复杂高分子体系的自洽场理论研究及微管动力学的蒙特卡罗模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子、胶体、膜及蛋白质等软物质与人们的生活密切相关,在自然界、生命体系和日常生活中广泛存在。生物体与高分子体系之间的联系十分密切,生命物质大多由高分子构成,如生物膜可看作由两亲性分子所形成的囊泡结构等等。嵌段共聚物组分间的相互作用及分子链的拓扑构型都会对其相分离形态产生很大影响,因此考察含有特殊分子链结构的高分子共混体系、溶液体系及受限体系的相分离行为对于软物质形态结构的研究具有非常重大的意义。微管为真核细胞所特有,是细胞骨架系统的主要组成部分之一,在细胞运动、细胞分裂及细胞内物质的运输等细胞活动中起着重要的作用。微管由微管蛋白异二聚体聚合而成,聚合的同时还伴随着解聚及与微管蛋白结合的GTP水解的过程,其动力学行为非常复杂。本文首先基于自洽平均场理论研究了含有星型高分子链结构的高分子体系的相分离行为,然后应用蒙特卡罗方法对微管的动力学过程进行了探讨。主要包括以下内容:嵌段共聚物与星型均聚物共混体系的相行为、星型三嵌段共聚物本体及其在选择性溶剂中的相行为、受限星型三嵌段共聚物薄膜的相行为以及微管动力学的蒙特卡罗模拟。
     第一部分:聚合物共混体系中各组分间的相容性是影响体系结构和性能的重要因素。对于嵌段共聚物/均聚物共混体系,其相分离行为不仅包含嵌段共聚物与均聚物之间的宏观相分离和嵌段共聚物本身不同链段间的微相分离,还包括这两种相分离之间的竞争,这些因素极大程度影响了共混体系的相分离形貌和结构,从而最终影响材料的性能。本文应用自洽场理论系统研究了嵌段共聚物AB与星型均聚物A的共混体系的相行为,着重讨论了当嵌段共聚物的组成一定时,体系中星型均聚物的体积分数及均聚物与嵌段共聚物链长之比对体系相形态的影响,此外,还考察了星型均聚物在共混体系中的分布情况,并从熵和相互作用能的角度加以解释,我们还观察到星型均聚物由于链拓扑结构的特殊性使其与嵌段共聚物分子间的相互作用不同于线型均聚物共混体系。
     第二部分:为了考察分子参数和分子链拓扑构型对聚合物相结构的影响以及发现新的有序结构,在实验上需要合成大量的嵌段共聚物。在嵌段共聚物溶液中,溶剂的存在不但拓宽了嵌段共聚物的自组装形态,而且连续改变体系的浓度可以达到改变组分间相互作用能的目的。因此,通过嵌段共聚物和小分子溶剂共混,可考察分子参数对体系微相结构的影响。本文应用自洽场理论研究了星型ABC三嵌段共聚物本体及浓溶液体系的相行为,考察了在不同的组分间相互作用参数下,聚合物浓度对嵌段共聚物微相分离的影响,并给出了一维相图;还对星型嵌段共聚物本体及溶液中的相分离情况进行了详细的对比。通过聚合物本体及在两种浓度下相分离行为的比较,发现对嵌段C具有选择性的溶剂的加入相当于增加了嵌段C的有效体积分数,对于另外两个嵌段来说相当于升高了相分离温度,致使体系在一定的组分范围内,发生溶致性相转变。在相同聚合物浓度下通过比较两种对嵌段C具有不同选择性的溶剂对相分离的影响,发现即使都是C嵌段的良溶剂,当其选择性不同时,体系的相分离行为也有很大差别。我们的研究有助于加深对星型三嵌段共聚物本体及浓溶液体系的相分离行为的理解,从而指导嵌段共聚物有序结构的预测和设计。
     第三部分:薄膜是一种非常普遍而且重要的受限体系。边界的受限效应给高分子的熵带来变化的同时,受限边界对不同嵌段的浸润性质也会引起表面能的变化,两者的共同作用往往很大程度地改变边界附近的高分子构型,从而改变表面附近区域的微相分离形态。本文应用自洽场理论系统模拟了在两个平行基板之间受限的星型ABC三嵌段共聚物薄膜的相行为。在模拟中,体系各个组分的体积分数选取近似相等以突出星型高分子链的特征结构;考察了在不同的组分间相互作用参数下,薄膜的厚度(基板的距离)及表面场的强度对共聚物薄膜相行为的影响。研究结果表明,在受限及表面场作用下出现了一系列稳定的相形态,包括柱状相、波浪柱状相、层状相和交替柱状相、穿孔层状相及交替分散的球状结构等,这些结构在实验和理论上都已被发现。在我们的计算中也发现了一些新的结构,如柱状与交替螺旋结构及复杂的网络结构等。当基板对各组分均为中性时,与聚合物本体的相形态相似,受限体系大多形成柱状形态,并且由于星型交联点的限制作用,柱的形状和直径都可自发地进行自我调节以适应不同的膜厚。当表面场较弱时,柱状结构比较普遍,薄膜的相结构主要由体系受限效应及膜厚与相结构周期的匹配性来控制;然而,随表面场强度的增加,表面场对薄膜结构的影响变得重要;当表面场强度足够大时,会导致体系由柱状结构转变成非柱状相。我们关于星型ABC三嵌段共聚物薄膜的研究有助于理解薄膜体系中受限效应、表面场、组分间相互作用及分子链拓扑结构之间复杂的共同作用,从而帮助和指导实验,并得到更多更新颖的纳米级有序材料。
     第四部分:在合适的温度及微管蛋白浓度下,微管蛋白异二聚体可以聚合成微管,聚合的同时还伴随着解聚及与微管蛋白结合的GTP水解的过程,其动力学行为非常复杂,对微管动力学的研究一直都是生命科学中的热门课题。本文应用蒙特卡罗方法模拟了微管的生长过程以及成核速率、微管蛋白单体浓度、聚合及解聚速率对微管生长动力学的影响,重点考察了耦合水解反应后微管的动力学行为。研究结果表明,单体浓度的升高会促进微管的聚合,因而微管平均长度增加;当单体浓度低于临界值时,微管不会生长;在绝大多数反应参数下,微管生长都会达到稳态;耦合了水解反应后,单根微管长度随时间变化的动力学过程与实验结果基本相符;在计算中我们发现微管动力学模型及GTP水解反应模型的选取对于研究微管的动力学过程十分重要。尽管本部分研究工作仅得到一些初步的结果,但对进一步研究微管动力学提供了有力的指导及数据积累。本研究有助于在现有知识的基础上更加深入地理解、解释一些生命过程和现象。
Soft matter is closely related to human's lives, which widely exists in nature, life body and daily life, such as polymer, colloid, membrane and protein. There is a close relation between organisms and polymers, for example, biological membrane can be regarded as vesicle consisting of amphiphilic molecules. The microdomain structure of block copolymer is determined mainly by the molecular architecture and the interaction between the different components, thus the study of phase behavior of polymer system which contains special molecular chain architecture is significant to research the morphologies of soft matters. Microtubules are essential component of the cytoskeleton and are widely spread throughout the cytoplasm of eukaryotic cells. They play critical roles in a variety of cell processes, including cell shaping, intracellular tracking, cell division, and cell migration. The polymerization of microtubule is accompanied with the depolymerization of tubulin dimers and the hydrolysis of GTP (Guansine Triphosphate) within the microtubules, thus the microtubule dynamic behavior is very complicated. In this thesis, we first study the phase behavior of the polymer system which contains star molecular chains based on self-consistent field theory, and then research the microtubule dynamics by using Monte Carlo methods. The study mainly includes the following four aspects: (i) the phase behavior of diblock copolymer and star homopolymer blends; (ii) the phase behavior of star triblock copolymers both in bulk and in selective solvents; (iii) the phase behavior of star triblock copolymer thin films; (iv) the Monte Carlo simulation for microtubule dynamics.
     In the first part, the compatibility between the components in polymeric blend system is an important factor which affects system structure and properties. For copolymer-homopolymer blends, the phase separation behavior is affected not only by the macrophase separation between block copolymers and homopolymers, the microphase separation of block copolymer chains, but also the competition between these two kinds of phase separations. In this part, we have interpreted the self-assembled morphologies of the blends of AB diblock copolymers and 3-arm star A homopolymers by using self-consistent mean field theory. We have focused on the condition that the copolymer composition is fixed while the chain length and volume fraction of the star homopolymer are varied. It is found that the phase behavior of the blend depends on both the chain length and volume fraction of the star homopolymer. The distribution of star homopolymer within the microphases is investigated based on enthalpic and entropic effects. By comparing the result of linear copolymer-homopolymer blend, we have discussed the difference between the effects of topological distinct polymers. The results of our study are supposed to be helpful for the design of novel nanomaterials involving architectural different polymers.
     In the second part, we have studied the phase separation behavior of star ABC triblock copolymers both in bulk and in selective solvents by self-consistent mean field theory. In traditional experiments, abundant efforts are made to synthesize new block copolymers with the aim of investigating the molecular parameters and topological effects on discovering new morphologies. Furthermore, the introduction of selective solvent into a block copolymer melt renormalizes the segment-segment interaction and gives rise to a wide range of self-assembled structures. The segment-segment interaction can be changed with changing the concentration of copolymer or different solvents. Hence, in this way the ordered structure can be controlled and designed. By systematically varying the volume fraction of the C block, one-dimensional phase diagrams are constructed for three classes of typical star ABC triblock copolymers in terms of the relative strengths of the interaction energies between different species. The differences in the phase behaviors between the bulk and the solution are compared and explained. With the introduction of the selective solvent, the effective volume fraction of the C block is increased and the effective interaction energy is reduced for the other blocks. Then, the order-order transition is induced with specific volume fraction. The results presented here can provide valuable insight into phase behavior of both bulk star triblock copolymer and star copolymer concentrated solutions.
     In the third part, thin film is a very common and important constrained system. In this part, we have described the complex phase behavior of a specific star ABC triblock copolymers confined between two identical parallel walls. To focus on the star architecture of the polymer chain, we have chosen the symmetric copolymer composition. By systematically changing the film thickness and surface field, the self-assemble structures of confined star ABC triblock copolymer melts with the symmetric and asymmetric interactions between polymer species are carried out by SCFT simulations. A variety of structures are found to be stable, such as cylinders, undulated cylinders, lamellae with cylinders, perforated lamellae and alternating versions of the sphere in matrix structures, etc. In particular, some new morphologies, such as cylinders with alternating helixes structure and complicated hybrid network structures are found in our studies. In the case of neutral walls, cylinder structures are commonly observed in thin films. Moreover, the cylinder radius and shapes are quite flexible in order to adjust themselves to different film thicknesses due to the junction point constraint of the star architecture. When surface field is weak, the cylinder phases are frequently observed because in this case the confinement effect is dominant. When surface field is strong, the effect of surface field on film morphologies is more significant. The surface field can break up the cylinder structure, and a variety of noncylindrical structures will be favored. Our results may provide a guide to understand the complex interplay between confinement effects, surface field and interaction parameters in thin films of star triblock copolymers.
