施氮肥对新疆荒漠草原生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过温室模拟试验和野外试验相结合,研究施氮肥对荒漠草原植物物种多样性、土壤微生物种群多样性、土壤微生物功能多样性和土壤微生物遗传多样性的影响,探讨不同量的氮肥添加和不同年限施肥对不同气候条件的荒漠草原生物多样性的影响,从而根据不同的气候类型,利用合理的施肥量和施肥方式去改善退化的荒漠草原生物多样性,为改善荒漠草原土壤质量,提高荒漠草原地上生物量提供理论支持,本研究的主要结论如下:
     (1)施氮肥改变了新疆荒漠草原植物群落物种组成和群落中的优势种,显著增加了地上部分植物的干物质生物量,降低了物种丰富度和Shannon多样性指数、Shannon均匀度指数和Margalef物种丰富度指数,但是连续2年施氮肥使荒漠草原地上部分植物干物质生物量的增加量会逐渐降低,并且物种丰富度和物种多样性的减少趋势会变缓。说明施氮肥可以增加荒漠草原植物干物质生物量,降低植物群落多样性。
     (2)施氮肥可以显著的促进土壤中真菌、放线菌和细菌的数量,连续2年施氮肥更能有利于土壤中三大类微生物的生长与繁殖。土壤中三大类微生物都随着土壤深度的增加而减少,随着施肥时间的延长而先增加后减少,随着施肥量的增加呈现先增加后减低的趋势。并且土壤中三大类微生物与土壤的地理条件和性质有关,降水量高的地区微生物种群数量多,降水量小的地区微生物种群数量少。不同降水量草地对尿素施用的响应不同,降水丰富的草地土壤中微生物对氮肥的响应大,降水量少的草地响应小。说明适量施氮肥可以增加土壤微生物种群多样性。
     (3)施氮肥能够显著增加荒漠草原土壤微生物生物量碳氮,促进土壤中脲酶、蛋白酶、蔗糖酶、碱性磷酸酶、多酚氧化酶和过氧化氢酶的活性,增加土壤微生物对碳源的利用能力。土壤微生物量碳、氮、除多酚氧化酶活性外的其他五种酶都是随土壤深度的增加而减少,多酚氧化酶活性在土壤的中层(10-30cm)最大,其中微生物量、脲酶、蛋白酶、蔗糖酶和碱性磷酸酶的活性随施肥时间的增加呈现先增加后降低趋势,多酚氧化酶和过氧化氢酶的活性随时间的增加呈上升趋势。不同降水量草地对尿素施用的响应不同,降水丰富的草地,施用尿素后土壤不同层次酶活性很快变化,而降水较少草地响应较慢。说明适量施氮肥可以增加土壤微生物功能多样性。
     (4)施肥可以明显增加土壤亚硝酸细菌和氨氧化细菌的DGGE条带数,并且连续两年施肥更有利于这两种细菌DGGE条带的增加,同时,施肥还可以增加土壤亚硝酸氧化细菌和氨氧化细菌的香农指数、均匀度指数和稳定性指数,说明施氮肥可以增加硝化细菌的生物群落多样性。
Greenhouse simulation experiment and wild field experiment were carried out to study effects of nitrogen(N) fertilizition on desert grassland plant, soil microbial species diversity, and population diversity, soil microbial function diversity and soil microbial genetic diversity of desert grassland in xinjiang. Different amount of N fertilizer were added in different three climatic conditions soils to research the desert grassland ecological diversity, and evaluate the effects of the climate type, N fertilization. There would be a better way to improve the desert grassland ecosystem diversity, soil quality, ground biomass. The study would provide theoretical support with main conclusions as follows:
     (1) N fertilization changed desert grassland plant community species composition and the advantage of plant on desert grassland in Xinjiang. It significantly increased the ground biomass of dry matter and reduced the species richness and diversity index, Shannon evenness index and Margalef richness index. Grass biomass of ground were increased slower with 2 years N fertilization than 1 year fertilization, and the species richness and diversity decreased slower too. Result showed that grass biomass were increased but plant community diversity were decreased with N fertilization.
