黄土高原土壤理化性质对活性有机碳库的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以黄土高原几种典型土壤为研究对象,通过对0~15cm和15~30cm土层总有机碳、活性有机碳库及其各组分和土壤理化性质的测定,研究了不同土壤类型和土层深度对总有机碳(TOC)、潜在可矿化碳(Cp)、微生物量碳(SMBC)、易氧化有机碳(ROC)和活性有机碳(LOC)的影响,揭示了土壤理化性质与活性有机碳库的关系,为进一步研究该区域土壤有机碳分布特征,丰富土壤有机碳研究内容,为黄土高原生态环境建设顺利进行提供理论依据。取得的主要结果和结论如下:
     1.黄土高原土壤TOC介于0.20~16.44 g·kg~(-1),处于较低水平。6类土壤TOC含量大小顺序为:褐土>黑垆土>黄绵土>湘黄土>风沙土>潮土,差异达极显著水平。
     2.土壤有机碳累计矿化量集中在0.064~0.596 gCO_2-C·kg~(-1)范围内,有机碳潜在矿化量分布在0.06~0.74 gC·kg~(-1)之间。在培养初期土壤有机碳日均矿化量较高,之后逐渐降低。土壤类型对黄土高原土壤有机碳矿化影响较大,不同土壤有机碳的日均矿化量、累积矿化量和矿化率具有显著差异。一级动力学方程能很好模拟黄土高原土壤有机碳矿化特征。供试土壤Cp和有机碳矿化速率常数(k)均较低,分别在0.116~0.329 gC·kg~(-1)和4.55~8.57×10-5d~(-1)范围之内。不同土壤的Cp值变异较大,而k和Cp/TOC无明显的变异。
     3.供试土壤SMBC、ROC和LOC分别介于15.59~203.90 mg·kg~(-1)、0.174~14.565 g·kg~(-1)和0.031~4.269 mg·g~(-1)范围内,变异系数较大,区域分布不均匀。土壤类型对土壤微生物学特性和有机碳的氧化稳定性影响较大,不同土壤的SMBC、微生物熵、微生物代谢熵(qCO_2)、ROC、Kos和LOC具有极显著差异性。
     4.土层深度对土壤TOC、活性有机碳库各组分及其在TOC中所占比例均无显著影响,除qCO_2和Kos外,其余各活性有机碳库含量及其占TOC比例均随土层加深而呈减少趋势。
     5.黄土高原6种典型土壤中褐土和黄绵土的活性有机碳库含量较高,生物有效性强,有机碳氧化稳定性高,土壤固碳能力较好;潮土和风沙土的活性有机碳库水平较低,有机碳固存能力较弱,碳损失较大。
     6.土壤Cp、SMBC、ROC、LOC与土壤总有机碳、全氮、全磷、速效钾、含水量、粘粉粒含量和经度之间存在显著正相关关系,土壤活性有机碳库各组分随土壤肥力、粘粉粒的增加而增加。土壤活性有机碳库含量从南至北,从东到西均有不同程度的下降。Cp、SMBC、ROC、LOC两两之间均存在着极显著相关性。qCO_2和Kos与活性有机碳库各组分都呈负相关关系,但这两者之间具有极显著正相关关系。ROC对土壤TOC含量的变化最敏感,能够作为指示土壤总有机碳变化的灵敏指标。
In this paper, several types of typical soils in Loess Plateau were collected as research objects. Total organic carbon, different fractions of active organic carbon pool and physicochemical properties of soil in 0~15cm and 15~30cm layers were measured. In this study, the objective was to research the effects of soil types and depth on total organic carbon (TOC), potential mineralizable carbon (Cp), soil microbial biomass carbon (SMBC), readily oxidizable organic (ROC) and labile organic carbon (LOC), and reveal the correlation between soil physicochemical properties and active organic carbon pool. This research had provided theoretical basis for further studying about the distribution characteristic of soil organic carbon, enriching the research contents of soil organic carbon, and ensuring ecological environment construction in Loess Plateau carried out smoothly. The main results and conclusions are as follows:
     1. The TOC of soil in Loess Plateau ranged from 0.20 to 16.44 g·kg~(-1), it was a low level. The size order of TOC was cinnamon soil> dark loessial soil> loessial soil> xiang yellow soil> aeolian sandy soil> alluvial soil, and the difference between 6 types of soil was extremely significant level.