     In the last part, microtubule can be formed by tubulin heterodimers under the suitable temperature and tubulin concentration. The polymerization of microtubule is accompanied with the depolymerization of tubulin dimers and the hydrolysis of GTP (Guansine Triphosphate) within the microtubules, thus the microtubule dynamic behavior is very complex. The dynamics of microtubule is always the hot topic in life science. In this part, we have used an iterative Monte Carlo method to simulate the growth of microtubules and the impact of nucleation rate, tubulin concentration, the polymerization rate and depolymerization rate on the dynamics of microtubule. Especially, we have studied the dynamic behavior of microtubule after coupling the hydrolysis process of GTP. The simulation results show that the increase of tubulin concentration could promote microtubule polymerization, when tubulin concentration below the critical value, the microtubule would not be formed. Under the most calculating parameters, the microtubule population could reach steady state. After coupling the hydrolysis process of GTP, the time varying dynamic process of individual microtubule is consistent with the experimental results. In the simulation, we find that the choice of the models for both microtubule dynamics and GTP hydrolysis play essential roles in the study of microtubule dynamics. Although our work only get some preliminary results, but it provided effective guidance and data accumulation for further research of microtubule dynamics. The results presented here can provide valuable insight into some biological processes.
引文
[1]de Gennes,P.G.Scaling concepts in polymer physics[M].New York:Cornell University Press,1979.
    [2]施良和;胡汉杰.高分子科学的今天和明天[M].北京:化学工业出版社,1994.
    [3]翟中和:丁明孝.细胞生物学[M].北京:高等教育出版社,1996.
    [4]Erickson,H.P.;Obrien,E.T.Microtubule Dynamic Instability and Gtp Hydrolysis[J].Annual Review of Biophysics and Biomolecular Structure,1992,21:145-166.
    [5]冯端;金国均.凝聚态物理学[M].北京:高等教育出版社,2003.
    [6]于禄;郝伯林.相变和临界现象[M].北京:科学出版社,1984.
    [7]汪志诚.热力学与统计物理[M].北京:高等教育出版社,1980.
    [8]Chaikin,P.M.;Lubensky,T.C.Principles of Condensed Matter Physics[M].Cambridge:Cambridge University Press,1995.
    [9]Bates,F.S.Polymer-polymer phase behavior[J].Science,1991,251(4996):898-905.
    [10]Matsen,M.W.;Barrett,C.Liquid-crystalline behavior of rod-coil diblock copolymers[J].Journal of Chemical Physics,1998,109(10):4108-4188.
    [11]何曼君;董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [12]Bates,F.S.;Fredrickson,G.H.Block Copolymer Thermodynamics - Theory and Experiment[J].Annual Review of Physical Chemistry,1990,41:525-557.
    [13]Bates,F.S.;Fredrickson,G.H.Block copolymers - Designer soft materials[J].Physics Today,1999,52(2):32-38.
    [14]Bates,F.S.Network phase in block copolymer melts[J].MRS Bulletin,2005,30:525-532.
    [15]Matsen,M.W.;Bates,F.S.Block copolymer microstructures in the intermediate-segregation regime[J].Journal Of Chemical Physics,1997,106(6):2436-2448.
    [16]Matsen,M.W.;Bates,F.S.Origins of complex self-assembly in block copolymers[J].Macromolecules,1996,29(23):7641-7644.
    [17]Flory,P.J.Principles of polymer chemistry[M].New York:Cornell University Press,1953.
    [18]Rubinstein,M.;Colby,R.H.Polymer physics[M].New York:Oxford University Press,2005.
    [19]Leibler,L.Theory of microphase separation in block copolymers[J].Macromolecules,1980,13(6):1602.
    [20]Vilgis,T.A.Polymer theory:Path integrals and scaling[J].Physics Reports-Review Section of Physics Letters,2000,336(3):167-254.
    [21]Doi,M.;Edwards,S.F.The Theory of Polymer Dynamics[M].Oxford:Oxford Clarendon Press,1986.
    [22]de Gennes,P.G.Dynamics of fluctuations and spinodal decomposition in polymer blends[J].Journal of Chemical Physics,1980,72(9):4756-4763.
    [23]Tompa,H.Transaction from the Faraday Society,1949,45:1142-1152.
    [24]Olabisi,O.;Robeson,L.M.;Shaw,M.T.Polymer-polymer miscibility[M].London:Academic Press,1978.
    [25]邱枫.剪切流场中聚合物共混物的相分离[D].上海:复旦大学,1998.
    [26]Cahn,J.W.Phase separation by spinodal decomposition in isotropic systems[J].Journal of Chemical Physics,1965,42(1):93-99.
    [27]Binder,K.;Stauffer,D.Theory for the slowing down of the relaxation and spinodal decomposition of binary mixture[J].Physical Review Letters,1974,33(17):1006-1009.
    [28]McMaster,L.P.Aspects of Polymer-Polymer Thermodynamics[J].Macromolecules,1973,6(5):760-773.
    [29]Helfand,E.Block copolymer theory.Ⅲ.Statistical mechanics of the microdomain structure[J].Macromolecules,1975,8(4):552-556.
    [30]Helfand,E.;Wasserman,Z.R.Block copolymer theory.4.Narrow interphase approximation[J].Macromolecules,1976,9(6):879-888.
    [31]Helfand,E.;Wasserman,Z.R.Block copolymer theory.5.Spherical domains[J].Macromolecules,1978,11(5):960-966.
    [32]Helfand,E.;Wasserman,Z.R.Block copolymer theory.6.Cylindrical domains[J].Macromolecules,1980,13(4):994-998.
    [33]Ohta,T.;Kawasaki,K.Comment on the free energy functional of block copolymer melts in the strong segregation limit[J].Macromolecules,1990,23(8):2413-2414.
    [34]Ohta,T.;Kawasaki,K.Equilibrium morphology of block copolymer melts[J].Macromolecules,1986,19(10):2621-2632.
    [35]Edwards,S.F.Statistical mechanics of polymers with excluded volume[J].Proceedings of The Physical Society of London,1965,85(546p):613-624.
    [36]Helfand,E.Theory of inhomogeneous polymers - fundamentals of gaussian random-walk model[J].Journal of Chemical Physics,1975,62(3):999-1005.
    [37]Noolandi,J.;Hong,K.M.Theory of block copolymer micelles in solution[J].Macromolecules,1983,16(9):1443-1448.
    [38]Chaudhuri,R.K.;Finley,J.P.;Freed,K.F.Comparison of the perturbative convergence with multireference Moller-Plesset,Epstein-Nesbet,forced degenerate and optimized zeroth order partitionings:The excited BeH2 surface[J].Journal Of Chemical Physics,1997,106(10):4067-4081.
    [39]Fredrickson,G.H.;Ganesan,V.Field-theoretic computer simulation methods for polymers and complex fluids[J].Macromolecules,2002,35(1):16-39.
    [40]Lee,J.Y.;Balazs,A.C.;Thompson,R.B.;Hill,R.M.Self-assembly of amphiphilic nanoparticle-coil "tadpole" macromolecules[J].Macromolecules,2004,37(10):3536-3539.
    [41]de Gennes,P.G.;Prost,J.The Physics of Liquid Crystals[M].Oxford:Clarendon press,1993.
    [42]Morse,D.C.;Fredrickson,G.H.Semiflexible Polymers Near Interfaces[J].Physical Review Letters,1994,73(24):3235-3238.
    [43]Liu,A.J.;Fredrickson,G.H.Phase separation kinetics of rod/coil mixtures[J].Macromolecules,1996,29(24):8000-8009.
    [44]Edwards,S.F.Theory of Polymer Solutions at Intermediate Concentration[J].Proceedings of the Physical Society of London,1966,88(560P):265-&.
    [45]Feynman,R.P.Quantum Mechanics and Path Integrals.[M].New York:McGraw-Hill Book Company Press,1965.
    [46]Semenov,A.N.Contribution to the Theory of Microphase Layering in Block-Copolymer Melts[J].Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki,1985,88(4):1242-1256.
    [47]Evans,R.Nature of the Liquid-Vapor Interface and Other Topics in the Statistical-Mechanics of Nonuniform,Classical Fluids[J].Advances in Physics,1979,28(2):143-200.