     (2) N fertilization significantly improved numbers of soil bacteria, fungi, and actinomycetes. Soil microbial reproducted more with with 2 years N fertilization than 1 year fertilization. Numbers of soil microbial were decreased with soil depth, but were increased at the beginning and then decreased with increase of days after N fertilization and N application rates in the three soils. Numbers of soil microbial in higher precipitation were more than lower precipitation soil. Efficiency of N fertilization on soil microbial in higher precipitation area were more than lower precipitation area. Result showed that application of nitrogen could increase Numbers of soil microbial and soil microbial diversity.
     (3) N fertilization significantly promoted soil microbial biomass N and carbon, and soil urease, protease, invertase,alkaline phosphatase, polyphenol oxidase activities were significantly increased. Carbon sources utilization ability of soil microbes were increased with N application. The microbial biomass and the enzyme activities except polyphenol oxidase were decreased with soil depth, polyphenol oxidase activity in the soil 10-30cm were largest than other depth. The microbial biomass, urease, protease, invertase and alkaline phosphatase activities were increased at the beginning and then decreased with increase of days after N fertilization in the three soils, but polyphenol oxidase and catalase activities were increased. The soil enzyme activities changed rapidly with N application in higher precipitation area but changed slowly in lower precipitation area. Soil microbial function diversity were increased with N application
     (4) N Fertilization could significantly increased DGGE bands of the soil nitrous acid bacteria and ammonium oxidation bacteria.and there were more bands with 2 years N fertilization than 1 year fertilization. Shannon index, evenness index and stability index of the soil nitrous acid bacteria and ammonium oxidation bacteria were increased with N application treatments. The biological community diversity of nitrifying bacteria were increased with N Fertilization.
引文
白永飞,许志信,李德新.羊草草原群落生物量季节动态的研究[J].中国草地,1994,(3):1-5
    毕江涛,贺达汉,沙月霞,等.荒漠草原不同植被类型土壤微生物群落功能多样性[J].干旱地区农业研究,2009,27(5):149-155
    蔡琼,丁贵杰黔中地区连栽马尾松林对土壤微生物的影响[J].南京林业大学学报:自然科学版,2006,(3): 131-133
    蔡晓布,周进,钱成.不同退化程度高寒草原土壤微生物活性变化特征研究[J].土壤学报,2008,45(6): 1110-1118
    陈良,张春玲,刘晶.对隐子草地上生物量以及营养价值季节动态研究[J].内蒙古草业,2002,14(2):39-41
    陈亚明,李自珍,杜国祯.施肥对高寒草甸植物多样性和经济类群的影响[J].西北植物学报,2004,24(3):424-429
    陈旸,李忠佩,周立祥,等.不同施肥处理对红壤水稻土壤微生物量及呼吸强度的影响[J].土壤学报,2008,40(3):437-442
    付爱良,杨刚,郑晓红,等.新疆荒漠草地退化的原因分析与修复对策探讨[J].草食家畜,2009,1:6-7
    高中超,迟凤琴,赵秋.施肥对退化草原植物群落产量及土壤理化性质的影响[J].草原与草坪,2007,(2): 60-62
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.1-325
    郭天财,宋晓,马冬云,等。 施氮量对冬小麦根际土壤酶活性的影响.应用生态学报,2008,19(1):110-114
    辜运富,云翔,张小平,等.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响[J].中国农业科学,2008,41(12):4119-4123
    黄昌勇.土壤学[M].北京:中国农业出版社,2000.192-214
