植被建立下铜尾矿废弃地中金属硫化物氧化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜矿开采和浮选过程所产生的废弃物堆积而形成铜尾矿废弃地,其中的金属硫化物易于发生氧化,导致尾矿的酸化,从而对周围环境造成污染。植被重建被广泛地应用于废弃地的生态修复。本研究以铜陵矿区不同金属硫化物含量的水木冲尾矿废弃地和杨山冲尾矿废弃地为研究对象,通过分析铜尾矿中铁和硫的形态与含量、尾矿产酸潜力以及氧化速率,探讨自然和人工植物群落建立下铜尾矿废弃地中金属硫化物的生物氧化和化学氧化作用,植物地上凋落物以及植物根系对铜尾矿中金属硫化物氧化过程的影响以及不同修复方式下植物的发育及引起的尾矿中金属硫化物氧化作用的变化。主要研究结果如下:
     1.铜尾矿废弃地剖面(0-60cm)自上而下,pH和酸中和能力增加,净产酸量和金属硫化物的氧化速率逐渐降低。水木冲尾矿库裸地表层30cm呈现较强的酸化作用,植物群落下废弃地酸化主要在表层10cm,金属硫化物氧化过程均以化学氧化为主。尾矿裸地表层极端酸性环境有利于嗜酸铁硫氧化微生物的代谢,具有较高的生物氧化速率。植物群落的建立促进了废弃地水分的积累和孔隙度的提高,有利于尾矿中金属硫化物生物和化学氧化作用的进行。然而,尾矿裸地产酸潜力和氧化速率显著高于植物群落下废弃地,植被建立引起的废弃地表面光照、温度和氧气浓度的降低可能是导致尾矿中金属硫化物氧化减弱的主要原因。
     2.木本植物盐肤木(Rhus chinensis)群落下尾矿中金属硫化物氧化作用强于草本植物白茅(Imperata cylindrica)和香根草(Vetiveria zizanioides);主成分分析(PCA)表明植物群落对废弃地剖面40-60cm尾矿层影响不显著。植物群落的建立和发育有利于减缓尾矿的酸化,同时能够有效抑制尾矿氧化前锋的深层迁移。水木冲铜尾矿的产酸潜力和氧化速率显著高于低硫化物含量的杨山冲铜尾矿,植物群落建立对杨山冲铜尾矿酸化影响不显著。铜尾矿中金属硫化物含量是决定尾矿酸化与否的关键因子。
     3.水木冲铜尾矿废弃地四种优势植物白茅、香根草、狗牙根(Cynodon dactylon)和芒(Miscanthus sinensis)根际尾矿pH和NAG-pH低于非根际尾矿,根际尾矿净产酸量分别高于其非根际尾矿,不同植物根际pH和NAG-pH由低到高依次为狗牙根、芒、白茅和香根草,但仅以狗牙根根际和非根际之间净产酸、NAG-pH差异显著。优势植物根际和非根际尾矿为近中性(pH6.13-7.38),以化学氧化为主;根际高的有机质和养分含量促进了尾矿的生物和化学耗氧;狗牙根根际尾矿的生物和化学氧化速率显著高于其他三种优势植物。植物根系通过影响根际氧气含量和铁硫氧化微生物活性一定程度上抑制了根际尾矿中金属硫化物的氧化,有利于减缓根际pH的降低。
     4.聚类分析表明,各植物根际尾矿和非根际尾矿的氧化特征表现出高的相关性。以狗牙根与其他植物根际尾矿相关性最低,具有最高的净产酸。植物根系在尾矿层的分布特征对根际尾矿中金属硫化物的氧化具有重要影响,以浅根系植物狗牙根根际尾矿酸化程度最高,具有发达根系的优势植物香根草,其根际尾矿低的酸化作用可能与深根系植物根际环境中低的氧气浓度有关。
     5.不同厚度(5cm、10cm和20cm)植物(白茅和香根草)凋落物覆盖下,铜尾矿剖面的氧气浓度显著降低,各尾矿层水分含量提高。受凋落物影响,水木冲近中性正常铜尾矿pH显著降低,随凋落物厚度增加,其pH降幅增大,各处理组均以表层铜尾矿(0-10cmm)酸化程度最高,主要为金属硫化物的化学氧化过程。然而,凋落物覆盖引起水木冲酸化铜尾矿pH的升高,pH增幅随凋落物厚度增加而增大;0-30cm尾矿层中,以中间层(10-20cm)pH最低,具有高的离子浓度,而对照处理以表层(0-10cm)酸化程度最强,存在硬盘层的形成;其氧化过程以生物氧化为主。
     6.白茅和香根草凋落物覆盖处理能够抑制尾矿中金属硫化物的化学氧化;同时,引起近中性铜尾矿的生物氧化速率的降低和酸化尾矿铁硫氧化微生物活性的提高。总体上凋落物的覆盖有利于减缓铜尾矿的氧化进程,植物凋落物类型对尾矿总氧化速率影响不显著。多元回归分析表明,所加凋落物中过量阳离子总量(总灰分碱)和尾矿起始pH是影响尾矿pH变化的主要因子。
     7.对于水木冲铜尾矿废弃地,覆土(30-40cm)处理下的表层铜尾矿具有低的有机质以及有效氮、磷等养分含量,其游离氧化铁含量、净产酸量以及生物和化学氧化速率显著低于未覆土表层尾矿。粉砂质壤土的覆盖能够有效地减少尾矿层的矿物风化,低的氧气和养分含量抑制了尾矿中金属硫化物的化学和生物氧化作用。
     8.尿素在水木冲铜尾矿废弃地的施用能够显著提高尾矿中的速效氮含量,促进植被的生长。对于呈微酸性(pH4.4-5.3)的近期植物(白茅和香根草)群落下铜尾矿废弃地,尿素作用下,尾矿的游离氧化铁含量、生物和化学氧化速率显著提高,净产酸量显著降低;对于近中性(pH6.9~7.1)的早期植物群落下铜尾矿废弃地,尿素对尾矿中金属硫化物氧化作用的影响并不显著,然而,尾矿净产酸量显著提高。铜尾矿废弃地pH的变化取决于尿素中氮的转化过程以及尾矿自身酸碱性。
     9.解磷真菌出芽短梗霉(Aureobasidium pullulans)直接施用于铜尾矿废弃地,植被的生长、尾矿游离氧化铁、速效养分(氮和磷)和有机质含量、生物和化学氧化速率均有所提高,但影响并不显著,可能与废弃地不良环境对A. pullulans生长和代谢的抑制作用有关。
     总而言之,植被的建立有利于尾矿废弃地的酸化控制,植物凋落物和根系对尾矿中金属硫化物氧化的影响因尾矿和植物类型而异;具有高近地面盖度和深根系的耐性植物(如香根草)能够有效地应用于废弃地的生态修复;人工辅助修复(施肥、覆土)对废弃地酸化的影响与废弃地自身的性质有关。
The mining tailings, powder wastes produced in the flocculate flotation of copper ore, are generally piled up in the tailings impoundment leading to the formation of copper mine wasteland. Acidification of mine wasteland is caused by the oxidization of metal sulfides, resulting in serious pollution to the surrounding environment. Phytoremediation is widely used in ecological restoration of mine wastelands. In this study, the forms and contents of iron and sulfur, the net acid generation and the oxidation rate of mine tailings were analyzed in Yangshanchong and Shuimuchong mine wastelands differing in the contents of metal sulfides, in order to investigate the biological and chemical oxidation processes of metal sulfides in mine wastelands under natural and artificial plant communities, the effects of plant residues and roots on the oxidation processes of sulfides, and the development of plant communities with different amendments and the consequent changes of oxidation of metal sulfides. The main results were as follows:
     1. The wastelands of copper mine tailings in the profile (0-60cm) showed increasing pH and acid neutralization capacity, and decreasing net acid generation and oxidation rate of metal sulfides. The top30cm showed obvious acidification in bare wastelands, while only the top10cm of wasteland under plant communities was significantly oxidized in Shuimuchong mine wasteland. The oxidation processes were dominated by chemical oxidation. The extreme acidic condition of top tailings favored the oxidation of sulfides by acidophilic bacteria, resulting in the high biological oxidation rate. The establishment of plant communities increased the water content and porosity of mine wasteland, and thus promoted the biological and chemical oxidation of sulfides in mine tailings. Bare wasteland showed higher net acid generation and oxidation rate than wastelands under plant communities. The reducing of light, temperature and oxygen content on the surface of mine wasteland resulted from phytoremediation was likely to be the main reason for the weakness of sulfide oxidation in the tailings.