     2. Content of accumulative amount of CO_2-C and Cp of soil organic carbon ranged from 0.064~0.596 gCO_2-C·kg~(-1) and 0.06~0.74 gC·kg~(-1), respectively. The data had a wider dispersion, and variability of data was stronger. The daily amount of SOC mineralization in early time of incubation was greater than the values in late time, i.e., mineralization rate decreased gradually. The soil types had great influence on SOC mineralization, difference of daily average amount, accumulative amount and rate of SOC mineralization between different soil types reached to significant level(P <0.05). The dynamics of SOC mineralization preferably followed the first-order kinetics. Both Cp and k values of all soils were low, Cp ranged from 0.116 to 0.329 gC·kg~(-1) and k ranged from 4.55 to 8.57×10-5 d~(-1). The soil types had great influence on Cp values, but had no obvious effect on k values and Cp/TOC ratio.
     3. The content of SMBC, ROC, LOC of experimental soil ranged from 15.59~203.90 mg·kg~(-1), 0.174~14.565 g·kg~(-1) and 0.031~4.269 mg·g~(-1), respectively. The coefficients of variation were high, and regional distribution of arctive organic carbon pool was uniform. The soil types had great influence on soil microbial characteristics and oxidative stability of soil organic carbon, difference of SMBC concentration, SMBC/TOC, qCO_2 , ROC Kos and LOC concentration between different soil types reached to extremely remarkable level.
     4. Soil depth had no obvious effect on content of TOC, fractions of active organic carbon pool and ration of active organic carbon to TOC. Most of indexes slightly decreased with the increase of soil depth, but the content of qCO_2 and Kos in subsoil were higher than that of upper layer of soil.
     5. The concentrations of active organic carbon pool in cinnamon soil and loessial soil were higher than these of other soils, the bioavailability, oxidative stability and ability of carbon fixation of these two soils were better. The concentrations of active organic carbon pool in alluvial soil and aeolian sandy soil were lower; these two soils had weak ability to fix carbon, the organic carbon loss much.
     6. There was a significant positive correlation between TOC, total nitrogen, total phosphorus, water content, longitude, clay content, silt content and concentrations of active organic carbon pool. It means that fractions of active organic carbon pool significantly increased with increasing soil nutrients, clay content and silt content. Contents of all fractions of active organic carbon pool from south to north, from east to west gradually decreased. Fractions of active organic carbon pool were not only significantly correlated to TOC but also interrelated themselves. qCO_2 and Kos were negatively correlated with all fractions of active organic carbon pool, but there was an obvious positive correlation between themself. ROC was more sensitive to variation of soil TOC, and it was able to be sensitive index to reflex TOC changes.
引文
[1] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1(1): 77~91.
    [2] Karlen D L, Rosek M J, Gardner J C. Conservation reserve program effects on soil quality indicators[J]. Journal of Soil and Water Conservation, 1999, 54(1): 439~444.
    [3]曹丽花,赵世伟.土壤有机碳库的影响因素及调控措施研究进展[J].西北农林科技大学学报:自然科学版, 2007, 35(3): 177~187.
    [4]张小磊,何宽,安春华等.不同土地利用方式对城市土壤活性有机碳的影响——以开封市为例[J].生态环境, 2006, 15(6): 1220~1223.
    [5] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304:1623~1627.
    [6] Smith P. Carbon sequestration in croplands: the potential in Europe and the global context[J]. European Journal of Agronomy, 2004, 20: 229~236.
    [7] Watson R T, Noble I R, Bolin B, et al. Land use, land-use change, and forestry: a special report of the IPCC[M]. Cambridge: Cambridge Uni-versity Press. 2000: 189~217.