    黄正,赵芳,刘红艳,等.活性污泥中笑话细菌16SrDNA鉴定方法研究[J].华中科技大学学报,2004,33(3): 269-272
    贺金生,王政权,方精云,等.全球变化地下生态系统的几个重要议题[J].科学通报,2004,49:1226-1233
    胡可,王利宾,窦志忠,等.生物有机无机复混肥肥效评价及其对土壤微生物的影响[J].山西农业大学学报,2006,26(3):275-278
    贾立君.荒漠化:年吞—个中等县[J].2004,(19):1
    贾伟,周怀平,解文艳,等.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,2008,14(4):700-705
    贾志红,孙敏,杨珍平,等.施肥对作物根际微生物的影响[J].作物学报,2005,30(5):491-495
    江小蕾,张卫国,杨振宇,等.不同干扰类型对高寒草甸群落结构和植物多样性的影响[J].西北植物学报,2003,23(9):1479-1485
    蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科学技术出版社,1997
    孔滨,孙波,郑宪清,等.水热条件和施肥对黑土中微生物群落代谢特征的影响[J].土壤学报,2009,46(1): 100-106
    刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响植物[J].生态学报, 2008,32(1):176-182
    刘满强,胡锋,何园球,等.退化红壤不同植被恢复模式下土壤微生物量季节动态及其指标意义[J].土壤学报,2003,40(6):937-943
    刘淑霞,刘景东,赵明东,等.土壤活性有机碳与养分有效性及作物产量的关系[J].吉林农业大学学报,2003,25(5): 539-543
    刘晓梅,方建,张婧,等.长期施肥对麦田土壤微生物垂直分布的影响[J].植物生态学报,2009,33(2): 397-404
    李本银,汪金舫,赵世杰,等.施肥对退化草地土壤肥力、牧草群落结构及生物量的影响[J].中国草地,2004,26(1):14-17
    李博.生态学[M].北京:高等教育出版社,2004,118-119
    李建辉,路盼盼,张亚平.新疆泥火山群土壤细菌群落的DGGE分析[J].吉林大学学报,2010,48(6):1070-1074
    李友发,宋兵,宋亚娜,等.福建省稻田土壤细菌群落的16SrDNA-PCR-DGGE分析[J].微生物学通报,2008,35(11):1715-1720
    李娟,赵秉强,李秀英,等.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学,2008,41(1):144-152
    李自珍,韩晓卓,李文龙,等.高寒湿地植物群落的物种多样性保护及生态恢复对策[J].西北植物学报,2004,24(3):363-369
    罗希茜,郝晓晖,陈涛,等.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2): 740-748
    罗燕江,周九菊,王海洋,等.高寒草甸植物多样性与营养关系[J].兰州大学学报:自然科学版,2004,40(2):84-91
    米国全,袁丽萍,龚元石,等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究[J].农业工程学报,2005,21(7):124-127
    彭佩钦,张文菊,童成立,等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].土壤保持学报,2001,19(1):49-53
    漆良华,张旭东,周金星,等.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J].林业科学,2009,45(8):14-20
    祁永,韩建国.西北干旱和半干旱区草地退化原因分析及治理对策[J].动物生产,2008,44(9):43-45
    申收,林先贵,张华勇,等. 不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性[J].生态学报,2008,28(6):2682-2689
    沈景林,孟杨,胡文良,等.高寒地区退化草地改良试验研究[J].草业学报,1999,8(3):9-14
    沈景林,谭刚,乔海龙,等.草地改良对高寒退化草地植被影响的研究[J].草地学报,2000,(5):49-54
    司守霞,任叔辉,朱瑞琪.我国荒漠化地区的生物多样性保育研究[J].西北林学院学报,2006,21(1):22-27
    孙瑞莲,赵秉强,朱鲁生,等.期定位施肥田土壤酶活性的动态变化特征[J].生态环境,2008,17(5):2059-2063
    覃光莲,杜国祯. 高寒草甸植物群落中相似性、物种多样性与地上生物量的年际变异性[J].西北植物学报,2005,25(5):979-984
    唐海萍,等.新疆准噶尔盆地生物多样性保育与建立国家荒漠公园的构想[J].生物多样性,2008, 16(6): 618-622
    万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J],生态学报,2008,12(28):5980-5986
    王长庭,龙瑞军,王启基,等.不同类型高寒草地群落物种特征和均匀度的重要性[J].草地学报,2005,13(4): 320-323
    王划,等.长期不同施肥方式下土壤酶活性肥力因素的相关性[J].生态环境,2008,17(2):688-692
    王健,刘作新,蔡崇光,等.施肥对油松刺槐混交林土壤微生物种群和酶活性的影响[J].生态学杂志,2004,23(5):89-92
    王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报,2006,25(4): 934-938
    王群,尹飞,郝四平,等.下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响[J].生态学报,2009,29(6):3096-3104
    王树起,韩晓增,乔云发,等.长期施肥对东北黑土酶活性的影响[J].应用生态学报,2008,19(3):551-556
    王英,王爽,等.长期定位施肥对土壤生理转化菌群的影响[J].生态环境,2008,17(6):2418-2420
    吴凤芝,王出,杨阳,等.轮套作对黄瓜根际土壤细菌种群的影响[J].应用生态学报,2008,19(12):2717-2722
    吴景贵,姜岩,姜亦梅,等.非腐解有机物培肥对水田土壤生物量态碳、氮的影响[J].土壤通报,1998,29(4): 158-160
