降解石油污染的微生物分离、培养及其中试生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对辽河油田油污土壤中土著菌的培养、筛分和驯化,得到了三种对辽河原油具有良好耐受能力的细菌菌种。通过液相降解辽河原油的试验,确定三种细菌均对辽河原油具有很好的降解性能。本文以多次正交试验的方法优化了三种细菌的发酵培养基配方并考查了摇瓶发酵的操作,优化了三种微生物的培养温度及pH值条件。并根据三种细菌的生长曲线建立了菌体的生长模型。本文将发酵得到的高密度菌液制成菌剂投加到辽河油田油污现场进行的中试试验,经过为期60天的降解过程,中试场地内辽河油田地表油污土壤的含油量大幅下降。并对中试场地土壤中微生物的数量进行分析,分析表明微生物的生长主要受气温的影响,并以数值模拟的方法得到了中试场地自然条件下优势菌种的生长规律。石油降解微生物与油污土壤表面的原油接触是降解过程的必要前提,因此对细菌在土壤中的迁移规律进行研究。本文根据土壤颗粒的结构特性及现代分形方法取得了土壤孔隙结构参数并根据传质理论以简单易行的方法确定了细菌在土壤中扩散系数;根据热力学平衡实验确定了细菌在土壤中的平衡吸附模型。在此基础上提出了微生物在土壤中的迁移模型。通过对迁移影响因素的分析,明确了各参数对迁移所起的重要作用,加深了对细菌迁移规律的认识。
Three oil-resistant strains were identified.They were separated by culturing, domesticating and selecting form the contaminated soil of Liaohe oil field. The separated strains were proven that they have good degradation ability to the crud oil by fluid-phase decomposition tests. In this study, the culture medium as well as the shake flask operation condition, namely the optimum culture temperature and pH, was optimized by Orthogonal Tests. The growth models were also constructed according to the growth curves of the separated strains. A bacterium agent which was made using the three bacteria was added to the oil contaminated soil located in Liaohe oil field. This pilot test indicated that the oil content of the contaminated soil was distinctly reduced about 70% by biodegradation in 60 days. Meanwhile the growing pattern of the predominant bacterium group was obtained based on the amount analysis of the microbo. The contact of the bacteria and the oil-contaminated soil is a necessary precondition of soil remediation, so the transportation law of bacteria was also studied in this paper. The parameter of soil pores was obtained based on the soil granule structure characteristic and fractal theory, then the bacteria diffusion coefficient was obtained by utilizing the membrane cell. The equilibrium absorbtion model of the bacteria in soil was identified by thermodynamics balance experiment, which was the bedrock of the constructed microbo transportation model. By analysing the transportation parameters, contribution of each parameter to the transporttion was dug out, and the understanding transportation law of microbio was deepened.
引文
[1]隋红,姜斌,黄国强等.生物通风修复含石油污染物土壤过程.化工学报2004, 55(9):1487~1492
    [2]韩言柱,王立成,许学工等.黄河三角洲土壤(潮土)石油类含量对小麦的影响和研究.环境科学与技术, 2000, (4):1~4
    [3]周长征,李秀云,宋延博.三维荧光法在石油污染鉴别中的应用.光谱学与光谱分析, 1998, 18(4):500~502.
    [4] Watanabe K, Kodama Y, Syutsubo K.Molecular characterization of bacterial populations in petroleum—contaminated groundwater discharged from underground crude storage avities. App1. Environ. Microbio1., 2000, 66(11):4803~4809.
    [5] Ronald E.Hoeppel, Robert E, et a1.Bioventing soils con.taminated with petroleum hydrocarbons.J Ind Microbiol, 1991, 8(3):141~146.
    [6]黄国强,姜斌,李鑫钢等. VOCs在土壤孔隙中扩散模型的适用性,天津大学学报, 2004, 37(11):945~948
    [7]郑艳梅,李鑫钢,王战强等. AS技术修复MTBE污染地下水的传质研究,农业环境科学学报2005, 24(3):503~50
    [8]郑艳梅,黄国强,姜斌等.地下水曝气理论模型研究进展,环境污染与防治, 2006, 28(7):521~525
    [9]隋红,李鑫钢,姜斌等.生物通风过程中单井轴对称受污染区域流场的数值模拟,化工学报, 2006, 57(12):2860~2864
    [10]杨乐巍,黄国强,李鑫钢.土壤气相抽提(SVE)技术研究进展,环境保护科学, 2006, 32(6):62~65
    [11]段云霞,隋红,韩振为等.生物通风修复石油污染土壤的研究进展,环境生态, 2003, 29:25~28
    [12]隋红,李鑫钢,黄国强等.土壤有机污染的原位修复技术,环境污染治理技术与设备, 2003, 4(8):41~45
    [13]隋红,姜斌,黄国强等.生物通风修复含石油污染物土壤过程,化工学报, 2004, 55(9):1488~1492
    [14]黄国强,李鑫钢,徐世民等.土壤气相抽提作用机制探讨和基本数学模型建立,土壤学报, 2004, 41(3):394~400
    [15] Leahy J. G. , Microbial degradation of hydrocarbons in the environment, In: Microbial, 1990, 54:305~315
    [16]李希明,微生物降解含油废水,重庆环境科学, 1998, 20(1):16~19
    [17] Fedorak R. M. , Westlake D. W. , Microbial degradation of aromatics and saturates in Prudhoe Bay crude oil as determined by glass capillary gas chromatography, In: Microbial, 1981, 27:432~443
    [18] Killham K. , Amatom, Ladd J. N. , Effect of substrate location in soil and soil pore-water regime on carton turnover. In: Soil Boil Biochem, 1993, 25:57~62
    [19] Higgings I. J. et al . Oil Ind. Microb. Ecosyst, Proc Meet, l978, 80~84
    [20] Leahy J. G. and Colwell R. R. MicroBial Degradation of Hydrocarbons in Environment .Microbio1.Rev., 1990, 54:305~315.