    [8] Trumbore S. Carbon respired by terrestrial ecosystem-recent progress and challenges[J]. Global Change Biology, 2006, 12(2): 141~153.
    [9]戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志, 2007, 26(7): 1021~1026.
    [10]沈宏,曹志洪,胡正义.土壤活性碳的表征及其生态意义[J].生态学杂志, 1999, 18(3): 32~38.
    [11]张甲绅,曹军,等.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报, 2000, 31(4): 174~176.
    [12] Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Australian Journal of Soil Research, 1998, 36(4): 669~682.
    [13] Johns M M, Skogley E O. Soil organic matter testing and labile carbon identification by carbonaceous resin capsules[J]. Soil Science Society of America Journal, 1994, 58(3): 751~758.
    [14] Needelman B A, Wander M M, Bollero G A, et al. Interaction of tillage and soil texture: biologically active soil organic matter in Illinois[J]. Soil Science Society of America Journal, 1999, 63: 1326~1334.
    [15] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural, 1995, 46(7): 1459~1466.
    [16]柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志, 2006, 25(11): 1412~1417.
    [17]赵劲松,袁星,张旭东,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报, 2003, 14(1):126~130.
    [18] Liang B C, Mackenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic mater under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1997, 26(2):88~94.
    [19]袁可能.土壤腐殖质氧化稳定性的研究[J].浙江农业科学, 1964, 7: 345~349.
    [20]张春霞,郝明德,魏孝荣,等.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J].土壤肥料, 2004(3): 10~12.
    [21] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Australian of Journal of Soil Research, 1992, 30(2): 192~207.
    [22] Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation[J].Soil Biology and Biochemistry, 2003, 35(9): 1231~1243.
    [23]倪进治,徐建民,谢正苗.土壤轻组有机质[J].环境污染治理技术与设备, 2000, 1(2):58~64.
    [24]苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学, 2003, 36(8): 928~934
    [25]王晶,谢宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志, 2003, 22(6): 109~112.
    [26] Karlen D L, Rosek M J, Gardner J C, et al. Conservation reserve program effects on soil quality indicators[J]. Journal of Soil and Water Conservation, 1999, 54(1): 439~444.
    [27] Wander M M, Traina S J, Stinner B R, et al. Organic and conventional management effects on biologically active soil organic matter pools[J]. Soil Science Society of American Journal, 1994, 58: 1130~1139.
    [28] Coleman D C, Reid C P P, Cole C V. Biological strategies of nutrient cycling in soil systems [J]. Advances in Ecological Research, 1983, 13: 1~55.
    [29] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141~163.
    [30] Loginow W, Wisniewski W, Gonet S S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20(1): 47~52.
    [31]胡宏祥,洪天求,马友华等.土壤及泥沙颗粒组成与养分流失的研究[J].水土保持学报. 2007, 21(1): 26~29.
    [32]江忠善.降雨因素和地形因素与坡地水土流失关系的研究.黄土丘陵沟壑区水土保持型生态农业研究[M] .天则出版社. 1990: 77~87.
    [33]贾松伟,贺秀斌等.黄土丘陵区土壤侵蚀对土壤有机碳流失的影响研究[J].水土保持研究, 2004, 11(4): 88~90.
    [34]中华人民共和国水利部.全国水土流失公告[J].中国水土保持, 2002, 23(2): 48.
    [35]张孝中.黄土高原土壤颗粒组成及质地分区研究[J].中国水土保持, 2002, 3: 11~13.
    [36]彭文英,张科利,杨勤科.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发, 2006, 25(3): 94~99.
    [37]徐香兰,张科利等.黄土高原地区土壤有机碳估算及其分布规律分析[J].水土保持学报, 2003, 17(3): 13~15.
    [38] Duan Z H, Xiao H L, Dong Z B, et al. Estimate of total CO2 output from desertified sandy land in China[J]. Atmospheric Environment, 2001, 35(34): 5915~5921.
    [39] Dawson H J, Ugolini F C, Hrutfiord B F, et al. Role of soluble organics in the soil processes of apodzol, Central Cascades, Washington[J]. Soil Science, 1978, 126(5): 290~296.