     2. The mine wasteland under Rhus chinensis showed high net acid generation and oxidation rate than that under I. cylindrica and V. zizanioides. The principal component analysis (PCA) showed that the layers of40to60cm were not significantly affected by plant communities. The development of plant communities was beneficial to slow the acidification of mine tailings, and effectively inhibit the migration of oxidation front. Shuimuchong wasteland displayed significantly higher net acid generation and oxidation rate than Yangshanchong wasteland with low sulfide content, and the effect of phytoremediation on the acidification of Yangshanchong wasteland was not significant. The content of metal sulfides in the copper tailings was the key factor leading to the acidification.
     3. Compared to nonrhizospheric tailings from I. cylindrical, V. zizanioides, Cynodon dactylon and Miscanthus sinensis in Shuimuchong wasteland, the rhizospheric tailings showed low pH and NAG-pH, and high net acid generation, respectively. The pH and NAG-pH of rhizospheric tailings increased in the following order:Cynodon dactylon     4. Cluster analysis showed that the oxidation characteristics of rhizospheric and nonrhizospheric tailings from the same plant displayed a high correlation, and a low correlation was presented between C. dactylon and the other three dominant plants. Distribution of plant roots in the tailings exerted an important impact on the oxidation of rhizospheric tailings. C. dactylon with shallow roots showed the greatest acidification, while the rhizospheric tailings from V. zizanioides with well-developed root presented weak acidification, which may be related to the low oxygen content in deep rhizospheric tailings.
     5. The contents of oxygen and water in the mine tailings with I. cylindrical and V. zizanioides residues covered (5cm, to10cm and20cm thick layer) significantly decreased and increased, respectively. With the coverage of plant residues, the circumneutral unoxidized tailings showed decreasing pH compared with controls, and the increasing thick of plant restudies enhanced the pH decline. The top layer tailings (0-10cm) were in the greatest acidification, and dominated by chemical oxidation. However, the acidic oxidized tailings showed increasing pH with residues covered, and the pH amplification increased with the thick of plant restudies; among the three tailings layers,10-20cm tailings displayed the lowest pH, and the highest ion concentration; the most acidified layer of controls was0-10cm tailings with the formation of the hardpan, and biological oxidation was the main oxidizing process.
     6. The coverage of I. cylindrica and V. zizanioides residues restrained the chemical oxidation of metal sulfides in mine tailings. Meanwhile, the residues caused a decline of biological oxidation of circumneutral tailings, and an improvement of oxidizing bacteria activity in oxidized tailings. As a whole, the coverage of residues was beneficial to slow the oxidation rate of mine tailings, and no significan difference was shown due to the types of residues. Multiple regression analysis showed that the amounts of excessive cations added as plant residues and the initial pH of tailings were main factors affecting the extent of tailing pH changes.
     7. The copper tailings covered with soil layer (30~40cm) in Shuimuchong mine wasteland showed low content of organic matter, available nitrogen and phosphorus; the free iron oxides content, net acid generation, and biological and chemical oxidation rate of the tailings was significantly lower than that of tailings without amendments. The silty loam cover layer can effectively reduce the mineral weathering of tailings, and low contents of oxygen and nutrient restrained the chemical and biological oxidation of metal sulfides in the copper mine tailings.