    [48]Chayes,J.T.;Chayes,L.On the Validity of the Inverse Conjecture in Classical Density Functional Theory[J].Journal of Statistical Physics,1984,36(3-4):471-488.
    [49]Mermin,N.D.Thermal Properties of Inhomogeneous Electron Gas[J].Physical Review,1965,137(5A):1441-&.
    [50]Matsen,M.W.;Schick,M.Stable and unstable phases of a diblock copolymer melt[J].Physical Review Letters,1994,72(16):2660-2663.
    [51]Drolet,F.;Fredrickson,G.H.Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J].Physical Review Letters,1999,83(21):4317-4320.
    [52]Tzeremes,G.;Rasmussen,K.O.;Lookman,T.;Saxena,A.Efficient computation of the structural phase behavior of block copolymers[J].Physical Review E,2002,65(4).
    [53]Sides,S.W.;Fredrickson,G.H.Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J].Polymer,2003,44(19):5859-5866.
    [54]孙明珠.多嵌段共聚物的相分离和囊泡形状的自洽场理论研究[D].上海:复旦大学,2006.
    [55]Sun,M.Z.;Wang,P.;Qiu,F.;Tang,P.;Zhang,H.D.;Yang,Y.L.Morphology and phase diagram of ABC linear triblock copolymers:Parallel real-space self-consistent-field-theory simulation[J].Physical Review E,2008,77(1):9.
    [56]Hahn,T.International Table for Crystallography[M].Boston:Kluwer Academic Publishers,1996.
    [57]Shi,A.C.;Noolandi,J.;Desai,R.C.Theory of anisotropic fluctuations in ordered block copolymer phases[J].Macromolecules,1996,29(20):6487-6504.
    [58]Shull,K.R.Interfacial Phase-Transitions In Block Copolymer Homopolymer Blends[J].Macromolecules,1993,26(9):2346-2360.
    [59]Matsen,M.W.;Bates,F.S.Unifying weak- and strong-segregation block copolymer theories[J].Macromolecules,1996,29(4):1091-1098.
    [60]Thompson,R.B.;Rasmussen,K.O.;Lookman,T.Improved convergence in block copolymer self-consistent field theory by Anderson mixing[J].Journal Of Chemical Physics,2004,120(1):31-34.
    [61]Press,W.H.;Flannery,B.P.;Yeukolsky,S.A.;Vetterling,W.T.Numerical Recipes[M].New York:Cambridge University Press,1988.
    [62]Bohbot-Raviv,Y.;Wang,Z.G.Discovering new ordered phases of block copolymers[J].Physical Review Letters,2000,85(16):3428-3431.
    [63]Barrat,J.L.;Fredrickson,G.H.;Sides,S.W.Introducing variable cell shape methods in field theory simulations of polymers[J].Journal of Physical Chemistry B,2005,109(14):6694-6700.
    [64]王金发.细胞生物学[M].北京:科学出版社,2003.
    [65]Slautterback,D.B.Cytoplasmic Microtubules.1.Hydra[J].Journal of Cell Biology,1963,18(2):367-&.
    [66]Albert,B.;Johnson,A.;Lewis,J.;Raff,M.Molecular Biology of the Cell[M].New York:Garland,1994.
    [67]Gundersen,G.G.Evolutionary conservation of microtubule-capture mechanisms[J].Nature Reviews Molecular Cell Biology,2002,3(4):296-304.
    [68]Howard,J.;Hyman,A.A.Dynamics and mechanics of the microtubule plus end[J].Nature,2003,422(6933):753-758.
    [69]Amos,L.A.;Klug,A.Arrangement of Subunits in Flagellar Microtubules[J].Journal of Cell Science,1974,14(3):523-549.
    [70]Chretien,D.;Fuller,S.D.;Karsenti,E.Structure of Growing Microtubule Ends-2-Dimensional Sheets Close into Tubes at Variable Rates[J].Journal of Cell Biology,1995,129(5):1311-1328.
    [71]Burns,R.G.Alpha-Tubulin,Beta-Tubulin,and Gamma-Tubulins - Sequence Comparisons and Structural Constraints[J].Cell Motility and the Cytoskeleton,1991,20(3):181-189.
    [72]Weisenbe.Rc;Borisy,G G;Taylor,E.W.Colchicine-Binding Protein of Mammalian Brain and Its Relation to Microtubules[J].Biochemistry,1968,7(12):4466-&.
    [73]Correia,J.J.;Baty,L.T.;Williams,R.C.Mg-2+ Dependence of Guanine-Nucleotide Binding to Tubulin[J].Journal of Biological Chemistry,1987,262(36):17278-17284.
    [74]Davidpfeuty,T.;Erickson,H.P.;Pantaloni,D.Guanosine-Triphosphatase Activity of Yubulin Associated with Microtubule Assembly[J].Proceedings of the National Academy of Sciences of the United States of America,1977,74(12):5372-5376.
    [75]Macneal,R.K.;Purich,D.L.Stoichiometry and Role of Gtp Hydrolysis in Bovine Neurotubule Assembly[J].Journal of Biological Chemistry,1978,253(13):4683-4687.
    [76]Spiegelman,B.M.;Penningroth,S.M.;Kirschner,M.W.Turnover of Tubulin and N Site Gtp in Chinese-Hamster Ovary Cells[J].Cell,1977,12(3):587-600.
    [77]Mitchison,T.J.Localization of an Exchangeable Gtp-Binding Site at the Plus End of Microtubules[J].Science,1993,261(5124):1044-1047.
    [78]Amos,L.A.Microtubule structure and its stabilisation[J].Organic & Biomolecular Chemistry,2004,2(15):2153-2160.
    [79]Weisenbe.Rc.Microtubule Formation in-Vitro in Solutions Containing Low Calcium Concentrations[J].Science,1972,177(4054):1104-&.
    [80]Chretien,D.;Wade,R.H.New Data on the Microtubule Surface Lattice[J].Biology of the Cell,1991,71(1-2):161-174.
    [81]Walker,R.A.;Obrien,E.T.;Pryer,N.K.;Soboeiro,M.F.;Voter,W.A.;Erickson,H.P.;Salmon,E.D.Dynamic Instability of Individual Microtubules Analyzed by Video Light-Microscopy - Rate Constants and Transition Frequencies[J].Journal of Cell Biology,1988,107(4):1437-1448.
    [82]Mitchison,T.;Kirschner,M.Dynamic Instability of Microtubule Growth[J].Nature,1984,312(5991):237-242.
    [83]Mitchison,T.;Kirschner,M.Microtubule Assembly Nucleated by Isolated Centrosomes[J].Nature,1984,312(5991):232-237.
    [84]Obrien,E.T.;Salmon,E.D.;Walker,R.A.;Erickson,H.P.Effects of Magnesium on the Dynamic Instability of Individual Microtubules[J].Biochemistry,1990,29(28):6648-6656.
    [85]Zong,C.H.;Lu,T.;Shen,T.Y.;Wolynes,P.G.Nonequilibrium self-assembly of linear fibers:microscopic treatment of growth,decay,catastrophe and rescue[J].Physical Biology,2006,3(1):83-92.
    [86]Caplow,M.;Shanks,J.Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules[J].Molecular Biology of the Cell,1996,7(4):663-675.
    [87]Hill,T.L.;Chert,Y.Phase-Changes at the End of a Microtubule with a Gtp Cap[J].Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984,81(18):5772-5776.
    [88]Antal,T.;Krapivsky,P.L.;Redner,S.Dynamics of microtubule instabilities[J].Journal of Statistical Mechanics-Theory and Experiment,2007:9.
    [89]Chen,Y.D.;Hill,T.L.Monte-Carlo Study of the Gtp Cap in a 5-Start Helix Model of a Microtubule[J].Proceedings of the National Academy of Sciences of the United States of America,1985,82(4):1131-1135.
    [90]Hill,T.L.Introductory Analysis of the Gtp-Cap Phase-Change Kinetics at the End of a Microtubule[J].Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984,81(21):6728-6732.
    [91]Vulevic,B.;Correia,J.J.Thermodynamic and structural analysis of microtubule assembly:The role of GTP hydrolysis[J].Biophysical Journal,1997,72(3):1357-1375.
    [92]Caplow,M.;Fee,L.Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules[J].Biochemistry,2003,42(7):2122-2126.
    [93]Landau,D.P.;Binder,K.A Guide to Monte Carlo simulations in Statistical Physics[M].Cambridge:Cambridge University Press,2000.
    [94]McQuarri.Da.Stochastic Approach to Chemical Kinetics[J].Journal of Applied Probability,1967,4(3):413-&.
    [95]秦元勋;张锁春.计算物理概论[M].长沙:湖南科学技术出版社,1991.
    [96]Gillespie,D.T.Exact Stochastic Simulation of Coupled Chemical-Reactions[J].Journal of Physical Chemistry,1977,81(25):2340-2361.
    [97]Gillespie,D.T.General Method for Numerically Simulating Stochastic Time Evolution of Coupled Chemical-Reactions[J].Journal of Computational Physics,1976,22(4): 403-434.
    [98]杨玉良;张红东.高分子科学中的Monte Carlo方法[M].上海:复旦大学出版社,1993.
    [99]Bolterauer,H.;Limbach,H.J.;Tuszynski,J.A.Models of assembly and disassembly of individual microtubules:Stochastic and averaged equations[J].Journal of Biological Physics,1999,25(1):1-22.
    [100]Gliksman,N.R.;Skibbens,R.V.;Salmon,E.D.How the Transition Frequencies of Microtubule Dynamic Instability(Nucleation,Catastrophe,and Rescue) Regulate Microtubule Dynamics in Interphase and Mitosis-Analysis Using a Monte-Carlo Computer-Simulation[J].Molecular Biology of the Cell,1993,4(10):1035-1050.
    [101]Hammele,M.;Zimmermann,W.Modeling oscillatory microtubule polymerization[J].Physical Review E,2003,67(2):021903-021922.
