毛竹根际土壤肥力质量变化及苗期营养管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys pubescens)用途广泛,易栽培、周期短,具有较高的经济价值和生态效益,提高现有毛竹林生产力和扩大其栽培面积,成为亟需解决的问题。施肥是提高毛竹林生产力的重要措施,而毛竹实生苗造林是快速扩大毛竹栽培面积的有效手段之一。本文以安徽省黄山区无人为经营毛竹林为研究对象,对其不同生长阶段根际土壤化学性质、酶活性等动态变化进行了研究,以期为毛竹根区精准施肥,提高肥效提供理论参考;同时,分析了毛竹实生苗苗期施肥效应,建立了DRIS营养诊断方法,旨在为指导毛竹苗期营养管理提供理论依据。通过研究,主要结论如下:
     1、不同生长阶段毛竹根际土壤化学性质和酶活性变化规律不同。其中,有机质含量、全N含量、有效N含量、全P含量、磷酸酶活性、蛋白酶活性随毛竹生长而增长;pH值、速效P含量、有效Fe含量、有效Mn含量、蔗糖酶活性、过氧化氢酶活性随毛竹生长先升高再降低;速效K含量在整个毛竹生长周期内呈现逐渐降低的变化趋势;有效Zn含量变化规律不明显,而全K含量和土壤脲酶活性变化较平稳。
     2、不同生长阶段毛竹根际土壤综合因子得分排列顺序为:成竹期>Ⅳ度>Ⅲ度>Ⅱ度>Ⅰ度,分别是1.0741、1.0201、0.9856、0.9652、0.065,可见土壤质量呈先衰退后增强的趋势。成竹期由于根系未完全形成,对其根际土壤的影响较小,因而成竹期得分最高,随着毛竹生长,根系渐渐发达,对其根际土壤的影响日渐扩大,造成根际土壤得分渐低,后期毛竹生长逐渐减弱,对其根际土壤的影响也随之减少,加上林中凋落物的增加和微生物活动增强,其根际土壤的质量有所增加。
     3、不同生长阶段毛竹对营养元素的需求有所不同。具体分析结果为,成竹期毛竹各器官营养元素含量高于其它生长阶段。不同阶段毛竹生物量与土壤养分回归分析表明,各器官生物量与大量元素、土壤酶及有机质显著相关。根据研究结果建议实际生产穴施方式施肥时,幼竹生长期后期及Ⅰ度竹期间,在不伤及根鞭情况下,尽量靠近根区穴施。
     4、施单肥和配方施肥对毛竹苗期生长特性有不同影响。施N肥各个处理中,以0.3g/株时,毛竹苗高均最高,达13.2cm,施N肥时,毛竹幼苗体内P元素含量增加,K、Cu、Fe、Mn元素含量呈降低趋势;施P肥各个处理中以0.3g/株时,毛竹苗最高,达10.5cm,施P肥时,N、P元素含量增加,K元素含量降低,CuFe元素含量先降后升,Zn元素增加,Mn元素先增加后减少;施K肥,各个处理以0.2g/株时苗高最高,达10.8cm,0.3g/株时生物量最大,达1.48g,毛竹体内N、K元素呈上升趋势,P元素和Cu、Zn、Fe、Mn元素均下降;配方施肥,多施N肥,适量施P肥、少施K肥可使苗高增加;各个处理中生物量变化并不明显,0.1g/株N肥+0.4g/株P肥和0.2g/株N肥+0.1g/株P肥+0.3g/株K肥的两种施肥组合可以促进毛竹幼苗对养分元素的吸收,说明毛竹幼苗对各营养元素的吸收有协同或拮抗作用。DRIS营养诊断结果表明,其标准为N/P=14.0718,P/K=0.1632,N/K=2.2518。
     5、施肥对毛竹光合特性也有显著影响。施N肥一定程度上增加毛竹幼苗最大净光合速率、胞间CO2浓度与气孔导度,降低了CO2补偿点和光
     补偿点,提高了CO2和光能利用率,叶绿素含量有所增加。施K肥,毛竹幼苗的最大净光合速率随施肥量增加呈先升高后降低并趋于稳定的变化趋势,气孔导度、蒸腾速率与最大净光合速率变化趋势相似,胞间CO2浓度下降,CO2补偿点和光补偿点均增加,降低了CO2和光能利用率,叶绿素含量变化不明显。施P肥,最大净光合速率、气孔导度、蒸腾速率先降低后升高,CO2补偿点和光补偿点均增加,叶绿素含量变化不明显。配方施肥,除少N适量P和K的配方处理毛竹幼苗光合特性有所增强,其余处理变化不明显。
Phyllostachys pubescens is widely used in many aspects and easy to cultivate. It has short growth cycle, high economic value and ecological benefits. So it is an urgent need to enhance the productivity and to expand the cultivation of bamboo forest area. Cultivating seedling planted bamboo is an effective means to expand bamboo cultivation area.This paper took bamboo forest which is in the district of Huangshan in Anhui Province without human disturbance as the research object, making research on dynamic changes of chemical properties and enzyme activities of rhizosphere soil at different growth stages of bamboo, aiming at providing theoretical basis for precise fertilization in root region of bamboo, and improving fertilizer efficiency. At the same time, we made an analysis about the effects of fertilization on bamboo seedlings, and established the DRIS nutritional diagnosis to provide theoretical basis for the management of seedling bamboo nutrition. The main conclusions are as follows:
     1. The changes of soil chemical properties and enzyme activities were different in rhizosphere soil of Moso bamboo at different growth period. Contents of organic matter,total nitrogen, available nitrogen, total phosphorus, activities of phosphatase and protease increased with time. While pH, available phosphorus, available Fe, available Mn, invertase and catalase decreased and then increased with the growth of Moso bamboo. During the whole growth period of Moso bamboo, available potassinum was decreasing, the change of available Zn was not evident, and the change of total potassinum and urease were relatively steady.
