微电流协同氯对水中肠道病毒灭活效果的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验观察了微电流与低水平游离氯对大肠杆菌噬菌体f_2(f_2)和脊髓灰
    质炎Ⅰ型病毒(PV1)的协同消毒效果,及消毒后病毒感染性、抗原性及超
    微结构的改变,以期为研究电氯协同消毒饮水的机理和研制协同消毒装置提
    供线索。
     消毒实验分为恒稳微电流(0.4~1.2 mA·cm~(-2))、游离氯(0.1~0.3mg·L~(-1))及电
    氯协同三组,每组分数个不同处理水平,分别处理大肠杆菌噬菌体f_2和脊灰
    病毒纯培养物污染的水样,消毒时间为5、10、30min。用Berenbaum方法判
    断电流和氯是否具有协同效应,比较灭活率K值(K=-LogN_t/N_0)来评价协同
    消毒效果。用透射电镜(TEM)观察病毒颗粒形态结构变化,用病毒酶联
    细胞免疫试验(VELCIA)和蚀斑形成试验(PFUA)观察协同消毒后PV1抗原
    性和感染性的变化。结果表明:
     (1)单独电流达到0.4mA·cm~(-2)时出现弱的灭活作用,灭活作用有一
     定的时效和量效关系;游离氯0.1~0.3mg·L~(-1)对所试微生物在一定作用
     时间内的灭活能力也有限。
     (2)电流密度0.4~1.2mA·cm~(-2)协同游离氯0.2mg·L~(-1)处理水样后,灭
     活率比单独使用氯高,随电流密度增加灭活率提高,对f_2电流密度达
     到0.6mA·cm~(-2)或对PV1电流密度达到1.2mA·cm~(-2)时,微电流与氯有协
     同作用,且与单独氯比较灭活率K值有显著差别(p<0.05)。
     (3)在有机物浓度低、pH值低、硬度高的水样中电氯协同消毒效果好。
     (4)微电流、氯及二者协同对f_2与PV1灭活率相似,无显著性差异。
     (5)TEM结果发现,单独电流处理后f_2、PV1颗粒形态结构基本未发
     生变化,单独氯、电氯协同处理后部分病毒颗粒的衣壳内密度下降,微
     电流作用后病毒颗粒由集聚趋向分散。
     (6)电氯协同可增强氯对PV1感染性灭活,但对抗原未发现明显灭活
     作用。
This study observed synergetic inactivation efficacy for polioviruses I type and coliphage f2 by low amperage direct currenet (DC) and free chlorine (FC), and seek for change of infectivity, antigenicity and ultrastructure after virus was treated, moreover provided envidence for reserching mechanism of synergetic disinfection and desiging installation of synergetic disinfection.
    There were three groups treated by DC and FC and DC in combination with FC, and each group was divided into different levels. Water samples polluted f2 and PV1 exposed to DC and FC and DC in combination with FC for 5,10 and 30 minutes. Whether DC and FC were synergetic or not was decided by Berenbaum's method, and inactivation efficacy was estimated by comparing inactivation rates K value, meanwhile infectivity and antigenity were detected through Plaque Forming Unit Assay(PFUA) and Virus Enzyme-Linked Cell Immunoassay (VELCIA). Morphologic changes were observed under trasmission electron microscope (TEM). The results indicated:
    (1) Weak effect of inactivation could be observed on 0.4 mA ?cm-2 or above, and the inactivation efficacy was also enhanced with increasing exposure time or DC density; The effect of inactivation for experimental virus by chlorine containing 0.1-0.3 mg ?L"' could not reach to the sanitation request of disinfection for drinking water.
    (2) The inactivation rates was higher by 0.4-1.2 mA ?cm-2 DC in combination with 0.2mg ?L-1 than FC alone, and enhanced with increasing DC. The inactivation rates K value of DC reaching to 0.6 mA ?cm-2 for f, or DC reaching to 1.2 mA ?cm-2 for PV1 in combination with FC was significant difference in comparison with FC alone (p<0.05), and inactivation effect of DC in combination FC was synergetic.
    (3) DC alone or DC in combination with FC producted better effect for water samples of low pH, high hardness and few organism .
    (4) Inactivation rates for f2 and PV1 treated by DC, FC and DC in combination with FC was samilar, and there were no significant difference.
    (5) Capsule of virus was not found change after treated by DC, FC and DC in combination with FC under TEM, and inner density of viral grain was partly cut down by FC alone or FC in combination with DC. Viral gathering grain tended to deconcentration after treated by DC.
    