     8. The available nitrogen content of Shuimuchong mine wasteland increased significantly with the application of urea; the wastelands (pH4.44~5.25) under plant communities of I. cylindrica and V. zizanioides in young phase displayed a great improvement in free iron oxide content and biological and chemical oxidation rate, and a significant decrease in net acid generation; meanwhile, the oxidation of metal sulfides in wastelands (pH6.9~7.1) under plant communities of I. cylindrica and V. zizanioides in mature phase was not significantly affected by the application of urea, but net acid generation greatly increased. The pH change of mine wastelands depended on the transformation of urea and the acidity of tailings.
     9. The inoculation of phosphate-solubilizing fungi Aureobasidium pullulans in mine wasteland promoted the development of plant communities, the contents of free iron oxides, available nutrients (nitrogen and phosphorus) and organic matter, and biological and chemical oxidation rate of sulfides, but the effect was not significant, which was likely related to the inhibition of hostile condition of mine wasteland on A. pullulans growth and metabolism.
     In conclusion, the establishment of vegetation is effective in suppressing the acidification of mine wastelands; the effect of plant residues and root on sulfide oxidation in the tailings differs in tailings and plant species, and the tolerant plant with high surface coverage and deep roots (such as V. zizanioides) can be effectively applied to the restoration of mine wastelands. The effect of assisted remediation (fertilization or soil covers) on wasteland acidification is close related to the properties of mine tailings.
引文
[1]Simon M, Martin F, Ortiz I, et al. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine[J]. Science of the Total Environment,2001,279(1-3): 63-74.
    [2]Bradshaw A. Restoration of mined lands-using natural processes[J]. Ecological Engineering,1997,8(4):255-269.
    [3]Johnson DB, Hallberg KB. Acid mine drainage remediation options:a review[J]. Science of the Total Environment,2005,338(1-2):3-14.
    [4]Moncur MC, Jambor JL, Ptacek CJ, et al. Mine drainage from the weathering of sulfide minerals and magnetite[J]. Applied Geochemistry,2009,24(12): 2362-2373.
    [5]Changul C, Sutthirat C, Padmanahban G, et al. Chemical characteristics and acid drainage assessment of mine tailings from Akara Gold mine in Thailand[J]. Environmental Earth Sciences,2009,60(8):1583-1595.
    [6]Elberling B. Temperature and oxygen control on pyrite oxidation in frozen mine tailings[J]. Cold Regions Science and Technology,2005,41(2):121-133.
    [7]Harneit K, Goksel A, Koek D, et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferroxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxxidans[J]. Hydrometallurgy,2006,83(1-4):245-255.
    [8]Johnson DB, Hallberg KB. The microbiology of acidic mine waters[J]. Research in Microbiology,2003,154(7):466-473.
    [9]Nordstrom DK. Aqueous pyrite oxidation and the subsequently formation of secondary minerals[M]. In:Hossner L.R., Kittrick J.A., et al., editors. Acid Sulphate Weathering. Madison, WI:Soil Science of Society of America Press; 1982. p.37-56.
    [10]Singer PC, Stumm W. Acidic mine drainage:the rate-determining step[J]. Science,1970,167(3921):1121-1123.
    [11]Garcia C, Lopez A, Ballester A, et al. Microbial succession during weathering of pyritic tailings column model[J]. Minerals Engineering,2001,14(8):861-876.
    [12]Natarajan KA. Microbial aspects of acid mine drainage and its bioremediation[J]. Transactions of Nonferrous Metals Society of China,2008,18(6):1352-1360.
    [13]Schrenk MO. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for Generation of Acid Mine Drainage[J]. Science, 1998,279(5356):1519-1522.
    [14]Edwards KJ, Hu B, Hamers R, et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology,2001,34(3):197-206.
    [15]Fowler T, Holmes P, Crundwell F. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxxidans[J]. Hydrometallurgy,2001,59(2-3):257-270.
    [16]Walsh F, Mitchell R. A pH-Dependent succession of iron bacteria[J]. Environmental Science and Technology,1972,6(9):809-812.
    [17]Malmstrom ME, Gleisner M, Herbert RB. Element discharge from pyritic mine tailings at limited oxygen availability in column experiments[J]. Applied Geochemistry,2006,21(1):184-202.
    [18]Garcia C, Lopez A, Ballester A, et al. Microbial succession during weathering of pyritic tailings column model[J]. Minerals Engineering,2001,14(8):861-876.
    [19]Bussiere B. Acid mine drainage from abandoned mine sites Problematic and reclamation approaches. Proceedings of International symposium on Geoenvironmental Engineer. Hangzhou, China 2009.
    [20]Dave SR, Natarajan KA. Microbial ecology of some Indian sulphidic mines[J]. Transactions of the Indian Institute of Metals,1987,40(4):315-327.
    [21]Garcia C, Ballester A, Gonzalez F, et al. Microbial activity in weathering columns[J]. Journal of Hazardous Materials,2007,141(3):565-574.
    [22]Lundgren DG, Silver M. Ore leaching by bacteria[J]. Annual Review of Microbiology,1980,34(1):263-283.
    [23]栾和林,喻晗,姚文等.几种浮选尾矿重金属释放的对比与分析[J].有色金属,2004,56(2):109-111.
    [24]Blowes DW, Jambor JL, Hanton-Fong CJ, et al. Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Quebec[J]. Applied Geochemistry,1998,13(6): 687-705.
    [25]Jennings SR, Dollhopf DJ, Inskeep WP. Acid production from sulfide minerals using hydrogen peroxide weathering[J]. Applied Geochemistry,2000,15(2): 235-243.
    [26]Lin Z, Roger B, Herbert J. Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden[J]. Envionmental Geology,1997,33(1):1-12.
    [27]Elberling B, Damgaard LR. Microscale measurements of oxygen diffusion and consumption in subaqueous sulfide tailings[J]. Geochimica et Cosmochimica Acta,2001,65(12):1897-1905.