    [40] Qualls R G, Haines B L. Geochemistry of dissolved organic Nutrients in water percolating through a forest ecosystem[J]. Soil Science Society of America Journal, 1991, 55: 1112~1123.
    [41] Meyer J L, Edwards R T, Risley R. Bacterial growth on dissolved organic carbon from blackwater river[J].Microbial Ecology, 1987, 13(1): 13~29.
    [42] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277~304.
    [43] Guggenberger G, Glaser B, Zech W. Heavy metal binding by hydrophobic and hydrophilic dissolved organic fractions in a Spodosol A and B horizon[J].Water, Air, and Soil Pollution, 1994, 72: 111~127.
    [44] Lavelle P. Earthworm activities and the soil system[J]. Biology and Fertility of Soil, 1988, 6(3): 237~251.
    [45] McDowell W H, Likens G E. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. Ecology, 1988, 58(3): 177~195.
    [46] Currie W S, Aber J D. Modeling leaching as a decomposition process in humid montane forests[J]. Ecology, 1997, 78(6): 1844~1860.
    [47] Edwards N T, Harris W F. Carbon cycling in a mixed deciduous forest floor[J]. Ecology, 1977, 58(2): 431~437.
    [48] Ajwa H A, Rice C W, Sotomayor D. Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles[J]. Soil Science Society of America Journal, 1998, 62: 942-951.
    [49] Leinweber P, Schulten H R, Korschens M. Hot water extracted organic matter-chemical composition and temporal variations in a long-term field experiment[J]. Biology and Fertility of Soils, 1995, 20(1): 17~23.
    [50]徐江兵,何园球,李成亮,等.不同施肥处理红壤生物活性有机碳变化及与有机碳组分的关系[J].土壤, 2007, 39(4): 633~632.
    [51] McGill W B, Cannon K R, Robertson J A, et al. Dynamics of soil microbial biomass and water-soluble organic C in Berton L after 50 years of cropping to two rotations[J]. Canadian Journal Soil Science, 1986, 66: 1~19.
    [52] Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56: 1799~1806.
    [53] Lu Y H, Wassmann R, Neue H U, et al. Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium and nitrate[J]. Journal of Environmental Quality, 2000, 29: 1733~1740.
    [54]李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J].土壤与环境, 2002, 1(4): 422~429.
    [55]王连峰,潘根兴.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报, 2002, 8(1): 29~34.
    [56]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报, 2003, 20(1): 8~11.
    [57]宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志, 2007, 26(12): 2013~2016.
    [58]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报, 2004, 35(4): 502~506.
    [59] Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155-156(1): 399~402.
    [60] Grandy A S, Robertson G P. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms[J]. Ecosystems, 2007, 10(1): 59~74.
    [61] Wang X J, Li F Y, Fan Z P, et al. Changes of soil organic carbon and nitrogen in forage grass fields, citrus orchard and coniferous forests[J]. Journal of Forestry Research, 2004, 15 (1): 29~32.
    [62]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业出版社, 1999: 146~226.
    [63]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报, 2000, 37(2): 166~173.
    [64] Biederbeck V O, Janzen H H, Campbell, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology Biochemistry, 1994, 26(12): 1656~1674.
    [65] Carter M R. Microbial biomass as an index for tillage-induced changes in soil biological properties[J]. Soil Tillage Research, 1986, 7(1-2): 29~40.
    [66] Powlson D S, Prookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Bilchemistry, 1987, 19(2): 159~164.
    [67] Dobbins D C, Pfaender F K. Methodology for assessing respiration and cellular incorporation of radiolabeled substrates by soil microbial communities[J]. Microbial Ecology, 1988, 15(3): 257~276.
    [68] Saggar S, Yeates G W, Shepherd T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil and Tillage Research, 2001, 58(1-2): 55~68.
    [69] Motavalli P P, Palm C A, Parton W J, et al. Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soils[J]. Soil Biology and Biochemistry, 1994, 26(8): 935~944.
    [70]袁可能.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J].土壤通报, 1963, 11(3): 286~292.