    [21] Bartha R.and Atlas R.M..Transport and Transformations of Petroleum:Biological Processes[R].In:Long-term Environment Effects of Offshore Oil and Gas Development.ed Boesch D F and Rabalais N N.Elsevier Applied Science.New York.1987:287~341.
    [22] Texas Research Institute.1984.Laboratory.2001, 10:13~16.
    [23] Miller. R. N, Dewney D. C, Carmen V. A. Hinchee R. E, and Leeson A, A summary of bioventing performance at multi—pie air force stites.Broeeedings of the 1993 NWW/A/API scale gasoline spill and venting experiment.Am erican Petroleum In—stitute.Interim Report No.7743~ 5.
    [24] Syakti, N. Mazzella, D. Nerini, M. Guiliano, J. C. Bertrand and P. Doumenq. Phospholipid fatty acids of a marine sedimentary microbial community in a laboratory microcosm: Responses to petroleum hydrocarbon contamination Org Geochem , 2006, 37 (11): 1617~1628
    [25] M. J. Ayotamuno. Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria APPL ENERG 2006, 83 (11): 1249~1257.
    [26]齐永强,王红旗,郭淼.土壤石油生物降解影响因子正交实验分析.重庆环境科学, 2002, 24(2):29~32
    [27]叶淑红,丁鸣,马达,曹方,丁永生,丁德文.微生物修复辽东湾油污染湿地研究.环境科学, 2005, 36(5):143~146
    [28] P. Fernández-álvarez, J. Vila, J. M. Garrido-Fernández, M. Grifoll and J. M. Lema. Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige, Hazard Mater, 2006, 137 (3): 1523~1531
    [29]李秀艳,魏德洲,何良菊等.氮磷营养盐对微生物降解作用的影响, 2000, 52(4):237~239
    [30] Fedorak P. M, Westlake D W, Microbial Degradation of Organic Sulfur Compounds in Prudhoe Bay Crude Oil Canadian. Microbiology, 1983, 29: 291~296
    [31] McMillen S. J. , Newland M., In situ bioventing of a diesel fuel spill. In situ and on-site bioremediation, 2002, (4): 297~308
    [32]郑金秀,张甲耀,赵晴,赵磊,傅春堂.高效石油降解菌的选育及其降解特性研究.环境科学与技术, 2006, 29(3):1~3
    [33]隋红,姜斌,黄国强等.生物通风修复含石油污染物土壤过程.化工学报2004, 55(9):1487~1492
    [34]段云霞,韩振为,隋红等.生物通风技术中微生物对污染物甲苯二种形式降解的对比研究,农业环境科学学报2004, 23(3):475~47
    [35]冯树,张忠泽.混合菌——一类值得重视的微生物资源.世界科技研究与发展, 2000, 22(3):44~47
    [36] Si-jin LU, Hong-qi WANG and Zhi-hua YAO. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils, Journal of Environmental Sciences Volume 18, Issue 5 , September-October 2006, Pages 969~972
    [37]谢丹平,尹华,彭辉等.混合茵对石油的降解.应用与环境生物学报, 2004, 10(2):210~214
    [38]王志强,武强,叶思源等.地下水石油污染高效生物降解研究.环境科学, 2005. 26(6):61~64
    [39] Morgan P. , Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. In: Fems Microbiology Reviews, 1989, 63:277~300
    [40] Miller, A Field-scale Investigation of Petroleum Hydrocarbon Biodegradation in the Vadose Zone Enhanced by Soil Venting at Tyndall AFB, Florida in R. N. Hinchee and R. F. Olfenbuttel (eds. ), In Situ Bioreclamation. Butterworth -Heinemann, Stoneham, Massachusetts, 283~302
    [41]叶为民,孙风慧.土壤石油污染的生物修复技术,上海地质, 2002, 4:22~24
    [42]刘培桐,薛纪渝,王华东.环境学概论,北京:高等教育出版社, 1995
    [43]徐玉林,石油污染土壤降解与土壤的环境关系,农机化研究, 2004, 6:86~88
    [44]叶勤.发酵过程原理,化学工业出版社,北京,2005. 6
    [45] Bauchop T, Elsden S R. The grouth of micro-organisms in relation to their energy supply. Gen Microbiol, 1960, 23:457~469
    [46] Dawes E A, Ribbons D W, Rees D A. Sucrose utilization by Zymomonas mobilis: formation of levan. Biochem J, 1966, 98:804~812
    [47] Zhang J, Greasham R. Chemically defined media for commercial fermentation. Apply Microbiol Biotechnol, 1999, 51: 407~421