    [28]Elberling B, Schippers A, Sand W. Bacterial and chemical oxidation of pyritic mine tailings at low temperatures[J]. Journal of Contaminant Hydrology,2000, 41(3-4):225-238.
    [29]Escobar B, Buccicardi S, Morales G, et al. Biooxidation of ferrous iron and sulphide at low temperatures:Implications on acid mine drainage and bioleaching of sulphide minerals[J]. Hydrometallurgy,2010,104(3-4):454-458.
    [30]Benner SG, Gould WD, Blowes DW. Microbial populations associated with the generation and treatment of acid mine drainage [J]. Chemical Geology,2000, 169(3-4):435-448.
    [31]Schumann R, Kawashima N, Li J, et al. Passivating surface layer formation on pyrite in neutral rock drainage.8th International Conference on Acid Rock Drainage. Sweden 2009.
    [32]Schippers A, Jozsa PG, Sand W. Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation[J]. Geomicrobiology Journal,2000,17(2):151-162.
    [33]Schippers A, Hallmann R, Wentzien S, et al. Microbial Diversity in Uranium Mine Waste Heaps[J]. Applied and Environmental Microbiology,1995,61(8): 2930-2935.
    [34]Schippers A, Von Rege H, Sand W. Impact of microbial diversity and sulfur chemistry on safeguarding sulfudic mine waste[J]. Minerals Engineering,1996, 9(10):1069-1079.
    [35]Holmstrom H, Ljungberg J, Ohlander B. Role of carbonates in mitigation metal release from mining waste Evidence from humidity cells tests [J]. Environmental Geology,1999,37(4):267-280.
    [36]Sand W, Jozsa P-G, Kovacs Z-M, et al. Long-term evaluation of acid rock drainage mitigation measures in large lysimeters[J]. Journal of Geochemical Exploration,2007,92(2-3):205-211.
    [37]陈骏,姚素平.地质微生物学及其发展方向[J].高校地质学报,2005,11(2):154-1166.
    [38]Oprime ME, Jr OG, Cardoso AA. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. Process Biochemistry, 2001,37(2):111-114.
    [39]Quatrini R, Appia-Ayme C, Denis Y, et al. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transerptome proffling[J]. Hydrometallurgy,2006,83(1-4):263-272.
    [40]Tributsch H, Rojas-Chapana JA. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity[J]. Electrochimica Acta,2000,45(28): 4705-4716.
    [41]Bruneel O, Duran R, Koffi K, et al. Microbial diversity in a pyrite-rich tailings impoundment (Carnoules, France)[J]. Geomicrobiology Journal,2005,22(5): 249-257.
    [42]Koschorreck M. Microbial sulphate reduction at a low pH[J]. FEMS Microbiology Ecology,2008,64(3):329-342.
    [43]Do Id B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diiffraction (DXRD)[J]. Applied Geochemistry,2003,18(10):1531-1540.
    [44]Sracek O, Mihaljevic M, Kribek B, et al. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia[J]. Journal of African Earth Sciences,2010,57(1-2):14-30.
    [45]Dold B, Fontbote L. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing[J]. Journal of Geochemical Exploration,2001,74(1-3):3-55.
    [46]Ohtsu N, Nomura A, Oku M, et al. X-ray photoelectron spectroscopic studies on oxidation behavior of nickel and iron aluminides under oxygen atmosphere at low pressures[J]. Applied Surface Science,2008,254(17):5336-5341.
    [47]Majzlan J, Lalinska B, Chovan M, et al. The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia)[J]. Geochimica et Cosmochimica Acta,2007,71(17):4206-4220.
    [48]Dold B. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste[J]. Journal of Geochemical Exploration,2003,80(1):55-68.
    [49]Garcia G, Penas JM, Manteca JI. Zn mobility and geochemistry in surface sulfide mining soils from SE Spain[J]. Environmental Research,2008,106(3):333-339.
    [50]Czerewko MA, Crpps JC, Duffell CG, et al. The distribution and evaluation of sulfur species in geological materials and manmade fills [J]. Cement and Concrete Composites,2003,25(8):1025-1034.
    [51]Schippers A, Jozsa P, Sand W. Sulfur chemistry in bacterial leaching of pyrite[J]. Applied and Environmental Microbiology,1996,62(9):3424-3431.
    [52]Schumann R, Stewart W, Miller S, et al. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method[J]. Science of the Total Environment,2012,424(1):289-296.
    [53]束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力[J].环境科学,2001,22(3):113-117.
    [54]Sobek A, Schuller W, Freeman J, et al. Field and laboratory methods applicable to overburden and mine soils. In:Agency United States Environmental Protection, editor. Washington D C 1978.
    [55]Miller S, Robertson A, Donohue T. Advances in acid drainage prediction using the net acid generation (NAG) test. Proceedings of the Fourth International Conference on Acid Rock Drainage. Vancouver, Canada1997. p.535-549.
    [56]束文圣,黄立南,张志权等.几种矿业废物的酸化潜力[J].中国环境科学,1995,19(5):402-405.
    [57]Price W, Morin K, Hutt N. Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia:Part Ⅱ Recommended procedures for static and kinetic testing. Proceeding of the 4th International Conference on the Abatement of Acid Rock Drainage. Vancouver, Canada: Vancouver:MDAG; 1997.
    [58]Garcia C, Ballester A, Gonzalez F, et al. Factors affecting the transformation of a pyritic tailing:scaled-up column tests[J]. Journal of Hazardous Materials,2005, 118(1-3):35-43.
    [59]Kock D, Schippers A. Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage[J]. Hydrometallurgy,2006,83(1-4): 167-175.
    [60]Yang SX, Liao B, Li JT, et al. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland[J]. Chemosphere,2010,80(8):852-859.
