock? Pharmacol Ther2001;91:179-213.
    [16]Trzeciak S, Cinel I, Phillip Dellinger R, Shapiro NI, Arnold RC, Parrillo JE et al. Resuscitating themicrocirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies,and challenges for clinical trials. Acad Emerg Med2008;15:399-413.
    [17]Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. Am J Respir CritCare Med2000;161:1781-85.
    [18]Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S et al. Multiple-center,randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor546C88:effect on survival in patients with septic shock. Crit Care Med2004;32:21-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700