     2.The comprehensive factor scores of rhizosphere soil of Moso bamboo at different growth period were in the order of growth period >Ⅳdu>Ⅲdu>Ⅱdu >Ⅰdu. The scores are 1.0741、1.0201、0.9856、0.9652、0.065 respectively. It is clear that the soil quality was increasing after decreasing. At growth period of Moso bamboo, because the root has not grown completely and has little influence on rhizosphere soil, so the score was the highest. The score of rhizosphere soil decreases as the growth and root gradual development of Moso bamboo. The rhizosphere soil quality increased at later stage of Moso bamboo because of gradually weakened growth and the increased litter and microorganism activity.
     3.The demands for nutrients of Moso bamboo at different growth periods were different. It was different in the demand for nutrients of Moso bamboo at different growth period. The results showed that the nutrient contents of different organs at growth stage were higher than those at other stages. Regression analysis showed that the organ biomass was significantly correlated to macroelement, soil enzymes and organic matter at the different growth stages of Moso bamboo.
     4.Different fertilizers had different effects on the growth characteristics of Moso bamboo seedlings. When the fertilization of phosphorus and nitrogen are both 0.3g per plant, the heights of Moso bamboo seedlings were the highest, 13.2cm and 10.5cm in average, respectively. After nitrogen fertilizer was applied, the phosphorus content in Moso bamboo seedlings increased, while nitrogen, potassium, Cu, Fe and Mn contents in Moso bamboo seedlings decreased after phosphorus was applied, the elements of nitrogen and phosphorus increase, potassium decreases, Cu and Fe increased after the first drop, Zn increases, Mn inreased and then decreased. After potassium was applied, the height of Moso bamboo seedlings was the highest, averaging 10.8 cm at 0.2g/plant; the organ biomass of Moso bamboo seedlings was the highest, averaging 1.48 g at 0.3g/plant; and the contents of nitrogen and potassium increased, phosphorus, Cu, Fe, Zn and Mn decreased. Formula fertilization, more nitrogen fertilization, proper amount of phosphorus fertilization and less potassium fertilization can increased the height of Moso bamboo seedlings. The changes of organ biomass were not obvious at all treatments when fertilizer phosphorus. Application of 0.1g nitrogen plus 0.4g phosphorus per plant, or 0.2g nitrogen plus 0.1g phosphorus and 0.3g potassium per plant could promote the absorption of nutrient of bamboo seedlings. DRIS nutrition diagnosis results showed that the fertilizer application standard is N/P=14.0718,P/K=0.1632,N/K=2.2518.