    [61]Lundgren T. The dynamics of oxygen transport into soil covered mining waste deposits in Sweden[J]. Journal of Geochemical Exploration,2001,74(1-3): 163-173.
    [62]Burckhard SR, Schwab AP, Banks MK. The effects of organic acids on the leaching of heavy metals from mine tailings[J]. Journal of Hazardous Materials, 1995,41(2-3):135-145.
    [63]Simms P, Yanful E. Some insights into the performance of an experimental soil cover near London, Ontario[J]. Canadian Geotechnical Journal,1999,36(5): 846-860.
    [64]Mudd GM, Patterson J. Continuing pollution from the Rum Jungle U-Cu project: a critical evaluation of environmental monitoring and rehabilitation[J]. Environmental Pollution,2010,158(5):1252-1260.
    [65]Nason P, Johnson RH, Neuschutz C, et al. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation:A field evaluation[J]. Journal of Hazardous Materials,2014,267:245-254.
    [66]Jacob DL, Otte ML. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types[J]. Science of the Total Environment,2004,333(1-3):9-24.
    [67]Wilkinson F, Beckett P, St-Germain P. Establishment of wetland plants on flooded mine tailings. IMWA Proceedings. Sevilla, Spain.1999.
    [68]Das M, Maiti SK. Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond[J]. Environmental Monitoring and Assessment,2008,137(1-3):343-350.
    [69]Jacob D, Otte M. Conflicting processes in the wetland plant rhizosphere:metal retention or mobilization?[J]. Water Air and Soil Pollution,2003,3(1):91-104.
    [70]Lin C, Clark M, Mcconchie D. Effects of BauxsolTM on the immobilization of soluble acid and environmentally significant metals in acid sulfate soils[J]. Australian Journal of Soil Research,2002,40(5):805-815.
    [71]Ye Z, Shu W, Zhang Z. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques[J]. Chemosphere,2002,47(10): 1103-1111.
    [72]Gray CW, Dunham S J, Dennis PG, et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J]. Environmental Pollution,2006,142(3):530-539.
    [73]Walker DJ, Clemente R, Bernal MP. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste[J]. Chemosphere,2004,57(3):215-224.
    [74]Alvarenga P, Palma P, Goncalves AP, et al. Organic residues as immobilizing agents in aided phytostabilization:(Ⅱ) effects on soil biochemical and ecotoxicological characteristics [J]. Chemosphere,2009,74(10):1301-1308.
    [75]Bolan N, Duraisamy V. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals:a review involving specific case studies[J]. Australian Journal of Soil Research,2003,41(3): 533-555.
    [76]Adriano DC, Wenzel WW, Vangronsveld J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma,2004,122(2-4):121-142.
    [77]David M, Atallah G, Chatterjee S. Inhibition of pyrite oxidation by a phospholipid in the presence of silicate[J]. Environmental Science and Technology,2004,38(12):3432-3441.
    [78]Theodoratus P, Moirou A, Xenidis A, et al. The use of sewage sludge for the stabilization of soil contaminated by mining activities[J]. Journal of Hazardous Materials,2000,77(1-3):177-191.
    [79]Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control[J]. Minerals Engineering,2000,13(5):563-574.
    [80]Cravotta C. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine[J]. Ground Water,1998,35(6):9-19.
    [81]Forsberg LS, Led in S. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings[J]. Science of the Total Environment, 2006,358(1-3):21-35.
    [82]Kolmert A, Johnson D. Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria[J]. Journal of Chemical Technology and Biotechnology,2001,76(8):836-843.
    [83]Adams L, Harrison J, Lloyd J, et al. Activity and diversity of Fe(Ⅲ)-reducing bacteria in a 3000-year-old acid mine drainage site analogue[J]. Geomicrobiology Journal,2007,24(3-4):295-305.
    [84]Praharaj T, Fortin D. Seasonal variations of microbial sulfate and iron reduction in alkaline Pb-Zn mine tailings (Ontario, Canada)[J]. Applied Geochemistry, 2008,23(12):3728-3740.
    [85]Bleeker P, Assuncao A, Teiga P, et al. Revegetation of the acidic, as contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses[J]. Science of the Total Environment,2002,300(1-3):1-13.
    [86]Miao Z, Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China[J]. Journal of Environmental Management,2000, 59(3):205-215.
    [87]Conesa HM, Faz A, Arnaldos R. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain)[J]. Chemosphere,2007,66(1):38-44.
    [88]Neel C, Bril H, Courtin-Nomade A, et al. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings[J]. Geoderma,2003,111(1-2): 1-20.
    [89]Naeth MA, Chanasyk DS, Burgers TD. Vegetation and soil water interactions on a tailings sand storage facility in the athabasca oil sands region of Alberta Canada[J]. Physics and Chemistry of the Earth, Parts A/B/C,2011,36(1-4): 19-30.
    [90]Jacob DL, Otte ML. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond[J]. Environmental Pollution,2004,130(3):337-345.
    [91]Nyamadzawo G, Mapanda F, Nyamugafata P, et al. Short-term impact of sulphate mine dump rehabilitation on the quality of surrounding groundwater and river water in Mazowe District, Zimbabwe[J]. Physics and Chemistry of the Earth, Parts A/B/C,2007,32(15-18):1376-1383.
    [92]Martin-Crespo T, Ignacio-San Jose C, Gomez-Ortiz D, et al. Monitoring study of the mine pond reclamation of Mina Concepcion, Iberian Pyrite Belt (Spain)[J]. Environmental Earth Sciences,2009,59(6):1275-1284.
    [93]Mench M, Bussiere S, Bo is son J, et al. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments[J]. Plant and Soil, 2003,249(1):187-202.
    [94]Shu W, Ye Z, Lan C, et al. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility[J]. Environment International,2001,26(5-6):389-394.
    [95]孙庆业,任冠举,杨林章等.自然植物群落对铜尾矿废弃地土壤酶活性的影响[J].土壤学报,2005,42(1):37-43.