    夏北成,Tiedje J M植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300
    薛冬,姚槐应,何振立,等.红壤酶活性与肥力的关系[J].应用生态学报,2005,16(8):1455-1458
    许光辉,郑洪云.土壤微生物分析方法手册[M].北京:农业出版社,1986: 23-25
    徐福利,梁银丽,张成娥,等.施肥对日光温室黄瓜生长和土壤生物学特性的影响[J].应用生态学报,2004,15(7):1227-1230
    杨官品,男兰,贾海波,等.土壤细菌遗传多样性及其与植被类型相关性的研究[J].遗传学报,2000,27(3): 278282
    姚槐应,何振立,黄昌勇.不同土地利用方式对红壤微生物多样性的影响[J].水土保持学报,2003,17(2): 51-54
    叶家颖,马承豪,杨爱平,等.月柿根际土壤酶活性的研究[J].广西师范大学学报·自然科学版,2000,18(4):82-86
    易志刚,蚁伟民,丁明懋,等.鼎湖山自然保护区土壤有机碳、微生物生物量碳和土壤CO2浓度垂直分布[J].生态环境,2006,15(3):611-615
    袁玲,郑兰君.长期施肥对土壤酶活性和氮磷养分的影响[J].植物营养与肥料学报,1997,3(4):300-306
    曾彦军,王彦荣,南志标,等.阿拉善干旱荒漠区不同植被类型土壤种子库研究[J].应用生态学报,2003,14(9): 1457-1467
    张成娥.地膜覆盖玉米对土壤生物量的影响[J].生态学报,2002,22(4):508-512
    张丽荣,沈瑞清,康萍芝,等.尿素施用量对不同土壤中微生物的影响fJ].宁夏农林科技,2006,31-32
    张彦东,孙志虎,沈有信.施肥对金沙江干热河谷退化草地土壤微生物的影响[J].水土保持学报,2005,19(2):88-91
    张彦东,沈有信,刘文耀,等.金沙江干旱河谷退化草地群落对氮磷施肥的反应[J].植物研究,2004,24(1): 59-64
    张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52
    张永民,赵士洞.全球荒漠化的现状、未来情景及防治对策[J].地球科学进展,2008,23(3):306-311
    赵奎军,马风鸣,姜福臣,等.不同施氮水平对甜菜地和休闲地土壤微生物数量的影响[J].中国甜菜,1995,3:21-25
    赵建民,陈海滨,李景侠.西北干旱荒漠区植物多样性的保护与可持续发展[J].西北林学院学报,2003,18(1):52-57
    赵忠,王安禄,马海生,等.青藏高原东缘草地生态系统动态定位监测与可持续发展要素研究:Ⅱ高寒草甸草地生态系统植物群落结构特征及物种多样性分析[J].草业科学,2002,19(6):9-13
    郑华平,陈子萱,王生荣,等.施肥对玛曲高寒沙化草地植物多样性和生产力的影响[J].草业学报,2007,16(5):34-39
    周国英,陈桂琛,赵以莲,等.施肥和围栏封育对青海湖地区高寒草原影响的比较研究: Ⅰ群落特征及其物种多样性[J].草业学报,2004,13(1):26-31
    朱震达.中国土地荒漠化的概念、成因与防治[J].第四纪研究,1998,(2):145-155
    朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19(4):523-526
    Aon MA,Cabello MN,Sarena DE,et al.Spatiotemporal patterns of soil microbial and enzymatic activities in an agricultural soil[J].Applied Soil Ecology,2001,18:239-254
    A, Pandey H. Ecosystem restoration of Jhum fallows in Northeast India:microbial C and N along altitudinal and successional gradients[J]. Restoration Ecology,2003,11:168-173
    Barberi P.Weed communities of wheat as influenced by input level and rotation[J].Weed Research,1997,37:301-313
    Brookes P C, Andrea L, Pruden G, Jenkinsion D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology and Biohemistry,1985,17(6):837-842
    Campbell C D,Grayston S J,Hirst D J.Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities [J] Journal of Microbiological Methods,1997,30:33-41Copley J.Ecology goes underground [J].Nature,2000,406:452-454
    Carreiro M,Sinsabaugh R,Repert D,et al.Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology,2000,81:2359-2365
    Chu H Y,Fujii Morimoto S E,et al.Community structure of aminonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil [J]. Applied and Environmental Microbiology,2007,73(2):485-491
    Degrance v, Bardin r.Decounting of nitrobacter populations in soil by PCR. Appl Environ Microbiol,1995,62:2093
    Deng SP,Tabatai MA.Effect of tillage and residue management on enzyme activities in soils. Ⅲ.Phosphatasesand arysulphatases[J]. Biology and Fertility of Soils,1997,24:141-146