    [71]何云峰,徐建民,侯惠珍,等.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响[J].浙江农业学报, 1998, 10(4): 197~200.
    [72]刘淑霞,刘景双,赵明东,等.土壤活性有机碳与养分有效性及作物产量的关系[J].吉林农业大学学报, 2003, 25(5): 539~543.
    [73] Blair G J, Lefroy R D B, Singh B P, et al. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate. In: Cadisch G, Giller K E, et al. Drive by nature: plant litter quality and decomposition[M]. Wallingford: CAB International. 1997: 273~281.
    [74] Conteh A, Blair G J, Lefroy R D B, et al. Soil organic carbon change in cracking clay soil under cotton production as studied by carbon fractionation[J]. Australian Journal of Agricultural Research, 1997, 48(7): 1049~1058.
    [75] Conteh A, Blair G J. The distribution and relative losses of soil organic carbon fraction in aggregate size fractions from cracking clay soils (Vertisols) under cotton production[J]. Australia Journal of Soil Research, 1998, 36(2): 257~271.
    [76] Blair N, Crocker G J. Crop rotation effects on soil carbon and physical fertility of two Australian soils[J]. Australian Journal of Soil Research, 2000, 38(1): 71~84.
    [77] Mendham D S, Connell A M O, Grove T S. Organic matter characteristics under native forest, long term pasture, and recent conversion to Eucalyptus plantations in Western Australia: microbial biomass, soil respiration, and permanganate oxidation[J]. Australian Journal of Soil Research, 2002, 40(5): 859~872.
    [78] Blair G, Lefroy R, Whitbread A, et al. The Development of the KMnO4 oxidation technique to determine labile carbon in soil and its use in a carbon management index. In: Lal R, Kimble J M, Follett R F, et al. Assessment methods for soil carbon[M]. Boca Raton, Florida: Lew is Publishers. 2001, 323~337.
    [79]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报, 2004, 28(5): 657~664.
    [80]罗友进,王子芳,高明,等.不同耕作制度对紫色水稻土活性有机质及碳库管理指数的影响[J].水土保持学报, 2007, 21(5): 55~58.
    [81]戴全厚,刘国彬,薛萐,等.侵蚀环境人工灌木林土壤活性有机碳与碳库管理指数演变[J].西北农业学报, 2008, 17(5): 215~219.
    [82]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报, 2005, 25(3): 513~519.
    [83] Dalal R C, Henderson P A, Glasby J M. Organic matter and microbial biomass in a vertisol after 20 yr of zero-tillage[J]. Soil Biology and Biochemistry, 1991, 23(5): 435~441.
    [84] Gregorich E G, Carter M R, Angers D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science, 1994, 74(4): 376~385.
    [85] Ladd J N, Amato M. Relationships between biomass 14C and soluble organic 14C of a range of fumigated soils[J]. Soil Biology and Biochemistry, 1988, 20(1): 115~116.
    [86] Anderson T H, Domsch K H. Ratios of microbial biomass to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471~479.
    [87] Insam H, Parkinson D, Domsch K H. Influence of macroclimate on soil microbial biomass[J]. Soil Biology and Biochemistry, 1989, 21(2): 211~221.
    [88] Follett R F, Schimel D S. Effect of tillage practices on microbial biomass dynamics[J]. Soil Science Society America Journal, 1989, 53: 1091~1096.
    [89] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167~1169.
    [90] Lützow M V, Leifeld J, Kainz M, et al. Indications for soil organic matter quality in soils under different management[J].Geoderma, 2002, 105(3-4): 243~258.
    [91] Insam H, Mitchell C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols[J]. Soil Biology and Biochemistry, 1991, 23(5): 459~464.
    [92] Wardle D A, Parkinson D. Interactions between microclimatic variables and the soil microbial biomass[J]. Biology Fertility of Soils. 1990, 9(3): 273~280.
    [93] Franzluebbers A J, Haney R L, Hons F M. Active fractions of organic matter in soils with different texture[J]. Soil Biology and Biochemistry, 1996, 28(10-11): 1367~1372.