    [102]Bayley,P.M.;Schilstra,M.J.;Martin,S.R.Microtubule Dynamic Instability-Numerical -Simulation of Microtubule Transition Properties Using a Lateral Cap Model[J].Journal of Cell Science,1990,95:33-48.
    [103]Bayley,P.;Schilstra,M.;Martin,S.A Lateral Cap Model of Microtubule Dynamic Instability[J].Febs Letters,1989,259(1):181-184.
    [104]VanBuren,V.;Cassimeris,L.;Odde,D.J.Mechanochemical model of microtubule structure and self-assembly kinetics[J].Biophysical Journal,2005,89(5):2911-2926.
    [105]Molodtsov,M.I.;Ermakova,E.A.;Shnol,E.E.;Grishchuk,E.L.;Mclntosh,J.R.;Ataullakhanov,F.I.A molecular-mechanical model of the microtubule[J].Biophysical Journal,2005,88(5):3167-3179.
    [106]Bicout,D.J.;Rubin,R.J.Classification of microtubule histories[J].Physical Review E,1999,59(1):913-920.
    [107]Rubin,R.J.Mean Lifetime of Microtubules Attached to Nucleating Sites[J].Proceedings of the National Academy of Sciences of the United States of America,1988,85(2):446-448.
    [108]Flyvbjerg,H.;Holy,T.E.;Leibler,S.Microtubule dynamics:Caps,catastrophes,and coupled hydrolysis[J].Physical Review E,1996,54(5):5538-5560.
    [109]Flyvbjerg,H.;Jobs,E.Microtubule dynamics.2.Kinetics of self-assembly[J].Physical Review E,1997,56(6):7083-7099.
    [110]Flyvbjerg,H.;Jobs,E.;Leibler,S.Kinetics of self-assembling microtubules:An "inverse problem" in biochemistry[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(12):5975-5979.
    [111]Dogterom,M.;Leibler,S.Physical Aspects of the Growth and Regulation of Microtubule Structures[J].Physical Review Letters,1993,70(9):1347-1350.
    [112]Dogterom,M.;Yurke,B.Microtubule dynamics and the positioning of microtubule organizing centers[J].Physical Review Letters,1998,81(2):485-488.
    [113]Houchmandzadeh,B.;Vallade,M.Collective oscillations in microtubule growth[J].Physical Review E,1996,53(6):6320-6324.
    [114]Jobs,E.;Wolf,D.E.;Flyvbjerg,H.Modeling microtubule oscillations[J].Physical Review Letters,1997,79(3):519-522.
    [115]Freed,K.F.Analytical solution for steady-state populations in the self-assembly of microtubules from nucleating sites[J].Physical Review E,2002,66(6):061916-061921.
    [116]Maly,I.V.Diffusion approximation of the stochastic process of microtubule assembly[J].Bulletin of Mathematical Biology,2002,64(2):213-238.
    [1]Bates,F.S.;Fredrickson,G.H.Block copolymers - Designer soft materials[J].Physics Today,1999,52(2):32-38.
    [2]何曼君;董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [3]施良和;胡汉杰.高分子科学的今天和明天[M].北京:化学工业出版社,1994.
    [4]Bates,F.S.;Fredrickson,G.H.Block Copolymer Thermodynamics - Theory and Experiment[J].Annual Review of Physical Chemistry,1990,41:525-557.
    [5]Matsen,M.W.;Schick,M.Stable and Unstable Phases of a Diblock Copolymer Melt[J].Physical Review Letters,1994,72(16):2660-2663.
    [6]Matsen,M.W.The standard Gaussian model for block copolymer melts[J].Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [7]Park,M.;Harrison,C.;Chaikin,P.M.;Register,R.A.;Adamson,D.H.Block copolymer lithography:Periodic arrays of similar to 10(11) holes in 1 square centimeter[J].Science,1997,276(5317):1401-1404.
    [8]Archibald,D.D.;Mann,S.Template Mineralization of Self-Assembled Anisotropic Lipid Microstructures[J].Nature,1993,364(6436):430-433.
    [9]Morkved,T.L.;Wiltzius,P.;Jaeger,H.M.;Grier,D.G.;Witten,T.A.Mesoscopic Self-Assembly of Gold Islands an Diblock-Copolymer Films[J].Applied Physics Letters,1994,64(4):422-424.
    [10]Zhao,J.C.;Jiang,S.C.;Ji,X.G.;An,L.J.;Jiang,B.Z.Control of self-organized low-dimensional morphology in Poly(styrene-b-4vinylpyridine)/polystyrene blend thin films[J].Journal of Polymer Science Part B-Polymer Physics,2004,42(18):3496-3504.
    [11]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Ordered Structures of Block Copolymer/Homopolymer Mixtures.5.Interplay of Macrophase and Microphase Transitions[J].Macromolecules,1994,27(22):6532-6540.
    [12]Sakurai,S.;Hasegawa,H.;Hashimoto,T.;Hargis,I.G.;Aggarwal,S.L.;Han,C.C.Microstructure and Isotopic Labeling Effects on the Miscibility of Polybutadiene Blends Studied by the Small-Angle Neutron- Scattering Technique[J].Macromolecules,1990,23(2):451-459.
    [13]Hasegawa,H.;Tanaka,H.;Hashimoto,T.;Han,C.C.Sans and Saxs Study of Block Copolymer Homopolymer Mixtures[J].Journal of Applied Crystallography,1991,24:672-678.
    [14]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Ordered Structure in Blends of Block-Copolymers.3.Self- Assembly in Blends of Sphere-Forming or Cylinder-Forming Copolymers[J].Macromolecules,1994,27(15):4371-4381.
    [15]Tanaka,H.;Hasegawa,H.;Hashimoto,T.Ordered Structure in Mixtures of a Block Copolymer and Homopolymers.1.Solubilization of Low-Molecular-Weight Homopolymers[J].Macromolecules,1991,24(1):240-251.
    [16]Ito,A.Domain patterns in copolymer-homopolymer mixtures[J].Physical Review E,1998,58(5):6158-6165.
    [17]Winey,K.I.;Thomas,E.L.;Fetters,L.J.Ordered Morphologies in Binary Blends of Diblock Copolymer and Homopolymer and Characterization of Their Intermaterial Dividing Surfaces[J].Journal of Chemical Physics,1991,95(12):9367-9375.
    [18]K inning,D.J.;Winey,K.I.;Thomas,E.L.Structural Transitions from Spherical to Nonspherical Micelles in Blends of Poly(Styrene Butadiene) Diblock Copolymer and Polystyrene Homopolymers[J].Macromolecules,1988,21(12):3502-3506.
    [19]Mykhaylyk,T.A.;Mykhaylyk,O.O.;Collins,S.;Hamley,I.W.Ordered structures and phase transitions in mixtures of a polystyrene/polyisoprene block copolymer with the corresponding homopolymers in thin films and in bulk[J].Macromolecules,2004,37(9):3369-3377.
    [20]Matsen,M.W.Phase-Behavior of Block-Copolymer Homopolymer Blends[J].Macromolecules,1995,28(17):5765-5773.
    [21]Matsen,M.W.New fast SCFT algorithm applied to binary diblock copolymer/homopolymer blends[J].Macromolecules,2003,36(25):9647-9657.
    [22]Janert,P.K.;Schick,M.Phase behavior of binary homopolymer/diblock blends:Temperature and chain length dependence[J].Macromolecules,1998,31(4):1109-1113.
    [23]Hashimoto,T.;Tanaka,H.;Hasegawa,H.Ordered Structure in Mixtures of a Block Copolymer and Homopolymers.2.Effects of Molecular-Weights of Homopolymers[J].Macromolecules,1990,23(20):4378-4386.
    [24]Hashimoto,T.;Koizumi,S.;Hasegawa,H.Ordered Structure in Blends of Block-Copolymers.2.Self- Assembly for Immiscible Lamella-Forming Copolymers[J].Macromolecules,1994,27(6):1562-1570.
    [25]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Spatial-Distribution of Homopolymers in Block-Copolymer Microdomains as Observed by a Combined Sans and Saxs Method[J].Macromolecules,1994,27(26):7893-7906.
    [26]Winey,K.I.;Thomas,E.L.;Fetters,L.J.Isothermal Morphology Diagrams for Binary Blends of Diblock Copolymer and Homopolymer[J].Macromolecules,1992,25(10):2645-2650.
    [27]Ohta,T.;Ito,A.Dynamics of Phase-Separation in Copolymer-Homopolymer Mixtures[J].Physical Review E,1995,52(5):5250-5260.
    [28]Morita,H.;Kawakatsu,T.;Doi,M.;Yamaguchi,D.;Takenaka,M.;Hashimoto,T.Competition between micro- and macrophase separations in a binary mixture of block copolymers.A dynamic density functional study[J].Macromolecules,2002,35(19):7473-7480.
    [29]He,X.H.;Liang,H.J.;Huang,L.;Pan,C.Y.Complex Microstructures of Amphiphilic Diblock Copolymer in Dilute Solution[J].Journal of Physical Chemistry B,2004,108(5):1731-1735.
    [30]Zhu,J.T.;Jiang,Y.;Liang,H.J.;Jiang,W.Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution[J].Journal of Physical Chemistry B,2005,109(18):8619-8625.
    [31]Li,X.A.;Tang,P.;Qiu,F.;Zhang,H.D.;Yang,Y.L.Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length[J].Journal Of Physical Chemistry B,2006,110(5):2024-2030.
    [32]Yu,G.;Eisenberg,A.Multiple Morphologies Formed from an Amphiphilic ABC Triblock Copolymer in Solution[J].Macromolecules,1998,31(16):5546-5549.
    [33]Ma,J.W.;Li,X.;Tang,P.;Yang,Y.L.Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution:Self-consistent field theory simulations[J].Journal of Physical Chemistry B,2007,111(7):1552-1558.