     5.Fertilization had significant effect on the photosynthetic characteristics of Moso bamboo. Application of nitrogenous fertilizer increased the maximum net photosynthetic rate, intercellular CO2 concentration, and stomatal conductance of bamboo seedlings, reduced the CO2 compensation point and light compensation point, and increased solar energy utilization and chlorophyll content. After application of K fertilizer, the net photosynthetic rate increases and then decreases and becomes stable; stomatal conductance, transpiration rate and the maximum net photosynthetic rate had the similar trend of decline; intercellular CO2 concentration, CO2 compensation point and light compensation points are increasing, but CO2 and light energy utilization rate were reducing. Chlorophyll content did not change significantly. Applying P fertilizer the maximum net photosynthetic rate, stomatal conductance, transpiration rate increased after the decreasing in the beginning, CO2 compensation point and light compensation point increase, while chlorophyll content did not change significantly. Formula Fertilization, except that the combination of small amount of N with appropriate P and K can increase photosynthetic characteristics, the rest do not have significant effects.
引文
[1]谢孝福竹子生产与加工北京:金盾出版社,1994.
    [2]江泽慧世界竹藤沈阳:辽宁科学技术出版社,2002.
    [3]王炳勋中国毛竹生态经济区划与发展战略研究.北京:中国林业出版社,1992.
    [4]洪伟森林生态系统经营研究北京:中国林业出版社,2001.
    [5] Blevins D. G., Barnet, N.M.B., Foist. W. Role of potassium and malate in mitrate uptake and translocation by wheat seedlings. plant Physiol, 1978, 62: 784 - 788.
    [6]周芳纯.竹林培育和利用竹类研究, 1998.
    [7]傅憋毅.不同用途毛竹林施肥研究林业科学研究, 1991, 4(3): 238-245.
    [8]洪伟.毛竹丰产林密度效应研究林业科学, 1998, 34(专刊): 1-4.
    [9]何奇江,张培新.不同经营类型毛竹笋用林的地下鞭根系统调查研究浙江林业科技, 2000, 20(2): 31-34.
    [10]汪奎宏,张培新.毛竹笋用丰产林地下鞭根系统调查分析竹子研究汇刊, 2000, 19(1): 38-43.
    [11]张幼法,林世奎.毛竹林地下鞭动态生长的研究竹子研究汇刊, 1999, 18(3): 62-65.
    [12]周本智,傅懋毅.竹林地下鞭根系统研究进展林业科学研究, 2004, 17(4): 533-540.
    [13]高志勤,傅懋毅.不同毛竹林土壤水分物理性质的特征比较林业科技开发, 2005, 19(6): 12-15.
    [14]何东进,洪伟.毛竹杉木混交林土壤团粒结构的分形特征研究热带亚热带植物学报, 2002, 10(3): 215-221.
    [15]楼一平,吴良如.毛竹纯林长期经营对林地土壤肥力的影响林业科学研究, 1997, 10(2): 125-129.
    [16]郑郁善,陈札光,洪伟.毛竹杉木混交林生产力和土壤性状研究林业科学, 1998, 34(1): 16-25.
    [17]徐秋芳,姜培坤.毛竹竹根区土壤微生物数量与酶活性研究林业科学研究, 2001, 14(6): 648-652.
    [18]徐秋芳,钱新标.毛竹根际土壤的化学性质浙江林学院学报, 1998, 15(3): 240-243.
    [19] Alexander, M. Agriculture Responsibility in Estabilishing Soil Quality Criteria In Environmental Improvement-Agricultural Challenge in the seventies. W ashington,D: National Academy ofScience,1971.