    [94]倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报, 2001, 7(1): 56~63.
    [95] Jastrow J D. Soil aggregate formation and accrual of particulate and mineral-associated organic matter[J].Soil Biology and Biochemistry, 1996, 28(4-5): 665~676.
    [96] Franzluebbers A J. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biology and Biochemistry, 1999, 31(8): 1083~1090.
    [97]吴金水.土壤有机质及其周转动力学.见何电源主编,中国南方土壤肥力与栽培植物施肥[M].北京:科学出版社, 1994: 28~62.
    [98]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学, 2005, 41(1): 10~13.
    [99]易志刚,蚁伟民,丁明懋.鼎湖山自然保护区土壤有机碳、微生物生物量碳和土壤CO2浓度垂直分布[J].生态环境, 2006, 15(3): 611~615.
    [100] C?téL, Brown S, ParéD, et al. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood[J]. Soil Biology and Biochemistry, 2000, 32(8-9): 1079~1090.
    [101] Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621~626.
    [102] Yang Y S, Chen G S, Guo J F, et al. Litter decomposition and nutrient release in a mixed forest of Cunninghamia Lanceolata and Tsoongiodendron Odorum[J]. Acta Phytoecologica Sinica, 2002, 26(3): 275~282.
    [103] García C, Hernández T. Organic matter in bare soils of the mediterranean region with a semiarid climate[J]. Arid Land Research and Management, 1996, 10(1): 31~41.
    [104] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1173~1179.
    [105] Jenkinson D S and Ayanaba A. Decomposition of carbon-14 labeled plant material under tropical conditions[J]. Soil Science Society of America Journal, 1977, 41: 912~915.
    [106] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry, 1995, 27(6): 753~760.
    [107]黄东迈,朱培立,王志明,等.旱地和水田有机碳分解速率的探讨与质疑.土壤学报, 1998, 35(4): 482~492.
    [108] Van der Linden A M A, Van Veen J A, Frissel M J. Modelling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures[J]. Plant and Soil, 1987, 101(1): 21~28.
    [109] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology Biochemical, 1995, 27(6): 753~760.
    [110] Dalias P, Anderson J M, Bottner P, et al. Temperature responses of carbon mineralization in coniferforest soils from different regional climates incubated under standard laboratory conditions[J]. Global Change Biology, 2001, 6: 181~192.
    [111] Christensen B T. Physical fractionation of soil organic matter in primary particle size and density separates[J]. Advances in Soil Science, 1992, 20: 1~90.
    [112] Fang C, Smith P, Moncrieff J B, et al. Similar response of liable and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433: 57~59.
    [113] Tiessen H, Stewart J W B, Bettany J R. Cultivation effects on the amounts and concentration of carbon, nitrogen and phosphorus in a grassland soils[J]. Agronomy Journal, 1982, 74: 831~835.
    [114] Golchin A, Clarke P, Oades J M, et al. The effects of cultivation on the composition of organic-matter and structural stability of soils[J]. Australian Journal of Soil Research, 1995, 33(6): 975~993.
    [115] Khanna P K, Ludwig B, Bauhus J, et al. Assessment and significance of labile organic C pools in forest soils. In: Lal R, Kimble J M, Follett R F, et al. Assessment methods for soil carbon[M]. Boca Raton, Florida: Lewis Publishers. 2001, 167~182.
    [116]苏永中,赵哈林,张铜会,等.不同退化沙地土壤碳的矿化潜力[J].生态学报, 2004, 24(2): 372~378.
    [117] Ross D J, Tate K R, Scott N A, et al. Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology and Biochemistry, 1999, 31(6): 803~813.
    [118]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报, 2002, 13(6): 709~714.
    [119]杨钙仁,张文菊,童成立,等.温度对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2): 243~248.
    [120]任秀娥,童成立,孙中林,等.温度对不同粘粒含量稻田土壤有机碳矿化的影响[J].应用生态学报, 2007, 18(10): 2245~2250.