    [34]Kou,D.Z.;Jiang,Y.;Liang,H.J.Microstructures from a mixture of ABC 3-miktoarm star terpolymers and homopolymers in two-dimensional space[J].Journal of Physical Chemistry B,2006,110(46):23557-23563.
    [35]Gast,A.P.;Russel,W.B.Simple ordering in complex fluids - Colloidal particles suspended in solution provide intriguing models for studying phase transitions[J].Physics Today,1998,51(12):24-30.
    [36]Gast,A.P.Structure,interactions,and dynamics in tethered chain systems[J].Langmuir,1996,12(17):4060-4067.
    [37]Gast,A.;Robinson,B.Dynamic aspects of colloids and interfaces[J].Current Opinion in Colloid & Interface Science,1997,2(6):597-599.
    [38]Grest,G.S.;Fetters,L.J.;Huang,J.S.;Richter,D.,Star polymers:Experiment,theory,and simulation.In Advances in Chemical Physics,Vol Xciv,John Wiley & Sons Inc:New York,1996;Vol.94,pp 67-163.
    [39]Zhou,L.L.;Roovers,J.Synthesis of Novel Carbosilane Dendritic Macromolecules[J]. Macromolecules,1993,26(5):963-968.
    [40]Roovers,J.;Zhou,L.L.;Toporowski,P.M.;Vanderzwan,M.;Iatrou,H.;Hadjichristidis,N.Regular Star Polymers with 64 and 128 Arms - Models for Polymeric Micelles[J].Macromoleeules,1993,26(16):4324-4331.
    [41]Sugiyama,M.;Shefelbine,T.A.;Vigild,M.E.;Bates,F.S.Phase behavior of an ABC triblock copolymer blended with A and C homopolymers[J].Journal of Physical Chemistry B,2001,105(50):12448-12460.
    [42]Lu,T.;He,X.H.;Liang,H.J.Ordered microstructures by assembly of ABC 3-miktoarm star terpolymers and linear homopolymers[J].Journal of Chemical Physics,2004,121(19):9702-9707.
    [43]Drolet,F.;Fredrickson,G.H.Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J].Physical Review Letters,1999,83(21):4317-4320.
    [44]Drolet,F.;Fredrickson,G.H.Optimizing chain bridging in complex block copolymers[J].Macromolecules,2001,34(15):5317-5324.
    [45]Tang,P.;Qiu,E;Zhang,H.D.;Yang,Y.L.Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J].Journal of Physical Chemistry B,2004,108(24):8434-8438.
    [46]Zhang,L.S.;Lin,J.P.;Lin,S.L.Aggregate morphologies of amphiphilic graft copolymers in dilute solution studied by self-consistent field theory[J].Journal of Physical Chemistry B,2007,111(31):9209-9217.
    [47]Helfand,E.Theory of Inhomogeneous Polymers - Fundamentals of Gaussian Random-Walk Model[J].Journal of Chemical Physics,1975,62(3):999-1005.
    [48]Ferreira,P.G.;Ajdari,A.;Leibler,L.Scaling law for entropic effects at interfaces between grafted layers and polymer melts[J].Macromolecules,1998,31(12):3994-4003.
    [49]Sakurai,S.;Jinnai,H.;Hasegawa,H.;Hashimoto,T.;Han,C.C.Microstructure Effects on Lest Phase-Behavior of Polybutadiene and Polyisoprene Blends Studied by Sans and Ls[J].Abstracts of Papers of the American Chemical Society,1990,200:84-POLY.
    [50]Lowenhaupt,B.;Steurer,A.;Hellmann,G.P.;Gallot,Y.Microphases and Macrophases in Polymer Blends with a Diblock Copolymer[J].Macromoleeules,1994,27(4):908-916.
    [51]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Ordered Structure of Block Polymer Homopolymer Mixtures.4.Vesicle Formation and Macrophase Separation[J].Makromolekulare Chemie-Macromolecular Symposia,1992,62:75-91.
    [52]Thompson,R.B.;Matsen,M.W.Effective interaction between monolayers of block copolymer compatiblizer in a polymer blend[J].Journal of Chemical Physics,2000,112(15):6863-6872.
    [53]Banaszak,M.;Whitmore,M.D.Mean Field-Theory of the Lamellar Structure of Block Copolymer Homopolymer Blends in the Weak Segregation Regime[J].Macromolecules,1992,25(10):2757-2770
    [1]Harkless,C.R.;Singh,M.A.;Nagler,S.E.;Stephenson,G.B.;Jordansweet,J.L.Small-Angle X-Ray-Scattering Study of Ordering Kinetics in a Block Copolymer[J].Physical Review Letters,1990,64(19):2285-2288.
    [2]Hamley,I.W.Nanostructure fabrication using block copolymers[J].Nanotechnology,2003,14(10):R39-R54.
    [3]Bates,F.S.;Fredrickson,G.H.Block copolymers - Designer soft materials[J].Physics Today,1999,52(2):32-38.
    [4]Bates,F.S.;Fredrickson,G.H.Block Copolymer Thermodynamics - Theory and Experiment[J].Annual Review of Physical Chemistry,1990,41:525-557.
    [5]Matsen,M.W.;Schick,M.Stable and Unstable Phases of a Diblock Copolymer Melt[J].Physical Review Letters,1994,72(16):2660-2663.
    [6]Tyler,C.A.;Morse,D.C.Orthorhombic Fddd network in triblock and diblock copolymer melts[J].Physical Review Letters,2005,94(20):208302-208306.
    [7]Park,M.;Harrison,C.;Chaikin,P.M.;Register,R.A.;Adamson,D.H.Block copolymer lithography:Periodic arrays of similar to 10(11) holes in 1 square centimeter[J].Science,1997,276(5317):1401-1404.
    [8]Morkved,T.L.;Wiltzius,P.;Jaeger,H.M.;Grier,D.G.;Witten,T.A.Mesoscopic Self-Assembly of Gold Islands an Diblock-Copolymer Films[J].Applied Physics Letters,1994,64(4):422-424.
    [9]Archibald,D.D.;Mann,S.Template Mineralization of Self-Assembled Anisotropic Lipid Microstructures[J].Nature,1993,364(6436):430-433.
    [10]Kimishima,K.;Koga,T.;Hashimoto,T.Order-order phase transition between spherical and cylindrical microdomain structures of block copolymer.I.Mechanism of the transition[J].Macromolecules,2000,33(3):968-977.
    [11]Forster,S.;Khandpur,A.K.;Zhao,J.;Bates,F.S.;Hamley,I.W.;Ryan,A.J.;Bras,W.Complex Phase-Behavior of Polyisoprene-Polystyrene Diblock Copolymers near the Order-Disorder Transition[J].Macromolecules,1994,27(23):6922-6935.
    [12]Khandpur,A.K.;Forster,S.;Bates,F.S.;Hamley,I.W.;Ryan,A.J.;Bras,W.;Almdal,K.;Mortensen,K.Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition[J].Macromolecules,1995,28(26):8796-8806.
    [13]Ren,S.R.;Hamley,I.W.Cell dynamics simulations of microphase separation in block copolymers[J].Macromolecules,2001,34(1):116-126.
    [14]Gido,S.P.;Schwark,D.W.;Thomas,E.L.;Goncalves,M.D.Observation of a Nonconstant Mean-Curvature Interface in an Abc Triblock Copolymer[J].Macromolecules,1993,26(10):2636-2640.
    [15]Mogi,Y.;Kotsuji,H.;Kaneko,Y.;Mori,K.;Matsushita,Y.;Noda,I.Preparation and Morphology of Triblock Copolymers of the Abc Type[J].Maeromolecules,1992,25(20):5408-5411.
    [16]Mogi,Y.;Mori,K.;Matsushita,Y.;Noda,I.Tricontinuous Morphology of Triblock Copolymers of the Abc Type[J].Maeromolecules,1992,25(20):5412-5415.
    [17]Tang,P.;Qiu,F.;Zhang,H.D.;Yang,Y.L.Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers[J].Physical Review E,2004,69(3):031803.
    [18]Tyler,C.A.;Qin,J.;Bates,F.S.;Morse,D.C.SCFT study of nonfrustrated ABC triblock copolymer melts[J].Macromolecules,2007,40(13):4654-4668.
    [19]Wang,R.;Jiang,Z.B.;Hu,J.L.Order to disorder transition of comb copolymer A(m+1)B-m:a self-consistent field study[J].Polymer,2005,46(16):6201-6207.
    [20]Sartori,A.;Johner,A.;Viovy,J.L.;Joanny,J.F.Theoretical study of comb polymers adsorption on solid surfaces[J].Macromolecules,2005,38(8):3432-3441.
    [21]Ye,X.G.;Shi,T.F.;Lu,Z.Y.;Zhang,C.X.;Sun,Z.Y.Study of morphology and phase diagram of pi-shaped ABC block copolymers using self-consistent-field theory[J].Macromolecules,2005,38(21):8853-8857.
    [22]Pantazis,D.;Schulz,D.N.;Hadjichristidis,N.Synthesis of a model cyclic triblock terpolymer of styrene,isoprene,and methyl methacrylate[J].Journal of Polymer Science Part a-Polymer Chemistry,2002,40(10):1476-1483.
    [23]郭佐军.嵌段共聚物的微相分离形态及相图自洽场理论研究[D].上海:复旦大学,2007.
    [24]Takano,A.;Wada,S.;Sato,S.;Araki,T.;Hirahara,K.;Kazama,T.;Kawahara,S.;Isono,Y.;Ohno,A.;Tanaka,N.;Matsushita,Y.Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography[J].Macromolecules,2004,37(26):9941-9946.
    [25]Zioga,A.;Sioula,S.;Hadjichristidis,N.Synthesis and morphology of model 3-miktoarm star terpolymers of styrene,isoprene and 2-vinyl pyridine[J].Macromolecular Symposia,2000,157:239-249.
    [26]Gemma,T.;Hatano,A.;Dotera,T.Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method[J].Macromolecules,2002,35(8):3225-3237.
    [27] Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers[J]. Journal of Physical Chemistry B, 2004, 108(24): 8434-8438.
    