    [96]Zhan J, Sun Q-y. Development of microbial properties and enzyme activities in Copper mine wasteland during natural restoration[J]. Catena,2014,116:86-94.
    [97]Akcil A, Koldas S. Acid Mine Drainage (AMD):causes, treatment and case studies[J]. Journal of Cleaner Production,2006,14(12-13):1139-1145.
    [98]Lei LQ, Song CA, Xie XL, et al. Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia) [J]. Transactions of Nonferrous Metals Society of China,2010, 20(8):1488-1493.
    [99]Jordan SN, Mullen GJ, Courtney RG. Utilization of spent mushroom compost for the revegetation of lead-zinc tailings:effects on physico-chemical properties of tailings and growth of Lolium perenne[J]. Bioresource Technology,2008,99(17): 8125-8129.
    [100]Asensio V, Vega FA, Andrade ML, et al. Tree vegetation and waste amendments to improve the physical condition of copper mine soils[J]. Chemosphere,2013, 90(2):603-610.
    [101]Moreno-Jimenez E, Esteban E, Carpena-Ruiz RO, et al. Phytostabilisation with Mediterranean shrubs and liming improved soil quality in a pot experiment with a pyrite mine soil[J]. Journal of Hazardous Materials,2012,201-202(1):52-59.
    [102]Clemente R, Walker DJ, Bernal MP. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain):the effect of soil amendments[J]. Environmental Pollution,2005,138(1):46-58.
    [103]Ginocchio R. Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile[J]. Environmental Pollution, 2004,127(3):343-352.
    [104]Perez-de-Mora A, Madrid F, Cabrera F, et al. Amendments and plant cover influence on trace element pools in a contaminated soil[J]. Geoderma,2007, 139(1-2):1-10.
    [105]Moreno-Jimenez E, Vazquez S, Carpena-Ruiz RO, et al. Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain:a field experiment[J]. Journal of Environmental Management,2011,92(6): 1584-1590.
    [106]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [107]Yin G, Catalan L. Use of Alkaline Extraction to Quantify Sulfate Concentration in Oxidized Mine Tailings[J]. Journal of Environmental Quality,2003,32(6): 2410-2413.
    [108]Saggar S, Bettany J, Stewart J. Measurement of microbial sulfur in soil[J]. Soil Biology and Biochemistry,1981,13(6):491-498.
    [109]Neumann-Mahlkau P. Acidification by pyrite weathering on mine waste stockpiles, Ruhr District, Germany[J]. Engineering Geology,1993,34(3-4): 125-134.
    [110]Hayes SM, White SA, Thompson TL, et al. Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings:Coupling chemical and micro-scale analyses[J]. Applied Geochemistry,2009,24(12): 2234-2245.
    [111]Kabas S, Faz A, Acosta JA, et al. Effect of marble waste and pig slurry on the growth of native vegetation and heavy metal mobility in a mine tailing pond[J]. Journal of Geochemical Exploration,2012,123:69-76.
    [112]Morrell JW, Stewart RB, Gregg PEH, et al. An assessment of sulphide oxidation in abandoned base-metal tailings, Te Aroha, New Zealand [J]. Environmenlal Pollution,1996,94(2):217-225.
    [113]Sand W, Rohde K, Sobotke B, et al. Evaluation of Leptospirillum ferrooxidans for Leaching[J]. Applied and Environmental Microbiology,1992,58(1):85-92.
    [114]Lowson RT. Aqueous oxidation of pyrite by molecular oxygen[J]. Chemical Reviews,1982,82(5):461-497.
    [115]Wentzien S, Sand W, Albertsen A, et al. Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography[J]. Archives of Microbiology,1994,161(2):116-125.
    [116]Ferreira TO, Otero XL, Vidal-Torrado P, et al. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate[J]. Geoderma,2007,142(1-2):36-46.
    [117]Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control[J]. Minerals Engineering,2000 13(5):563-574.
    [118]Tuttle J, Dugan P. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds[J]. Canadian Journal of Microbiology,1976,22(5):719-730.
    [119]Onysko SJ, Kleinmann RLP, Erickson PM. Ferrous iron oxidation by Thiobacillus ferrooxidans:inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate[J]. Applied and Environmental Microbiology,1984,48(1): 229-231.
    [120]Otero XL, Ferreira TO, Vidal-Torrado P, et al. Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia-Brazil)[J]. Applied Geochemistry,2006,21(12):2171-2186.
    [121]Otero XL, Alvarez E, Fernandez-Sanjurjo MJ, et al. Micronutrients and toxic trace metals in the bulk and rhizospheric soil of the spontaneous vegetation at an abandoned copper mine in Galicia (NW Spain)[J]. Journal of Geochemical Exploration,2012,112:84-92.
    [122]Darrah PR. The rhizosphere and plant nutrition:a quantitative approach[J]. Plant and Soil,1993,155-156(1):1-20.
    [123]Czarnes S, Hiller S, Dexter AR, et al. Root:soil adhesion in the maize rhizosphere:the rheological approach[J]. Plant and Soil,1999,211(1):69-86.
    [124]Dexter AR. Compression of soil around roots[J]. Plant and Soil,1987,97(3): 401-406.
    [125]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237(2): 173-195.
    [126]Darrah PR. The rhizosphere and plant nutrition:a quantitative approach[J]. Plant and Soil,1993,155-156(1):1-20.
    [127]Gobran GR, Clegg S, Courchesne F. Rhizospheric processes influencing the biogeochemistry of forest ecosystems[J]. Biogeochemistry,1998,42(1-2): 107-120.
    [128]Hinsinger P, Plassard C, Jaillard B. Rhizosphere:A new frontier for soil biogeochemistry[J]. Journal of Geochemical Exploration,2006,88(1-3): 210-213.
    [129]Epelde L, Becerril JM, Barrutia O, et aL Interactions between plant and rhizosphere microbial communities in a metalliferous soil[J]. Environmental Pollution,2010,158(5):1576-1583.