    [20] Warkentin B.P, Fletcher, H.. Soil Quality for Intensive Agriculture, in Proceedings of international seminar on soil environment and fertility management in intensive Agriculture. 1977: Tokyo. p. 593-598.
    [21] Doran J W,B., Parkin T. Definging and assessing soil quality. Madison: SSSA Special Publicagtion Number 35,1994.
    [22]赵其国.现代土壤学与农业持续发展土壤学报, 1996, 33(1): 1-12.
    [23]曹志洪.继承传统土壤学的成果,促进现代土壤学的研究——论“土壤质量演变规律与可持续利用”研究中国基础科学, 2000(10): 11-16.
    [24]曹志洪.科学施肥与我国的粮食安全保障土壤学报, 1998(30): 57-63.
    [25]王校常,曹志洪.太湖地区水稻土的健康质量问题及调控对策应用生态学报, 2002, 13(2): 199-203.
    [26]孙波.土壤质量与持续环境Ⅲ:土坡质量评价的生物学指标土壤, 1997, 29(5): 225-234.
    [27]赵其国,孙波,张桃休.土壤质量与持续环境1土壤质量的定义及评价方法土壤, 1997, 29(3): 113-120.
    [28]曹志洪.解译土坡质量演变规律、确保土壤资源持续利用世界科技研究与发展, 2001, 23(3): 28-32.
    [29]赵其国.我国土坡的退化问题土壤, 1995, 27(6): 281-285.
    [30]孙波.土壤质量与持续环境Ⅱ:土壤质量评价的碳N指标土壤, 1997, 29(4): 169-175.
    [31]孙波.南方红坡丘陵区土壤养分贫瘾化的综合评价土壤, 1995, 27(3): 119-128.
    [32]阚文杰,吴启堂.一个定量综合评价土壤肥力的方法初探土壤通报, 1994, 25(6): 245-247.
    [33]王效举,龚子同.红壤丘陵小区域水平上地理科学, 1997, 17(2).
    [34]邹连敏.土壤质量与持续农业农业经济, 2000: 1.
    [35]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法地理科学进展, 1999: 11.
    [36]孙波,张桃林,赵其国.我国东南丘陵区土壤肥力的综合评价土壤学报, 1995, 33(2): 362-369.
    [37] Oldeman L. R., Hakkeling, R. T. A.;Sombroek, W. G.. World Map of the Status of Human-induced Soil Degradation: An Explanatory Note. International Soil Reference and Information Centre,1991.
    [38]杨万勤,王开运.森林土壤酶的研究进展林业科学, 2004, 40(2): 152-159.
    [39]杨万勤,钟章成.缙云山森林土壤速效N, P, K时空特征研究生态学报, 2001, 21(008): 1285-1289.
    [40]张万儒中国森林土壤.北京:中国林业出版社,1986.
    [41]楼一平.毛竹纯林长期经营对林地土壤肥力的影响林业科学研究, 1997, 10(2): 125-129.
    [42]西野宽.竹笋特产情报, 1994(2): 75.
    [43]张献义.毛竹林养分动态与产量关系的研究林业科学研究, 1995, 8(5): 477-482.
    [44]张献义,陈金林.毛竹林养分动态与产量关系的研究林业科学研究, 1995(5): 477-482.
    [45]杨万勤,王开运土壤养分库动态.成都:四川科技出版社,2004.
    [46] SY(关松荫), Guan. Soil enzymes and its methodology. Beijing: Agricultural Press,1986.
    [47] RG Burns. Soil enzyme. New York: Academic Press,1978.
    [48] RG Burns, RP Dick. Enzymes in the environment: ecology, activity and applications. New York: Marcel Dekker. Inc,2001.
    [49] S Kiss, D Pasca. Dragan-Bulardan M. Enzymology of disturbed soils elsevie, 1998: 1-340.
    [50] LK(周礼恺), Zhou. Soil enzymology. soil enzymology: Soil Enzymology,1989.
    [51] C Garcia, MT Hernandz. Research and perspectives of soil enzymology in Spain CEBAS-CSIC, 2000.