    [28]He, X. H.; Huang, L.; Liang, H. J.; Pan, C. Y. Self-assembly of star block copolymers by dynamic density functional theory[J]. Journal of Chemical Physics, 2002, 116(23):10508-10513.
    
    [29]Kou, D. Z.; Jiang, Y; Liang, H. J. Microstructures from a mixture of ABC 3-miktoarm star terpolymers and homopolymers in two-dimensional space [J]. Journal of Physical Chemistry B, 2006,110(46): 23557-23563.
    
    [30] Lodge, T. P.; Bang, J. A.; Li, Z. B.; Hillmyer, M. A.; Talmon, Y. Strategies for controlling intra- and intermicellar packing in block copolymer solutions: Illustrating the flexibility of the self-assembly toolbox[J]. Faraday Discussions, 2005,128: 1-12.
    
    [31] Park, M. J.; Bang, J.; Harada, T.; Char, K.; Lodge, T. P. Epitaxial transitions among FCC, HCP, BCC, and cylinder phases in a block copolymer solution[J]. Macromolecules, 2004,37(24): 9064-9075.
    
    [32] Lodge, T. P.; Pudil, B.; Hanley, K. J. The full phase behavior for block copolymers in solvents of varying selectivity [J]. Macromolecules, 2002,35(12): 4707-4717.
    
    [33]Naughton, J. R.; Matsen, M. W. Limitations of the dilution approximation for concentrated block copolymer/solvent mixtures[J]. Macromolecules, 2002, 35(14):5688-5696.
    
    [34] Lodge, T. P.; Pan, C; Jin, X.; Liu, Z.; Zhao, J.; Maurer, W. W.; Bates, F. S. Failure of the Dilution Approximation in Block-Copolymer Solutions[J]. Journal of Polymer Science Part B-Polymer Physics, 1995,33(16): 2289-2293.
    
    [35] Lai, C. J.; Russel, W. B.; Register, R. A. Phase behavior of styrene-isoprene diblock copolymers in strongly selective solvents[J]. Macromolecules, 2002,35(3): 841-849.
    
    [36] Lodge, T. P.; Hamersky, M. W.; Hanley, K. J.; Huang, C. I. Solvent distribution in weakly-ordered block copolymer solutions[J]. Macromolecules, 1997,30(20): 6139-6149.
    
    [37] Lodge, T. P.; Seurer, B. D.; Bang, J. Phase behavior of block copolymers in decane[J]. Abstracts of Papers of the American Chemical Society, 2002,223: U310-U310.
    
    [38] Lodge, T. P.; Bang, J.; Park, M. J.; Char, K. Origin of the thermoreversible fcc-bcc transition in block copolymer solutions[J]. Physical Review Letters, 2004,92(14): 4.
    
    [39] Bang, J.; Jain, S. M.; Li, Z. B.; Lodge, T. P.; Pedersen, J. S.; Kesselman, E.; Talmon, Y. Sphere, cylinder, and vesicle nanoaggregates in poly (styrene-b-isoprene) diblock copolymer solutions[J]. Macromolecules, 2006,39(3): 1199-1208.
    [40] Banaszak, M.; Whitmore, M. D. Self-Consistent Theory of Block Copolymer Blends - Selective Solvent[J]. Macromolecules, 1992,25(13): 3406-3412.
    
    [41] Yu, B.; Li, B. H.; Sun, P. C; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Cylinder-gyroid-lamella transitions in diblock copolymer solutions: A simulated annealing study[J]. Journal of Chemical Physics, 2005,123(23): 8.
    
    [42] He, X. H.; Liang, H. J.; Huang, L.; Pan, C. Y. Complex Microstructures of Amphiphilic Diblock Copolymer in Dilute Solution[J]. Journal of Physical Chemistry B, 2004, 108(5):1731-1735.
    
    [43] He, X. H.; Schmid, F. Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers [J]. Macromolecules, 2006,39(7): 2654-2662.
    
    [44] Jiang, Y; Zhu, J. T.; Jiang, W.; Liang, H. J. Cornucopian cylindrical aggregate morphologies from self-assembly of amphiphilic triblock copolymer in selective media[J]. Journal of Physical Chemistry B, 2005,109(46): 21549-21555.
    
    [45] Li, X. A.; Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length[J]. Journal Of Physical Chemistry B, 2006,110(5): 2024-2030.
    
    [46] Ma, J. W.; Li, X.; Tang, P.; Yang, Y. L. Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: Self-consistent field theory simulations [J]. Journal of Physical Chemistry B, 2007,11(7): 1552-1558.
    
    [47] Zhu, J. T; Jiang, Y; Liang, H. J.; Jiang, W. Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution[J]. Journal of Physical Chemistry B, 2005,109(18): 8619-8625.
    
    [48] Wang, R.; Tang, P.; Qiu, F.; Yang, Y. L. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory [J]. Journal Of Physical Chemistry B, 2005,109(36): 17120-17127.
    
    [49] Lodge, T. P.; Hillmyer, M. A.; Li, Z. B. Synthesis and self-assembly of ABC miktoarm star terpolymers in water[J]. Abstracts of Papers of the American Chemical Society, 2005, 230: U3724-U3724.
    
    [50] Li, Z. B.; Kesselman, E.; Talmon, Y; Hillmyer, M. A.; Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water[J]. Science, 2004, 306(5693): 98-101.
    
    [51] Yu, G; Eisenberg, A. Multiple Morphologies Formed from an Amphiphilic ABC Triblock Copolymer in Solution[J]. Macromolecules, 1998,31(16): 5546-5549.
    