    [130]Nye PH. Changes of pH across rhizosphere induced by roots[J]. Plant and Soil, 1981,61(1-2):7-26
    [131]Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist,2004,163(3):459-480.
    [132]Dessureault-Rompre J, Nowack B, Schulin R, et al. Modified micro suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution[J]. Plant and Soil,2006,286(1-2):99-107.
    [133]Li T, Di Z, Islam E, et al. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation[J]. Journal of Hazardous Materials, 2011,185(2-3):818-823.
    [134]Luo Y, Christie P, AJ. B. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn Cd-contaminated soil[J]. Chemosphere,2000,41(1-2):161-164.
    [135]Fitz WJ, Wenzel WW. Arsenic transformations in the soil-rhizosphere-plant system fundamentals and potential application to phytoremediation[J]. Journal of Biotechnology,2002,99(3):259-278.
    [136]Neumann G, Massonneau A, Martinoia E, et al. Physiological adaptations to phosphorus deficiency during proteo id root development in white lupin[J]. Planta, 1999,208(3):373-382.
    [137]Rufyikiri G, Dufey JE, Nootens D, et al. Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. II. Water and nutrient uptake[J]. Fruits,2001, 56(1):5-16.
    [138]Bienfait HF. Prevention of stress in iron metabolism of plants[J]. Acta Botanica Neerlandica,1989,38(2):105-130.
    [139]Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants the importance of root exudation and its impact on microbial activity and nutrient availability[J]. Applied Soil Ecology,1997, 5(1):29-56.
    [140]Rao TP, Yano K, Iijima M, et al. Regulation of rhizosphere acidification by photosynthetic activity in cowpea (Vigna unguiculata L. Walp.) seedlings[J]. Annals of Botany,2002,89(2):213-220.
    [141]Tang C, Han XZ, Qiao YF, et al. Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L.) Murr.][J]. Environmental and Experimental Botany,2009,67(1):228-234.
    [142]Chopin El, Marin B, Mkoungafoko R, et al. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France[J]. Environmental Pollution,2008,156(3): 1092-1098.
    [143]Perez-de-Mora A, Madejon E, Burgos P, et al. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils[J]. Science of the Total Environment,2006,363(1-3):28-37.
    [144]Riley D, Barber S. Salt accumulation at the soybean (Glycine Max. (L.) Merr.) root-soil interface[J]. Soil Science Society of America Proceedings,1970,34(1): 154-155.
    [145]Wang Z, Shan X, Zhang S. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils[J]. Chemosphere, 2002,46(8):1163-1171.
    [146]Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant and Soil,2002,245(1):35-47.
    [147]徐德聪,詹婧,陈政等.植香根草对铜尾矿废弃地基质化学和生物学性质的影响[J].生态学报,2012,32(18):5683-5691.
    [148]Bertrand I, Hinsinger P, Jaillard B, et al. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite[J]. Plant and Soil,1999,211:111-119.
    [149]Leywal C, Berthelin J. Weathering of a mica by roots and rhizospheric microorganisms of pine[J]. Soil Science Society of America Journal,1991,55(4): 1009-1016.
    [150]于天仁.土壤化学原理[M].北京:科学出版社,1987.
    [151]Crowley DE, Gries D. Modelling of iron availability in the plant rhizosphere[M]. In:Manthey JA, Crowley DE, et al., editors. Biochemistry of Metal Micronutrients in the Rhizosphere. Boca Raton:Lewis; 1994. p.199-224.
    [152]Bidel LPR, Renault P, Pages L, et al. Mapping meristem respiration of Prunus persica (L.) Batsch seedlings:potential respiration of the meristems, O2 diffusional constraints and combined effects on root growth [J]. Journal of Experimental Botany,2000,51(345):755-768.
    [153]Van Breemen N. Effect of redox processes on soil acidity[J]. Netherlands Journal of Agricultural Science,1987,35(3):271-280.
    [154]Meier CL, Bowman WD. Links between plant litter chemistry, species diversity, and below-ground ecosystem function[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(50):19780-19785.
    [155]Srivastava J, Kayastha S, Jamil S, et al. Environmental perspectives of Vetiveria zizanioides (L.) Nash[J]. Acta Physiologiae Plantarum,2008,30(4):413-417.
    [156]Pang J, Chan GSY, Zhang J, et al. Physio logical aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes[J]. Chemosphere,2003, 52(9):1559-1570.
    [157]林波,刘庆,吴彦等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [158]Xu RK, Coventry DR, Farhoodi A, et al. Soil acidification as influenced by crop rotations, stubble management, and application of nitrogenous fertiliser, Tarlee, South Australia[J]. Australian Journal of Soil Research,2002,40(3):483-496.
    [159]Xu JM, Tang C, Chen ZL. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology and Biochemistry,2006,38(4):709-719.
    [160]Tang C, Yu Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation[J]. Plant and Soil, 1999,215(1):29-38.
    [161]BolanNS, Hedley MJ, White RE. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures[J]. Plant and Soil,1991,134(1): 53-63.
    [162]Marschner B, Noble AD. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials[J]. Soil Biology and Biochemistry,2000,32(6):805-813.
    [163]Noble AD, Randall PJ. Alkalinity effects of different tree litters incubated in an acid soil of NSW,Australia[J]. Agroforestry Systems,1999,46(2):147-160.
    [164]Meda AR, Cassiolato ME, Pavan MA, et al. Alleviating soil acidity through plant organic compounds[J]. Brazilian Archives of Biology and Technology, 2001,44(2):185-189.
    [165]Bessho T, Bell LC. Soil solid and solution phase changes and mung bean response during amelioration of aluminium toxicity with organic matter[J]. Plant and Soil,1992,140(2):183-196.
    [166]Hoyt PB, Turner RC. Effects of organic materials added to very acid soils onpH, aluminum, exchangeable NH4+, and crop yields[J]. Soil Science,1975,119(1): 227-237.