    [52] E Kandeler, J. Tscherko. xylanase,invertase and protease at the soil-litter interface of a loamy sand Soil Biology & Biochemistry, 1999(31): 1171-1179.
    [53]陈恩凤土壤肥力物质基础及其调控.北京:科学出版社,1990.
    [54] RP Dick, D Breakwill R. Turco soil enzyme activities and biodiversity measurements as integrating biological indicators. Madison: SSSA Special Pub,1996.
    [55] RP, Dick. Soil enzyme activities as indicators of soil quality. Madison: Soil Sci Soc Am Spec Publ,1994.
    [56] JW, Doran,TB. Parkin defining soil quality for sustainable environ-men. Madison: Soil Sci Soc Am Spec Publ,1994.
    [57] RP, Dick. Enzyme activities as integrative indicators of soil health. United Kingdom, Oxon: CAB International,1997.
    [58]关松荫土壤酶及其研究法北京:农业出版社,1986.
    [59] Burns. Enzymes in the environment: Ecology, Activity and Applications New York: Marcel Dekker, Inc.,2001.
    [60]李党训,廖水成.毛竹生长规律初探湖南林业科技, 1998, 25(4): 28-30.
    [61]孙启武,西南桦人工林土壤质量变化及其苗期施肥效应与营养诊断,中国林业科学研究院博士学位论文2006,北京1-154.
    [62]郑郁善,洪伟毛竹经营学厦门:厦门大学出版社,1998.
    [63]罗治建,陈卫文,鲁剑巍,等.鄂南地区毛竹林的土壤肥力东北林业大学学报, 2003(3): 19-23.
    [64]孙向阳土壤学北京:中国林业出版社,2005.
    [65]何黎明,叶仲节.多元分析方法在毛竹林土壤研究中的应用竹子研究汇刊, 1987, 6(4): 28-39.
    [66]潘瑞炽植物生理学北京:高等教育出版社,2001.
    [67]陈金林,张献义,叶长青.毛竹林高产施肥技术探讨林业科学研究, 1996, 9(3): 323~327.
    [68]黎祖尧.土壤对毛竹眉径生长影响的研究竹子研究汇刊, 1993, 12(3): 29~35.
    [69]周建夷,祝钦史.三要素施肥与笋用毛竹林产量构成因子的相关分析竹类研究, 1988, 7(3): 21~28.
    [70]吴家森,周国模,徐秋芳.不同年份毛竹营养元素提空间分布及与土壤养分的关系林业科学, 2005, 41(3): 171~173.
    [71]吴家森,周国模,钱新标.不同经营类型毛竹林营养元素的空间分布浙江林学院学报, 2005, 22(5): 486~489.
    [72]鲁如坤土壤一植物营养学原理和施肥.北京:化学工业出版社,1998.
    [73]周建夷,胡超宗,杨廉颇.笋用毛竹丰产林地下竹鞭的调查竹子研究汇刊, 1985, 4(1): 57-65.
    [74]廖光庐.毛竹林鞭系结构调查分析竹子研究汇刊, 1988, 7(3): 35-40.
    [75]周本智,傅懋毅.竹林地下鞭根系统研究进展林业科学研究, 2004, 17(4): 534-539.
    [76]徐秋芳,姜培坤.毛竹竹根区土壤微生物数量与酶活性研究林业科学研究, 2000, 14(6): 648-652.
    [77]徐秋芳,姜培坤.有机肥对毛竹林间及根区土壤生物化学性质的影响浙江林学院学报, 2000, 17(4): 364-368.
    [78]姜培坤,徐秋芳.土壤生物学性质对毛竹粗生长影响的研究生态学杂志, 2001, 20(6): 25-28.
    [79]王忠,植物生理学. 2000,北京:中国农业出版社.
    [80]潘瑞炽植物生理学(第四版)北京:高等教育出版社,2001.
    [81]迟健.树木营养诊断法综述浙江林业科技, 1998, 18(5): 50-53.