    Derksen D A.Impact of post-emergence herbicides on weed community diversity within conservation-tillage systems[J].Weed Research,1995,35:311-320
    Dick RP.1997.Soil enzyme activities as integrative indications of soil health//Pankhurst C. ed. Biological Indicators of Soil Health.New York:CAB International:121-156
    Elsas J D van, Duarte G F, Rosado A S, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment [J]. Jour Microbia Methods, 1998,32:133-154
    Foster B L,Gross KL.Species richness in a succesional grassland:effect s of nitrogen enrichment and plant litter[J].Ecology,1998,71:2593-2602
    Garbeva P,Van Veen JA,Van Elsas J D.Microbial diversityin soil:selectionofmicrobialpopulations by plantand soiltypeandimplicationsfor soil suppressiveness[J].Annum Review of Phytopathology,2004, 42:243-270
    Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization[J].Applied and Environmental Microbiology,1991,57(8):2351-2359
    Glendining M J, Powlson D S, Poult on P R, et. al. The effects of long term application of inorga nicnitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment[J]. Ag ri. Sci. (Camb.), 1996,127:347-363
    Goldberg D E, Miller T E.Effects of different resource addition on species diversity in a annual plant community[J].Ecology,1990,71:213-225
    Gough L,Osenberg CW,Gross KL,et al.Fertilization effects on species density and primary productivity in herbaceous plant communities[J].Oikos,2000,89:428-439
    Goyal Sneh, Chander K, Mundra M C, et al.Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions [J]. Biology and Fertility of Soils,1999,29:196-200
    Hang H, Ouyang Z Y,Wang X K,et al.Effects of regenerating forest cover on soil microbial communities:A case study in hilly red soil region, Southern China [J].Forest Ecology and Management, 2005,217(2):244-245
    Hauck R D. Technological approaches to improving the efficiency of nitrogen fertilizer use by crop plant [A]. R. D,Hauck,ed. Nitrogen in crop production [A] ASA-CSSA-SSSA. Madison,1984.551-560
    He J Z,Shen J P,Zhang L M,et al.Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammoniaoxidizing archaea of a Chinese up Ian d red soil under long-term fertilization practices [J].En vironme ntal MICrobiology,2007,9(9):2364-2374
    Henrot J. Vegetation removal in two soils of the hum id tropics:Effect in microbial biomass [J]. Soil Biol. Biochem.1994,26(1):111-116
    Hortan T R, Bruns T D. The molecular revolution in ectomy corrhizalecology:peeking into the black2box [J]. Molecular Ecology,2001,10:1855-1871
    Loranger Merciris G,Barthes Laure,Gatine A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems [J]. Soil Biology & Biochemistry, 2006,38:2336-2343
    McGill W B, Camnon K R, Robertson J A, et al. Dynamic of soil microbial biomass and water soluble or ganic C in BretonL after 50 year s o f cropping to tw o ro tations[J]. soil sci,1986,66:1-19
    Mndahar M S, Hignett T P. Energy and Fertilizer:policy implications for developing counties International Fertilizer Development Center [J]. Technical Bulletin,1982