    
    
    
    (6) The inactivation of PVI infectivity was increased after synergetic disinfection, but inactivation of PVI antigencity was no change.
引文
[1] Mark DW, et al. An investigation into parametric relationships between enterovirus and faecal indicator organisms waters of england and wales. Wat Res, 1995; 29(8): 1863-1868
    [2] Bitton, G. Viruses in drinking water. Environ. Sci Technol, 1986, 20: 26-22
    [3] Larkin, EP. Bivolve mollusks:control of microbiol contaminants. Bioscience 32, 192-193
    [4] 方寅等译.环境中病毒的污染.科学出版社,1991:133-134
    [5] Havelaar, AH. Bacteriophages as model virus in water qulity control. Wter. Res, 1991; 25(5): 529-545
    [6] Havellar AH, Pot-Hogeboom WM, Furuse K, et al. F-specific RNA bacteriophages and sensitive host strains in faces and wastewater of human and animal origin. J Appl Bact, 1990, 60: 30-37.
    [7] Kott Y. Bacteriophages as viral pollution indicators. Wat Res, 1974; 8:165
    [8] Snowdon, JA. Coliphages as indicators of human enteric virus in groundwater. Crc Crit, Rev Envir, 1989; 19:231-249
    [9] Nasser AM, et al. Comparative reduction of hepatitis A virus, model enteroviruses, bacteriophage MS2 and indicator bacteria from primary sewage in unsaturated loamy sand columns. In Environmental Quality and Ecosystem Stability, Vol. Ⅳ-A, Environmental Quality; 1989:505-516
    [10] Sobsey MD. Indicators of health-related microorganisms in water by disinfection processes. Wat Sci Technol, 1989; 21:179-195
    [11] Havellar AH, et al. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl Envviron Microbiol, 1993; 59 (9): 2956-62
    [12] Tartera C, et al. Relationship between numbers of enteroviruses and bacteriophages infection Bacteriodies fragilis in defferent environmental samples. Environ Technol Lett, 1988; 9: 407-410
    [13] 蒋慧惠等.水厂原水和出厂自来水中病毒的检测.病毒学杂志,1987;2:50-54
    [14] Payment PL, et al. Poliviruses as indicators of virological quality of water. Can J Microbiol, 1979; 25:1212
    [15] Kabler PW, et al. Pub Health Rep, 1961; 76(7): 565
    [16] 严惠琴等.自来水厂常规虽氯处理灭活脊髓灰质炎病毒的效果.病毒学杂志,1987;2:60
    [17] Hurst C.J. Presence of enteric virus in freshwater and their removal by the conventional drinking water treatment process. Bulletin of the World Health Organizetion. 1991, 69(1): 113-119
    
    
    [18] Lewis D, et al. Removel of viruses in sewege treatment assessment of feasility. Microbiol Sci, 1988; 5:260~264
    [19] Melnick JL. Developments in enviromental enteroviruses cirology. Z Gesamte Hyg, 1988; 34(9); 4-501
    [20] Rob MA, et al. Water-brone hepatitis E virus epidemic in Islamabad Pakistan:a common source outbreak traced to the malfunction of a modern water treatment plant. American Journal of Tropical. Medicined Hygiene, 1997; 57:151-157
    [21] 郭学贤.饮用水有机物检测及其健康危害的评价.昆明医学院学报,1999;20(3):77-82
    [22] 蒋兴锦.水中病毒灭活.国外医学(卫生学分册),1985;5:272-276
    [23] 林辉.氯消毒饮用水的毒性及其流行病学研究进展.中国消毒学杂志,2000:17(2):89-92
    [24] Thurman RB, et al. Molecularmechanisms of vival in activation by water disiinfectants. Adv Appl Microbiol, 1988; 33: 75
    [25] Sharp CC, et al. Initial reaction of bromine on reovirus in turbulent floeing water. Appl Environ Microboil, 1976; 31: 173
    [26] Young DC. Viron conformational forms and the complex inactivation kinetics of echovirus by chlorine in water. Appl Environ Microboil, 1985: 49:359
    [27] 候悦主编.军队卫生学.北京:人民军医出版社.1998
    [28] Butler M, et al. Electrofocusing of viruses and sensitivity to disinfection water. Sci Technol, 1985; 17:201
    [29] Springthorpe VS, et al. Chemical disinfection of virus containibated surfaces. crit Rev Environ Control, 1990; 20(3): 69
    [30] 周元全等.电解法臭氧发生器的研究.中国消毒学杂志,1990;21:65-69
    [31] 周永林等.关于次氯酸钠发生器的质量评价与选择.消毒与灭菌,1988;5(3):173-175
    [32] 1989; 11:73-75
    [33] Okochi M, et al. Electrochemical disinfection of drinking water using an activatedcarbon-fiber reactor capable of monitoring its microbial fouling. Appl Microbiol Biotechnol, 1997; 47(1): 18-22
    [34] Abad FX, et al. Disinfection of humanenteric viruses in water by copper and silver in combination with low levels of chlorine. Appl Envviron Microbiol, 1994; 60 (7): 2377-83
    [35] 1980; 3:5
    