    [82]万泉.土壤林木营养诊断与平衡施肥现状及展望福建林业科技, 2008, 35(1): 239-243.
    [83] Bouma, D. Diagnosis of mineral deficiencies using plant tests Encyclopedia of Plant Physiology, New series. Ed. Lauchi A. and RL Bieleski. Springer-Verlag, Berlín and N. York, 1983, 15: 241-285.
    [84] van den Driessche, R. Prediction of mineral nutrient status of trees by foliar analysis The Botanical Review, 1974, 40(3): 347-394.
    [85] Shear C. B., Crane, H. L., Myers, A. T. Nutrient-element balance: a fundamental concept in plant nutrition. 1946.
    [86]陈竹君.一种林木营养论断法—DRIS法陕西林业科技, 1993(2): 38-40.
    [87]洪顺山,胡炳堂.毛竹营养诊断的研究林业科学研究, 1989, 2(1): 15-24.
    [88]顾小平,吴晓丽,汪阳东.毛竹林N素营养诊断的研究浙江林业科技, 2004, 24(2): 1-4.
    [89]王婷,胡亮.毛竹营养诊断方法研究北方园艺, 2007: 06.
    [90]王婷,胡亮,郭晓敏,等.毛竹叶片N含量与SPAD值的相关性研究安徽农业科学, 2006, 34(15): 3670-3671.
    [91]陈卫文,罗治建,陈防,等.鄂南毛竹林的养分状况与营养诊断标准东北林业大学学报, 2004, 32(2): 41-44.
    [92]江泽慧.世界竹藤沈阳:辽宁科学技术出版社, 2002.
    [93]邓锦森,董敦义,丁雨龙.毛竹实生苗专题文献分析竹子研究汇刊, 2004, 23(2): 8-12.
    [94]蒋高明. LI—6400光合作用测定系统:原理,性能,基本操作与常见故障的排除植物学通报, 1996, 13(增刊): 72-76.
    [95]艾天成,李方敏.作物叶片叶绿素含量与SPAD值相关性研究湖北农学院学报, 2000, 20(1): 6-8.
    [96]宋春雨,张兴义,刘晓冰,等.土壤有机质对土壤肥力与作物生产力的影响农业系统科学与综合研究, 2008, 24(003): 357-362.
    [97]关松,窦森.土壤有机质分解与转化的驱动因素安徽农业科学, 2006, 34(10): 2203-2206.
    [98]黄昌勇土壤学北京:中国农业出版社, 2000, 162-168.
    [99]张福锁,曹一平.根际动态过程与植物营养土壤学报, 1992, 29(3): 239-250.
    [100]庄伊美,叶水兴.红壤柑桔园硼铜镁营养失调的诊断中国柑桔, 1991, 20(3): 6-8.
    [101]俞立选,应先东,徐婵娟.滨海柑桔失绿黄化病研究中国柑桔, 1982(1): 13-15.
    [102] Sims JT. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc Soil Science Society of America Journal, 1986, 50(2): 367.
    [103]徐秋芳,徐建明.安吉县港口乡低产毛竹林地肥力分析浙江林学院学报, 2000, 17(3): 280-284.
    [104]熊顺贵基础土壤学北京:中国农业大学出版社,2001.
    [105] Fisher RF,Binkley, D. Ecology and management of forest soils. New York: John Wiley & sons. inc,2000.
    [106]白军红,崔保山,李晓文,等.向海芦苇沼泽湿地土壤铵态N含量的季节动态变化草业学报, 2006, 15(1): 117-119.
    [107]白军红,邓伟,欧阳华,等.向海芦苇沼泽湿地土壤硝态N含量的季节动态变化农业系统科学与综合研究, 2005, 21(2): 85-87.
    [108]王俊,刘文兆,李凤民,等.半干旱黄土区苜蓿草地轮作农田土壤N素变化草业学报, 2006, 15(5): 32-37.
    [109]郑昭佩,宋德香,刘作新.长期灌溉施肥对半干旱区褐土N, P和K库的影响生态学杂志, 2004, 23(5): 19-23.