    [121]李忠佩,林心雄.瘠薄红壤中有机物质的分解特征[J].生态学报, 2002, 22(8): 1224~1230.
    [122]许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报, 2005, 19(6): 193~200.
    [123] Hassink J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization[J]. Soil Biology and Biochemistry, 1994, 26(9): 1221~1231.
    [124]尹云锋,蔡祖聪.不同类型土壤有机碳分解速率的比较[J].应用生态学报, 2007, 18(10): 2251~2255.
    [125]吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报, 2004, 28(4): 530~538.
    [126]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业出版社, 1999: 146~226.
    [127] Goyal S, Chander K, Mundra M C, et al. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions[J]. Biology and Fertility of Soils, 1999, 29: 196~200.
    [128] Baldock J A, Nelson P N. Soil Organic Matter, In: Sumner M E (ed.) Handbook of Soil Science[M]. CRC Press Inc., Boca Raton, USA, 1999: B25~B84.
    [129]潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报, 2002, 25(3): 100~109.
    [130] Kucharik C J, Brye K R, Norman J M, et al. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years[J]. Ecosystems, 2001, 4(3): 237~258.
    [131]王绍强,周成虎,李克让,等.中国土壤有机碳库及分布特征分析[J].地理研究, 2000, 55(5): 533~544.
    [132] Post W M, Izaurralde R C, Mann L K, et al. Monitoring and verifying changes of organic carbon in soil[J]. Climatic Change, 2001, 51(1): 73~99.
    [133] Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolved organic carbon and nitrogen: a synthesis for temperate forests[J]. Biogeochemistry, 2001, 52(2): 173~205.
    [134]黄绍文,金继运,杨俐苹,等.粮田土壤养分的空间格局及其与土壤颗粒组成之间的关系[J].中国农业科学, 2002, 35(3): 297~302.
    [135]王洪杰,李宪文,史学正等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报, 2003, 17(2): 44~50.
    [136]魏朝富,陈世正,谢德体.长期使用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报, 1999, 32(2): 159~166.
    [137]王秀红.我国水平地带性土壤中有机质的空间变化特征[J].地理科学, 2001, 21(1):19~23.
    [138]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报, 2002, 13(6): 709~714.
    [139] Moscatelli M C, Tizio A Di, Marinari S, et al. Microbial indicators related to soil carbon in Mediterranean land use systems[J]. Soil and Tillage Research, 2007, 97 (1): 51~59.
    [140] Leirós M C, Trasar-Cepeda C, Seoane S, et al. Dependence of mineralization of soil organic matter on temperature and moisture[J]. Soil Biology and Biochemistry, 1999, 31(3): 327~335.
    [141]吴建国,艾丽,朱高,等.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素[J].草地学报, 2007, 15(1): 20~28.
    [142]张文菊,童成立,杨钙仁,等.水分对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2): 249~253.
    [143] Hyv?nen R, ?gren G I, Dalias P. Analysing temperature response of decomposition of organic matter[J]. Global Change Biology, 2005, 11(5): 770~780.
    [144]路磊,李忠佩,车玉萍.不同利用年限菜地土壤有机碳矿化动态和酶活性变化[J].土壤, 2006, 38(4): 429~434.
    [145] Ross D J, Tate K R, Feltham C W. Microbial biomass, and C and N mineralization, in litter and mineral soil of adjacent montane ecosystems in a southern beech (Nothofagus) forest and a tussock grassland[J]. Soil Biology and Biochemistry, 1996, 28(12): 1613~1620.
    [146] Franzluebbers A J, Stuedemann J A, Schomberg H H, et al. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA[J]. Soil Biology and Biochemistry, 2000, 32(4): 469~478.
    [147]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报, 2004, 41: 544~552.
    [148]朱书法,刘从强,陶发祥.δ13C方法在土壤有机质研究中的应用[J].土壤学报, 2005, 42: 495~503.
    [149] Franzluebbers A J, Haney R L, Honeycutt C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology and Biochemistry, 2001, 33(7-8): 1103~1111.
    [150] Weintraub M N, Schimel P J. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils[J]. Ecosystems, 2003, 6: 129~143.