    
    [36] 1971; 41:86-88
    [37] 向阳等.高压静电场处理污水的杀菌效果观察试验.上海环境科学,1995;14(9):24-25
    [38] 韩伯平等.静电场对游泳池水消毒.净水技术,1995;4:31
    [39] 1995; 6: 8-14
    [40] 1990; 1: 24-27.
    [41] 周群英等.微电解水杀菌研究.环境与健康杂志,1998;11(15):241-243
    [42] Taylar GR, et al. A comparison of the viyucidae properties of chlorine,chlorine dioxide,bromine chloride andiodine. Hyg, 1982; 89:312-8
    [43] O'brien RT, et al. Structural and compositional changes associated with chlorine inactivation of Polioviruses. J virol methods, 1979; 38: 1034-9
    [44] Alvarz ME, o'brien RT. Effects of chlorine concentration on structure of poliovirus. Appl Environ Microbiol, 1982; 43: 237-239
    [45] Dennis WH, Olivieri VP and Kruse CW. The mechanism of disinfection: Incorporation of C1-36 into f2 virus. Wat Res. 1979,13:363-369.
    [46] 罗宏昌编.实用静电技术手册.上海:科学普及出版社.1990;167-177
    [47] 戴继岚.电子水处理和静电水处理原理与应用.给水排水,1992;1:57-60
    [48] 蒋兴锦等.抗坏血酸与铜离子雷锋同杀灭微生物效果及其机现的研究.中国消毒学杂志,1994;11(13):140-144
    [49] 吴纯德等.超声空化降解水体中有机物的研究和发展.中国给水排水,1997;13(6):28-30
    [50] 黄家祯(主编).医用病毒学常用实验技术.北京:人民卫生出版社,1990
    [51] Straub T.M. Synergistic inactivation of eschericchia coli and MS-2 coliphage bychloramine and cupric chloride. Water Res, 1995; 29(3): 811-818
    [52] 骆文静等.铜离子加银离子与游离氯灭活水中病毒效果的试验观察.中国消毒学杂志,1998;15(1):18-21
    [53] Payment P. Poor efficacy of residual chlorine disinfection in drinking water to inactivatie waterbrone pathogens in distribution systems. Can J Microbiol, 1999; 45(10) : 709-15
    [54] Hurst C.J. et al. Persistence of in digenous viruses through the processing regimen at an operating water treatment plant. In: Proceedings of the ⅩⅤⅡ Water Quality Technology Conference, 1989; 12-16. Denver. CO, America Water Works Association, pp.279-286
    
    
    [55] Keswick, BH, et al. Detection of enteric viruses in treated drinking water. Applied and Environmental microbiology. 1984; 84: 1290-1294
    [56] 孟晓静等.水中几种指示微生物对氯消毒抵抗力的比较.中国公共卫生,1998;14(5):302-304
    [57] Kouame LK. Inactivation of E.coli by combined action of free chlorine and monochloramine. Wat Res, 1991; 25:1027-1032
    [58] 陈国青等.氯和二氧化氯灭活F2效果观察.中国公共卫生,1998;14(7):431-432
    [59] 严若冰等译.脊髓灰质炎病毒学调查方法.陕西人民卫生出版社.1991
    [60] 张文清等.PEG6000沉淀结合差速离心方法浓缩水中脊髓灰质炎病毒.第四军医大学学报,2000;21(1):38-40.
    [61] Rodrigo G, et al. Adsorption-elution with negatively and postively-charged glass powder for the concentration of hepatitis A virus from water. 1991, 31: 345-452[62] Kersten G. Antigenic and immunogenic properties of inactivated polio vaccine made from sabin strains. Vaccine, 1999; 17: 2059-2066
    [62] Grom J. Virus enzyme-linked cell immunoassay (VELCIA): detection and titration of rotavirus antigen and demonstration of rotavirus neutralization and total antibodies. J Virol Med, 1985; 10: 135-144
    [63] 蒋兴锦.饮水消毒中化学消毒剂的浓时积与Q10值.消毒与灭菌,1989;6(4):225
    [64] 王福玉等.氯灭活水中甲型肝炎指示微生物的实验研究.环境与健康杂志,1997;14(5):206-208
    [65] Chang SL. Moderm concept of disinfection. In:proceedings national specialty conference on disinfection. American Soc of Civil Eng. New york. 1970; 635-82
    [66] Dennis WH, et al. Water Research, 1979; 13(4): 363
    [67] Tenno KM, et al. The mechanism of Polioviruses inactivation by hypochlorous acid. In: Water Chlorination. Ann Arbor Press,Ann Arbor, MI, 1979; 664-75
    [68] Olivieri UP, et al. The comparative mode of action of chlorine,bromine and iodine on f2 bacteral virus. J Am Chem Soc, 1971; 144-9
    [69] 陈国青等.氯和二氧化氯灭活F2噬菌本机理初步探讨.中国公共卫生,1997;13(6):356-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700