    [110]吕晓男,陆允甫.土壤肥力综合评价初步研究浙江大学学报:农业与生命科学版, 1999, 25(4): 378-382.
    [111] Hamon RE,Lorenz SE,Holm PE, et al. Changes in trace metal species and other components of the rhizosphere during growth of radish Plant, Cell and Environment, 1995, 18(7): 749-756.
    [112]周礼恺土壤酶学北京:科学出版社,1987.
    [113]刘耀荣.毛竹笋期的营养动态林业科学研究, 1990, 3(004): 363-367.
    [114]唐瑞宝,荆志成.不同微量元素配施对烟草产量和品质的影响湖南农业科学, 1994(002): 30-31.
    [115]王艳,孙杰.锌,锰,钼微量元素营养对大豆产量品质的影响山西农业大学学报:自然科学版, 1997, 17(002): 116-119.
    [116]许宗林,艾应伟.复合型缓释微肥-通丰20对农作物品质的影响植物营养与肥料学报, 2002, 8(4): 507-508.
    [117]杜长玉,高明旭.不同微肥在马铃薯上应用效果的研究内蒙古农业科技, 2000(001): 20-21.
    [118]岳春雷,刘亚群.濒危植物南川升麻光合生理生态的初步研究植物生态学报, 1999, 23(1): 71-75.
    [119] Geber MA,Dawson TE. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum Oecologia, 1997, 109(4): 535-546.
    [120]孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展安徽农业科学, 2004, 32(2): 365-367.
    [121] J.R, Evans. Photosynthesis and nitrogen relationships in leaves of C3 plants Oecologia, 1989, 78(1): 9-19.
    [122]廖建雄,王根轩.植物的气孔振荡及其应用前景植物生理学通讯, 2000, 36(3): 272-276.
    [123]吴良欢,陶勤南.水稻氨基酸态N营养效应及其机理研究土壤学报, 2000, 37(4): 464-473.
    [124]王天铎.关于蒸腾作用生理意义的一封信植物生理学通讯, 1996, 32(2): 159-159.
    [125]张小全,徐德应.林冠结构、辐射传输与冠层光合作用研究综述林业科学研究, 1999, 12(4): 411-421.
    [126]薛青武,陈培元.灌浆期土壤干旱条件下N素营养对小麦旗叶光合作用的影响干旱地区农业研究, 1989(3): 86-93.
    [127]王树良,李银国.测定柑桔叶片叶绿素含量的两种方法比较中国南方果树, 1996, 25(2): 24-24.
    [128]胡笃敬,董任瑞.植物K营养的理论与实践.湖南科学技术出版社,1993.
    [129]江力,张蓉铣.不同NK水平对烤烟光合作用的影响安徽农业大学学报, 2000, 27(4): 328-331.
    [130]黄宗玉.诊断施肥综合法(DRIS)的原理与应用问题土壤学进展, 1990, 18(1): 22-26.
    [131]张国庆.应用诊断施肥综合法(DRIS)进行甘蔗叶片营养诊断土壤通报, 1992, 23(2): 73-75.
    [132]周建斌.林木叶片营养诊断研究进展陕西林业科技, 1993(2): 17-21.
    [133] Bould C; Hewitt, EJ; Needham, P. Diagnosis of Mineral Disorders in Plants. 1. Principles. New York: Chemical Publishing,1984.
    [134] Sumner ME. Advances in the use and application of plant analysis Communications in Soil Science and Plant Analysis, 1990, 21(13): 1409-1430.
    [135] Beaufils ER. Diagnosis and recommendation integrated system ( DRIS ) Soil Science Bulletin-University of Natural (Sudafrica). 1973, 1.
    [136] Burke M K,Raynal D J. Liming influences growth and nutrient balances in sugar maple (Acer saccharum) seedlings on an acidic forest soil Environmental and Experimental Botany, 1998, 39(2): 105-116.
    [137]吴巍,张宽.玉米养分丰缺诊断指标与应用玉米科学, 1995, 3(4): 53-55.