    [151]唐国勇,童成立,苏以荣,等.含水量对14C标记秸秆和土壤原有有机碳矿化的影响[J].中国农业科学, 2006, 39(3): 538~543.
    [152]陈国潮,何振立,黄昌勇.红壤微生物生物量C周转及其研究[J].土壤学报, 2002, 39(2): 152~160.
    [153] Beck T H. Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter B?den.Ⅱ. Mitteilung. Beziehungen zum Humusgehalt[J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1984, 147(4): 467~475.
    [154] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 1992, 67(3): 321~358.
    [155] Doran J W. Defining soil quality for a sustainable environment[M]. Soil Science Society of America Special Publication, Madison, Wisconsin, USA, 1994: 3~34.
    [156]何友军,王清奎,汪思龙,等.杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系.应用生态学报[J], 2006, 17(12): 2292~2296.
    [157] Bijayalaxmi D N, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India[J]. Applied Soil Ecology, 2006, 31(3): 220~227.
    [158] Stenberg B, Johansson M, Pell M, et al. Microbial biomass and activities in soil as affected by frozen and cold storage[J]. Soil Biology & Biochemistry, 1998, 30(3): 393~402.
    [159] Bauhus J, ParéD, C?téL. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biology & Biochemistry, 1998, 30(8-9): 1077~1089.
    [160] Sharma P, Rai S C, Sharma R, et al. Effects of land-use change on soil microbial C, N and P in a Himalayan watershed[J]. Pedobiologia, 2004, 48(1): 83~92.
    [161]肖复明,范少辉,汪思龙,等.毛竹林土壤有机碳及微生物量碳特征研究[J].水土保持学报, 2008, 22(6): 128~131.
    [162] Collins H P, Rasmussen P E, Douglas C L Jr. Crop rotation and residue management effects on soil carbon and microbial dynamics[J]. Soil Science Society of America Journal, 1992, 56: 783~788.
    [163]张磊,肖剑英,谢德体,等. Study on microbial characteristics in paddy soil under long term no tillage and ridge culture [J].水土保持学报, 2002, 16(2): 111~114.
    [164] Li F M, Song Q H, Jjemba P K, et al. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem[J]. Soil Biology & Biochemistry, 2004, 36(11):1893~1902.
    [165]贾国梅,方向文,刘秉儒,等.黄土高原弃耕地自然恢复过程中微生物碳的大小和活性的动态[J].中国沙漠, 2006, 26(4): 580~584.
    [166]张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报, 2002, 22(4): 508~512.
    [167]张春霞,郝明德,魏孝荣,等.不同农田生态系统土壤微生物生物量碳的变化研究[J].中国生态农业学报, 2006, 14(1): 81~83.
    [168]汪文霞,周建斌,严德翼,等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报, 2006, 20(6): 103~106.
    [169] Sall S N, Masse D, Ndour N Y B, et al. Does cropping modify the decomposition function and the diversity of the soil microbial community of tropical fallow soil?[J]. Applied Soil Ecology, 2006, 31(3): 211-219.
    [170] Castellazzi M S, Brookes P C, Jenkinson D S. Distribution of microbial biomass down soil profiles under regenerating woodland[J]. Soil Biology & Biochemistry, 2004, 36(9): 1485~1489.
    [171]金发会,李世清,卢红玲,等.石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系.应用生态学报, 2007, 18(12): 2739~2746.
    [172]邓仁菊,杨万勤,张健,等.川西亚高山森林土壤有机层碳、氮、磷储量特征[J].应用与环境生物学报, 2007, 13(4): 492~496.
    [173]刘合明,杨志新,刘树庆.不同粒径土壤活性有机碳测定方法的探讨[J].生态环境, 2008, 17(5): 2046~2049.
    [174]王清奎,汪思龙,冯宗炜,等.土壤有机质及其与土壤质量的关系[J].生态学报, 2005, 25(3): 513~519.
    [175]朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究, 2006, 19(4): 523~526.
    [176]徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 2002, 39(1): 89~95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700