    [52] Shusharina, N. P.; Alexandridis, P.; Linse, P.; Balijepalli, S.; Gruenbauer, H. J. M. Phase behavior and structure of an ABC triblock copolymer dissolved in selective solvent[J]. European Physical Journal E,2003,10(1):45-54.
    [53]Noolandi,J.;Shi,A.C.;Linse,P.Theory of phase behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions[J].Macromolecules,1996,29(18):5907-5919.
    [54]Jiang,R.;Jin,Q.H.;Li,B.H.;Ding,D.T.;Shi,A.C.Phase diagram of poly(ethylene oxide) and poly(propylene oxide) triblock copolymers in aqueous solutions[J].Macromolecules,2006,39(17):5891-5896.
    [55]Kanaoka,S.;Nakata,S.;Yamaoka,H.Amphiphilic heteroarm star-shaped polymers by living cationic polymerization:A unique behavior in aqueous solution[J].Macromolecules,2002,35(12):4564-4566.
    [56]Johnston-Hall,G.;Monteiro,M.J.Diffusion controlled termination of linear polystyrene radicals in linear,4-arm,and 6-arm star polymer matrices in dilute,semidilute,and concentrated solution conditions[J].Macromolecules,2008,41(3):727-736.
    [57]Stepanek,M.;Matejicek,P.;Humpolickova,J.;Havrankova,J.;Podhajecka,K.;Spirkova,M.;Tuzar,Z.;Tsitsilianis,C.;Prochazka,K.New insights on the solution behavior and self-assembly of polystyrene/poly(2-vinylpyridine) 'hairy' heteroarm star copolymers with highly asymmetric arms in polar organic and aqueous media[J].Polymer,2005,46(23):10493-10505.
    [58]Stancik,C.M.;Pople,J.A.;Trollsas,M.;Lindner,P.;Hedrick,J.L.;Gast,A.P.Impact of core architecture on solution properties of dendrimer-like star copolymers[J].Macromolecules,2003,36(15):5765-5775.
    [59]Lee,S.J.;Han,B.R.;Park,S.Y.;Han,D.K.;Kim,S.C.Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution[J].Journal of Polymer Science Part a-Polymer Chemistry,2006,44(2):888-899.
    [60]Havrankova,J.;Limpouchova,Z.;Prochazka,K.Monte Carlo study of heteroarm star copolymers in good and selective solvents[J].Macromolecular Theory and Simulations,2003,12(7):512-523.
    [61]Ferreira,P.G.;Ajdari,A.;Leibler,L.Scaling law for entropic effects at interfaces between grafted layers and polymer melts[J].Macromolecules,1998,31(12):3994-4003.
    [62]Drolet,F.;Fredrickson,G.H.Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J].Physical Review Letters,1999,83(21):4317-4320.
    [63]Drolet,F.;Fredrickson,G.H.Optimizing chain bridging in complex block copolymers[J].Macromolecules,2001,34(15):5317-5324.
    [64]Tzeremes,G.;Rasmussen,K.O.;Lookman,T.;Saxena,A.Efficient computation of the structural phase behavior of block copolymers[J].Physical Review E,2002,65(4).
    [65]Yamauchi,K.;Takahashi,K.;Hasegawa,H.;Iatrou,H.;Hadjichristidis,N.;Kaneko,T.;Nishikawa,Y.;Jinnai,H.;Matsui,T.;Nishioka,H.;Shimizu,M.;Fukukawa,H.Microdomain morphology in an ABC 3-miktoarm star terpolymer:A study by energy-filtering TEM and 3D electron tomography[J].Maeromoleeules,2003,36(19):6962-6966.
    [66]Huckstadt,H.;Gopfert,A.;Abetz,V.Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene,polybutadiene and poly(2-vinylpyridine)[J].Macromolecular Chemistry and Physics,2000,201(3):296-307.
    [67]Bohbot-Raviv,Y.;Wang,Z.G.Discovering new ordered phases of block copolymers[J].Physical Review Letters,2000,85(16):3428-3431.
    [68]He,X.H.;Huang,L.;Liang,H.J.;Pan,C.Y.Localizations of junction points of ABC 3-miktoarm star terpolymers[J].Journal of Chemical Physics,2003,118(21):9861-9863.
    [69]夏建峰.多组分聚合物体系相分离动力学的研究[D].上海:复旦大学,2006.
    [1]Bates,F.S.;Fredrickson,G.H.Block Copolymer Thermodynamics - Theory and Experiment[J].Annual Review of Physical Chemistry,1990,41:525-557.
    [2]Bates,F.S.;Fredrickson,G.H.Block copolymers - Designer soft materials[J].Physics Today,1999,52(2):32-38.
    [3]Matsen,M.W.;Schick,M.Stable and Unstable Phases of a Diblock Copolymer Melt[J].Physical Review Letters,1994,72(16):2660-2663.
    [4]Matsen,M.W.The standard Gaussian model for block copolymer melts[J].Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [5]Park,M.;Harrison,C.;Chaikin,P.M.;Register,R.A.;Adamson,D.H.Block copolymer lithography:Periodic arrays of similar to 10(11) holes in 1 square centimeter[J].Science,1997,276(5317):1401-1404.
    [6]Shin,K.;Xiang,H.Q.;Moon,S.I.;Kim,T.;McCarthy,T.J.;Russell,T.P.Curving and frustrating flatland[J].Science,2004,306(5693):76-76.
    [7]Wu,Y.Y.;Cheng,G.S.;Katsov,K.;Sides,S.W.;Wang,J.F.;Tang,J.;Fredrickson,G.H.;Moskovits,M.;Stucky,G.D.Composite mesostructures by nano-confinement[J].Nature Materials,2004,3(11):816-822.
    [8]Kellogg,G.J.;Walton,D.G.;Mayes,A.M.;Lambooy,P.;Russell,T.P.;Gallagher,P.D.;Satija,S.K.Observed surface energy effects in confined diblock copolymers[J].Physical Review Letters,1996,76(14):2503-2506.
    [9]Walton,D.G.;Kellogg,G.J.;Mayes,A.M.;Lambooy,P.;Russell,T.P.A Free-Energy Model for Confined Diblock Copolymers[J].Macromolecules,1994,27(21):6225-6228.
    [10]Xiang,H.;Shin,K.;Kim,T.;Moon,S.I.;McCarthy,T.J.;Russell,T.P.From cylinders to helices upon confinement[J].Macromolecules,2005,38(4):1055-1056.
    [11]Yang,Y.Z.;Qiu,F.;Zhang,H.D.;Yang,Y.L.Cylindrical phase of diblock copolymers confined in thin films.A real-space self-consistent field theory study[J].Polymer,2006,47(6):2205-2216.
    [12]Matsen,M.W.Thin films of block copolymer[J].Journal of Chemical Physics,1997,106(18):7781-7791.
    [13]Wang,Q.;Yan,Q.L.;Nealey,P.F.;de Pablo,J.J.Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces[J].Journal of Chemical Physics,2000,112(1):450-464.
    [14]Huinink,H.P.;Brokken-Zijp,J.C.M.;van Dijk,M.A.;Sevink,G.J.A.Asymmetric block copolymers confined in a thin film[J].Journal of Chemical Physics,2000,112(5): 2452-2462.
    [15]Sevink,G.J.A.;Zvelindovsky,A.V.;Fraaije,J.;Huinink,H.P.Morphology of symmetric block copolymer in a cylindrical pore[J].Journal Of Chemical Physics,2001,115(17):8226-8230.
    [16]Li,W.H.;Wickham,R.A.;Garbary,R.A.Phase diagram for a diblock copolymer melt under cylindrical confinement[J].Macromolecules,2006,39(2):806-811.
    [17]Yu,B.;Sun,P.C.;Chen,T.H.;Jin,Q.H.;Ding,D.T.;Li,B.H.;Shi,A.C.Self-assembly of diblock copolymers confined in cylindrical nanopores[J].Journal of Chemical Physics,2007,127(11):114906-114915.
    [18]He,X.H.;Song,M.;Liang,H.J.;Pan,C.Y.Self-assembly of the symmetric diblock copolymer in a confined state:Monte Carlo simulation[J].Journal of Chemical Physics,2001,114(23):10510-10513.
    [19]Lee,J.Y.;Shou,Z.Y.;Balazs,A.C.Predicting the morphologies of confined copolymer/nanoparticle mixtures[J].Macromolecules,2003,36(20):7730-7739.
    [20]Suh,K.Y.;Kim,Y.S.;Lee,H.H.Parallel and vertical morphologies in block copolymers of cylindrical domain[J].Journal of Chemical Physics,1998,108(3):1253-1256.
    [21]Horvat,A.;Lyakhova,K.S.;Sevink,G.J.A.;Zvelindovsky,A.V.;Magerle,R.Phase behavior in thin films of cylinder-forming ABA block copolymers:Mesoscale modeling[J].Journal of Chemical Physics,2004,120(2):1117-1126.
    [22]Matsen,M.W.Self-assembly of block copolymers in thin films[J].Current Opinion in Colloid & Interface Science,1998,3(1):40-47.
    [23]Fasolka,M.J.;Mayes,A.M.Block copolymer thin films:Physics and applications[J].Annual Review of Materials Research,2001,31:323-355.
    [24]Segalman,R.A.Patterning with block copolymer thin films[J].Materials Science &Engineering R-Reports,2005,48(6):191-226.
    [25]Pickett,G.T.;Balazs,A.C.Equilibrium behavior of confined triblock copolymer films[J].Macromolecular Theory and Simulations,1998,7(2):249-255.