    [138]李金洪,崔彦宏.高产玉米营养诊断指标探讨玉米科学, 1995, 3(2): 47-50.
    [139]张军,王庆成.玉米营养诊断施肥综合系统土壤肥料, 1994(004): 14-17.
    [140]李旭辉,李瑛,刘军,等. DRIS在关中地区冬小麦施肥中的应用研究植物营养与肥料学报, 2005, 11(2): 174-178.
    [141]闫晓明,何传龙.小麦诊断施肥综合法(DRIS法)的因素及诊断指标的建立安徽农业科学, 1996, 24(4): 357-359.
    [142]闫晓明,何传龙.淮北砂姜黑土地区小麦诊断施肥综合法(DRIS)应用研究土壤通报, 1996, 27(6): 259-262.
    [143]王为民,孙明强.棉花综合诊断施肥研究土壤肥料, 1994(5): 13-18.
    [144]董小平,张玉萍.应用综合诊断施肥法(DRIS)进行棉花营养诊断新疆农业科学, 2000(4): 184-186.
    [145]王银华,谭和平,吴全,等.综合诊断施肥法在茶树上的应用研究西南农业大学学报, 1993, 15(1): 20-23.
    [146]郑家基,陈雪金. DRIS诊断法在柑桔施肥中应用研究福建省农科院学报, 1996, 11(4): 39-42.
    [147]李继承,张国强.五种矿质元素对脐橙树体营养状况的影响湖南农业大学学报:自然科学版, 1999, 25(1): 36-39.
    [148]丘星初.温州蜜柑营养诊断的DRIS初步标准亚热带植物, 1989(2): 5-8.
    [149]曾明.温州蜜柑矿质营养综合诊断研究西南农业大学学报, 1993, 15(1): 91-94.
    [150]李辉桃,周建斌.应用DRIS法评价苹果树营养状况初探陕西农业科学, 1994(4): 15-17.
    [151]姜远茂,顾曼如.红星苹果的营养诊断园艺学报, 1995, 22(3): 215-220.
    [152]耿增超,张立新,赵二龙,等.陕西红富士苹果矿质营养DRIS标准研究西北植物学报, 2003, 23(8): 1422-1428.
    [153]谢世恭,谢永红,曾亚妮,等.充足范围法和修正诊断施肥综合法在荔枝营养诊断中的比较华南农业大学学报, 2006, 27(3): 12-15.
    [154]孙光明,余让水. H.11648麻应用DRIS初探中国麻作, 1996, 18(3): 42-45.
    [155]庄作峰,郭衡.应用DRIS法对1年生苗木壤营养诊断及对策辽宁林业科技, 1996(1): 8-11.
    [156]洪顺山,庄珍珍.湿地松幼林营养的DRIS诊断林业科学研究, 1995, 8(4): 360-366.
    [157]张旭东,董林水,周金星,等.珍稀乡土树种福建柏苗期DRIS营养诊断生态学报, 2005, 25(5): 1165-1170.
    [158]冯茂松,张健.巨桉叶片营养DRIS诊断研究四川农业大学学报, 2003, 21(4): 303-307.
    [159]陈礼光,陆小静,蔡月琴,等.柳杉苗木综合营养诊断Ⅰ:田间DRIS图解法福建林学院学报, 2005, 25(4): 318-322.
    [160] Kittredge J. Estimation of the amount of foliage of trees and shrubs J. Forest, 1944, 42: 905-12.
    [161]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定林业科学, 1982, 18(2): 127-134.
    [162]胥辉.一种生物量模型构建的新方法西北农林科技大学学报, 2001, 29(3): 35-40.
    [163]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力北京:科学出版社,1999.
    [164] Nelson B W,Mesquita R,Pereira, J L G,et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon Forest ecology and management, 1999, 117(1-3): 149-167.
    [165] Ketterings QM,Coe R,van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests Forest ecology and management, 2001, 146(13): 199-209.
    [166]刘兴良,郝晓东,杨冬生,等.卧龙巴郎山川滇高山栎灌丛地上生物量及其模型生态学杂志, 2006, 25(5): 487-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700