    Morse D R,Lawton J H,Dodson M,et al.Fractal dimension of vegetation and the distribution of arthropod body lengths[J].Nature,1985,314:731-732
    Muyzer G, Waal E C D, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA [J]. Appl Environ Microbiol,1993,59:695-700
    Rajaniemi T K.Why does fertilization reduce plant species diversity? Testing three competition based hypotheses[J].Journal of Ecology,2002,90:316-324
    Pankhurst C E, O phel Keller K, Doube B M, et al. Biodiversity of soil microbial communities in agricultural systems [J]. Biodiversity and conservation,1996,5:197-209
    Parkhust C E,Bioindicators of soil health and United King don [M].Oxon:CAB international,1997
    Regan J B,Harrington G W,Noguera D R.Ammonia andection and nitrite-oxidizing bacterial communities in a pilotscale chloraminated drinking water distribution system.Appl Environ Microbiol,2002,68:73
    Shen J P, Zhang LM, Zhu Y G, etal. Abundanceand composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea connnunities of an alkaline sandy loam[J]. Environmental Microbiology, 2008,10(11):1601-1611
    Shen S M, Ha rt P B S, Pruden G, et al. The nitrogen cycle in the Broadbalk Wheat Ezperiment:15 N labelled residues in the soil and in the so il micr obial bioma ss[J]. Soil Boil. Boichem.,1989,21: 529-533
    Simek M, Hopkins D W, Kalaik J, Picek T, Santruckova H, Stana J, Travnik K. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications[J]. Biology and Fertility of Soils,1999,29:300-308
    Sparling G P. Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping and after restoration to pasture in soil from them an awalu region [J]. Soil and Tillage Research,1992,24:225-241
    Stevens C J,Dise NB,Mountford JO,et al.Impact of nitrogen deposition on the species richness of grasslands[J].Science,2004,303:1876-1879
    Stevenson F C.Weed species diversity in spring barley varies with crop rotation and tillage,but not with nutrient source[J].Weed Science,1997,45:798-806
    Vance E D, Brookes P C, Jenkison D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry,1987,19:703-707
    Vepslinen M,Kukkonen S,Vestberg M,et al.Application of soil enzyme activity test kit in a field experiment[J].Soil Biology and Biochemistry,2001,33:1665-1672
    Yang YH,Yao J,HuaXM.Efect ofpesticidepollution againstfunctionalmicrobial diversityin soil[J].JoumalofMicrobiology,2000,20(2):23-25
    Zak J C,Willig M R,Moorhead D L,et al.Functional diversity of microbial communities:a quantitive approach[J].Soil Biology and Biochemistry,1994,26:1101-1108
    Zelles L. Fatty acid pattern of phospholipids and lipopolysacharides in the characterization of microbial communities in soil:are view [J].Biology and Fertility of Soils,1999,29:111-129
    Zhao K J, Ma F M, J iang F C, et al. Effect on amount of soil microbe with different level of nitrogen applied in sugarbeet fields and fallow fields[J].China Sugarbeet,1995,3:21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700