    [48] Carlsen M, Nielsen J. Influence of carbon source onα-amylase production by Aspergillus oryzae. Appl Microbiol Biothnol, 2001, 57:346~349
    [49] Thompson B G, Kole M, Gerson D F. Control of ammonium concentration in Escherichia coli fermentation. Biotechnol Bioeng, 1985, 27:818~824
    [50]张励,叶勤,辛利等.铵离子浓度对重组毕赤酵母的生长和血管生长抑制素表达的影响.微生物学通报, 2002, 29(1):23~26
    [51] Shen Y Q, Heim J, Solomon N A, et al. Repression ofβ-lactam production in Cephalosporium acremonium by nitrogen sources. Antibiot, 1984, 37:503~511
    [52] Savenkova L, Gercberga Z, Kizhlo Z, et al. Effect of phosphate supply and aeration on poly-β-hydroxy-butyrate production in Azotobacter chroococcum. Proc Biochem, 1999, 34:109~114
    [53] Hixson A W, Gaden E L. Oxygen transfer of submerged fermentation. Ind Eng Chem, 1950, 42:1792~1801
    [54]陈坚,李寅.发酵过程优化原理与实践,化学工业出版社, 2002
    [55] Bailey J E, Ollis D F. Biochemical engineering fundamentals, 2nd Edition. New York:McGrawl-Hill Book Company, 1986
    [56] Wan JM, Wilson JL and Thomas LK. Influence of the gas-water interface on transport of microorganisms through unsaturated porous media. Appl. Environ. Microbiol, 1994, 60:509~516
    [57] Dichinson RA. Problems with using existing transport models to describe microbial transport in porpis media. FEMS Microbiol Ecol, 1991, 13:105~112
    [58]李桂花.大肠杆菌和沙雷菌在砂土和砂质壤土中的运移特性,中国农业大学博士论文, 2002
    [59]单宝田,周爱华,梁生康等.鞘氨醇杆菌产微生物絮凝剂的组成及絮凝特性.中国海洋大学学报, 2006, 36(5):804~808.
    [60]王辉,赵春燕,李宝明等.石油污染土壤中细菌的分离筛选.土壤通报, 2005, 36(2):237~239
    [61]刘子宇,李平兰,郑海涛等.微生物高密度培养的研究进展.中国乳业, 2005(12):47~51
    [62] Epstein N.On tortuosity and the tortuosity factor in flow and difusion through porous media.Chem Eng SOi, 1989, 44(3):777~779
    [63]马新仿,张士诚,郎兆新.用分形理论研究孔隙结构的对数正态分布.新疆石油地质, 2004, 25(4):418~419
    [64]冯杰,郝振纯,陈启慧.分形理论在土壤大孔隙研究中的应用及其展望.土壤2001(3):123~130.
    [65] Tyler S W, Wheatcraft S W. Water Resour Res, 1990, 26:l047~1054
    [66]黄冠华,詹卫华.土壤颗粒的分形特征及其应用.土壤学报, 2002, 39(4):490~497
    [67]刘建国,王洪涛,聂永丰.多孔介质中溶质有效扩散系数预测的分形模型.水科学进展, 2004, 15(4):458~461
    [68]辛峰,王富民,李绍芬.曲折因子与多孔介质微观结构的定性关系.化工学报, 2000, 51(4):457~461
    [69] Sokolowska z.On the role of energetic and geometric heterogeneity in sorption of water vapor by soils:application of a fractal approach.Geoderm a, 1989, 45:251~265.
    [70]李燕,牟伯中.枯草芽孢杆菌的扩散系数.油田化学, 2002, 22(1):89~92
    [71]冯杰,张佳宝,朱安宁.论分形几何在土壤大孔隙研究中的应用.灌溉排水学报, 2000, 22(5): 6~9
    [72]宋树林,林泉.地下水弥散系数的测定.海岸工程, 1998, 17(3):61~65
    [73] Indrek Porto, et a1.Comparison of batch and column methods for determining strontium distribution coei~cients for unsaturated transport in basalt. Environ. Sci. Techno1., 2000, 34:1679~1686
    [74]程金茹,郭择德.黄土包气带土壤水动力弥散系数的测定研究.辐射防护通讯, 2001, 21(5):24~26
    [75] Huysman F, Verstraete W. Effect of cell surface characteristics on the adhesion of bacteria to soil particles. Biol. Fertil Soil, 1993b, 16:21~26
    [76] Bale RC, Li SM, Jim TC, et al. Bacteriophage and microsphere transport in saturated porous media: forced-gradient experiment at Borden, Ontario. Water Resour Res. 1997, 33(4):639~648
    [77] Anke Sc?ser, Petr Ustohal, Hauke Harms, et al. Transport of bacteria in unsaturated porous media. Contaminant Hydrology, 1998, 33:149~169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700