    [167]Hue NV, Amien I. Aluminum detoxification with green manures[J]. Communications in Soil Science and Plant Analysis,1989,20(15-16): 1499-1511.
    [168]Pocknee S, Sumner ME. Cation and Nitrogen Contents of Organic Matter Determine Its Soil Liming Potential[J]. Soil Science Society of America Journal, 1997,61(1):86-92.
    [169]Yan F, Schubert S, Mengel K. Soil pH increase due to biological decarboxylation of organic anions[J]. Soil Biology and Biochemistry,1996, 28(4-5):611-624.
    [170]Yan F, Schubert S, Mengel K. Soil pH changes during legume growth and application of plant material[J]. Biology and Fertility of Soils,1996,23(3): 236-242.
    [171]Perez-de-Mora A, Burgos P, Madejon E, et al. Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments[J]. Soil Biology and Biochemistry,2006,38(2):327-341.
    [172]Kuka K, Franko U, Hanke K, et al. Investigation of different amendments for dump reclamation in Northern Vietnam[J]. Journal of Geochemical Exploration, 2013,132(1):41-53.
    [173]Alvarenga P, Goncalves AP, Fernandes RM, et al. Organic residues as immobilizing agents in aided phytostabilization:(Ⅰ) effects on soil chemical characteristics[J]. Chemosphere,2009,74(10):1292-1300.
    [174]国家林业局.中华人民共和国林业行业标准.森林植物与森林枯枝落叶层全氯的测定1999.
    [175]Nicholson RV, Gillham RW, Cherry JA, et al. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers[J]. Canadian Geotechnical Journal,1989,26(1):1-8.
    [176]Harrison AP. Microbial succession and mineral leaching in an artificial coal spoil[J]. Applied and Environmental Microbiology,1978,36(6):861-869.
    [177]Swift MJ, Heal OW, Anderson JM. Decomposition in Terrestrial Ecosystems[M]. University of California Press,1979.
    [178]Motavalli PP, Palm CA, Parton WJ, et al. Soil pH and organic C dynamics in tropical forest soils:Evidence from laboratory and simulation studies[J]. Soil Biology and Biochemistry,1995,27(12):1589-1599.
    [179]Rohwerder T, Gehrke T, Kinzler K, et al. Bio leaching review part A:progress in bio leaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology,2003,63(3):239-248.
    [180]Natscher L, Schwertmann U. Proton buffering in organic horizons of acid forest soils[J]. Geoderma,1991,48(1-2):93-106.
    [181]Haynes RJ. Active ion uptake and maintenance of cation-anion balance:A critical examination of their role in regulating rhizosphere pH[J]. Plant and Soil, 1990,126(2):247-264
    [182]Asensio V, Vega FA, Singh BR, et al. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils[J]. Science of the Total Environment,2013,443(1):446-453.
    [183]Vega FA, Covelo EF, Andrade ML, et al. Relationships between heavy metals content and soil properties in minesoils[J]. Analytica Chimica Acta,2004, 524(1-2):141-150.
    [184]Rotkittikhun P, Chaiyarat R, Kruatrachue M, et al. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer:a glasshouse study[J]. Chemosphere,2007,66(1):45-53.
    [185]田胜尼,孙庆业,王铮峰等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [186]Alvarenga P, Goncalves AP, Fernandes RM, et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of the Total Environment,2008,406(1-2):43-56.
    [187]Song Q, Yanful EK. Oxygen influx and geochemistry of percolate water from reactive mine waste rock underlying a sloping channelled soil cover[J]. Applied Geochemistry,2011,26(5):655-665.
    [188]Conesa HM, Robinson BH, Schulin R, et al. Growth ofLygeum spartum in acid mine tailings:response of plants developed from seedlings, rhizomes and at field conditions[J]. Environmental Pollution,2007,145(3):700-707.
    [189]艾绍英,孙自航,姚建武等.氮肥种类及用量对赤红壤pH和可溶性盐的影响[J].生态环境,2008,17(4):1614-1618.
    [190]Wang B, Xie Z, Chen J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences,2008,20(9):1109-1117.
    [191]Mignardi S, Corami A, Ferrini V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn[J]. Chemosphere,2012,86(4):354-360.
    [192]Mauric A, Lottermoser BG. Phosphate amendment of metalliferous waste rocks, Century Pb-Zn mine, Australia:Laboratory and field trials[J]. Applied Geochemistry,2011,26(1):45-56.
    [193]Basta NT, McGowen SL. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution,2004,127(1):73-82.
    [194]van der Heijden MG, Bardgett RD, van StraalenNM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
    [195]Ma Y, Prasad MN, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258.
    [196]Novo LAB, Covelo EF, Gonzalez L. The use of waste-derived amendments to promote the growth of Indian mustard in copper mine tailings[J]. Minerals Engineering,2013,53:24-30.
    [197]Lindsay MB, Blowes DW, Ptacek CJ, et al. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon:Column experiments[J]. Journal of Contaminant Hydrology,2011,125(1-4):26-38.
    [198]Davis GB, Ritchie AIM. A model of oxidation in pyritic mine wastes:part 1 equations and approximate solution[J]. Applied Mathematical Modelling,1986, 10(5):314-322.
    [199]Yanful EK, Morteza Mousavi S, De Souza LP. A numerical study of soil cover performance[J]. Journal of Environmental Management,2006,81(1):72-92.
    [200]Postma D, Boesen C, Kristiansen H, et al. Nitrate reduction in an unconfined sandy aquifer:water chemistry, reduction processes, and geochemical modeling[J]. Water Resources Research,1991,27(8):2027-2045.
    [201]Qian C, Cai Z. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations[J]. Plant and Soil,2007,300(1-2): 197-205.
    [202]陈哲,吴敏娜,秦红灵等.土壤微生物溶磷分子机理研究进展[J].土壤学报,2009,46(5):925-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700