    [26]Feng,J.;Ruckenstein,E.Monte Carlo simulation of triblock copolymer thin films[J].Polymer,2002,43(21):5775-5790.
    [27]Chen,H.Y.;Fredrickson,G.H.Morphologies of ABC triblock copolymer thin films[J].Journal of Chemical Physics,2002,116(3):1137-1146.
    [28]Chen,P.;Liang,H.J.Monte Carlo simulations of cylinder-forming ABC triblock terpolymer thin films[J].Journal of Physical Chemistry B,2006,110(37):18212-18224.
    [29]Ludwigs,S.;Schmidt,K.;Stafford,C.M.;Amis,E.J.;Fasolka,M.J.;Karim,A.;Magerle,R.;Krausch,G.Combinatorial mapping of the phase behavior of ABC triblock terpolymers in thin films:Experiments[J].Macromolecules,2005,38(5):1850-1858.
    [30]Ludwigs,S.;Krausch,G.;Magerle,R.;Zvelindovsky,A.V.;Sevink,G.J.A.Phase behavior of ABC triblock terpolymers in thin films:Mesoseale simulations[J].Macromolecules,2005,38(5):1859-1867.
    [31]Romiszowski,P.;Sikorski,A.Star-branched polymers in an adsorbing slit:A Monte Carlo study[J].Journal of Chemical Physics,2005,123(10):104905-104911.
    [32]Takano,A.;Wada,S.;Sato,S.;Araki,T.;Hirahara,K.;Kazama,T.;Kawahara,S.;Isono,Y.;Ohno,A.;Tanaka,N.;Matsushita,Y.Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography[J].Macromolecules,2004,37(26):9941-9946.
    [33]Zioga,A.;Sioula,S.;Hadjichristidis,N.Synthesis and morphology of model 3-miktoarm star terpolymers of styrene,isoprene and 2-vinyl pyridine[J].Macromolecular Symposia,2000,157:239-249.
    [34]Gemma,T.;Hatano,A.;Dotera,T.Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method[J].Macromolecules,2002,35(8):3225-3237.
    [35]Tang,P.;Qiu,F.;Zhang,H.D.;Yang,Y.L.Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J].Journal of Physical Chemistry B,2004,108(24):8434-8438.
    [36]Kou,D.Z.;Jiang,Y.;Liang,H.J.Microstructures from a mixture of ABC 3-miktoarm star terpolymers and homopolymers in two-dimensional space[J].Journal of Physical Chemistry B,2006,110(46):23557-23563.
    [37]Romiszowski,P.;Sikorski,A.Properties of star-branched and linear chains in confined space.A Monte-Carlo study[J].Journal of Molecular Modeling,2005,11(4-5):335-340.
    [38]Drolet,F.;Fredrickson,G.H.Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J].Physical Review Letters,1999,83(21):4317-4320.
    [39]Drolet,F.;Fredrickson,G.H.Optimizing chain bridging in complex block copolymers[J].Macromolecules,2001,34(15):5317-5324.
    [40]Meng,D.;Wang,Q.Hard-surface effects in polymer self-consistent field calculations[J].Journal of Chemical Physics,2007,126(23):234902-234912.
    [41]Khanna,V.;Cochran,E.W.;Hexemer,A.;Stein,G.E.;Fredrickson,G.H.;Kramer,E. J.;Li,X.;Wang,J.;Hahn,S.F.Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers[J].Macromolecules,2006,39(26):9346-9356.
    [42]Helfand,E.Theory of Inhomogeneous Polymers -Fundamentals of Gaussian Random-Walk Model[J].Journal of Chemical Physics,1975,62(3):999-1005.
    [43]Tzeremes,G.;Rasmussen,K.O.;Lookman,T.;Saxena,A.Efficient computation of the structural phase behavior of block copolymers[J].Physical Review E,2002,65(4):041806-041811.
    [44]Bohbot-Raviv,Y.;Wang,Z.G.Discovering new ordered phases of block copolymers[J].Physical Review Letters,2000,85(16):3428-3431.
    [45]He,X.H.;Huang,L.;Liang,H.J.;Pan,C.Y.Localizations of junction points of ABC 3-miktoarm star terpolymers[J].Journal of Chemical Physics,2003,118(21):9861-9863.
    [46]Hayashida,K.;Kawashima,W.;Takano,A.;Shinohara,Y.;Amemiya,Y.;Nozue,Y.;Matsushita,Y.Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering[J].Macromolecules,2006,39(14):4869-4872.
    [47]Wang,Q.;Nealey,P.F.;de Pablo,J.J.Monte Carlo simulations of asymmetric diblock copolymer thin films confined between two homogeneous surfaces[J].Macromolecules,2001,34(10):3458-3470.
    [48]Feng,J.;Ruckenstein,E.Self-assembling of ABC linear triblock copolymers in nanocylindrical tubes[J].Journal of Chemical Physics,2007,126(12):124902-124910.
    [49]Yu,B.;Sun,P.C.;Chen,T.H.;Jin,Q.H.;Ding,D.T.;Li,B.H.;Shi,A.C.Self-assembled morphologies of diblock copolymers confined in nanochannels:Effects of confinement geometry[J].Journal of Chemical Physics,2007,126(20):204903-204908.
    [50]Breiner,U.;Krappe,U.;Abetz,V.;Stadler,R.Cylindrical morphologies in asymmetric ABC triblock copolymers[J].Macromolecular Chemistry and Physics,1997,198(4):1051-1083.
    [51]Tyler,C.A.;Qin,J.;Bates,F.S.;Morse,D.C.SCFT study of nonfrustrated ABC triblock copolymer melts[J].Macromolecules,2007,40(13):4654-4668.
    [1]翟中和;丁明孝.细胞生物学[M].北京:高等教育出版社,1996.
    [2]Albert,B.;Johnson,A.;Lewis,J.;Raff,M.Molecular Biology of the Cell[M].New York:Garland,1994.
    [3]王金发.细胞生物学[M].北京:科学出版社,2003.
    [4]Gundersen,G.G.Evolutionary conservation of microtubule-capture mechanisms[J].Nature Reviews Molecular Cell Biology,2002,3(4):296-304.
    [5]Slautterback,D.B.Cytoplasmic Microtubules.1.Hydra[J].Journal of Cell Biology,1963,18(2):367-&.
    [6]Amos,L.A.;Klug,A.Arrangement of Subunits in Flagellar Microtubules[J].Journal of Cell Science,1974,14(3):523-549.
    [7]Chretien,D.;Fuller,S.D.;Karsenti,E.Structure of Growing Microtubule Ends-2-Dimensional Sheets Close into Tubes at Variable Rates[J].Journal of Cell Biology,1995,129(5):1311-1328.
    [8]Burns,R.G.Alpha-Tubulin,Beta-Tubulin,and Gamma-Tubulins-Sequence Comparisons and Structural Constraints[J].Cell Motility and the Cytoskeleton,1991,20(3):181-189.
    [9]Amos,L.A.Microtubule structure and its stabilisation[J].Organic & Biornolecular Chemistry,2004,2(15):2153-2160.
    [10]Weisenbe.Rc.Microtubule Formation in-Vitro in Solutions Containing Low Calcium Concentrations[J].Science,1972,177(4054):1104-&.
    [11]Chretien,D.;Wade,R.H.New Data on the Microtubule Surface Lattice[J].Biology of the Cell,1991,71(1-2):161-174.
    [12]Howard,J.;Hyman,A.A.Dynamics and mechanics of the microtubule plus end[J].Nature,2003,422(6933):753-758.
    [13]Mitchison,T.J.Localization of an Exchangeable Gtp-Binding Site at the Plus End of Microtubules[J].Science,1993,261(5124):1044-1047.
    [14]Erickson,H.P.;Obrien,E.T.Microtubule Dynamic Instability and Gtp Hydrolysis[J].Annual Review of Biophysics and Biornolecular Structure,1992,21:145-166.
    [15]Carlier,M.F.;Melki,R.;Pantaloni,D.;Hill,T.L.;Chen,Y.Synchronous Oscillations in Microtubule Polymerization[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(15):5257-5261.
    [16]Walker,R.A.;Obrien,E.T.;Pryer,N.K.;Soboeiro,M.F.;Voter,W.A.;Erickson,H.P.;Salmon,E.D.Dynamic Instability of Individual Microtubules Analyzed by Video Light-Microscopy - Rate Constants and Transition Frequencies[J]. Journal of Cell Biology,1988,107(4): 1437-1448.
    
    [17]Mitchison, T.; Kirschner, M. Dynamic Instability of Microtubule Growth[J]. Nature, 1984,312(5991): 237-242.
    
    [18]Mitchison, T.; Kirschner, M. Microtubule Assembly Nucleated by Isolated Centrosomes[J]. Nature, 1984,312(5991): 232-237.
    
    [19]Obrien, E. T.; Salmon, E. D.; Walker, R. A.; Erickson, H. P. Effects of Magnesium on the Dynamic Instability of Individual Microtubules[J]. Biochemistry, 1990, 29(28):6648-6656.
    
    [20]Zong, C. H.; Lu, T.; Shen, T. Y.; Wolynes, P. G. Nonequilibrium self-assembly of linear fibers: microscopic treatment of growth, decay, catastrophe and rescue[J]. Physical Biology, 2006,3(1): 83-92.
    
    [21]Oosawa, R; Asakura, S. Thermodynamics of the Polymerization of Protein[M]. New York: Academic Press, 1975.
    
    [22]Margolis, R. L.; Wilson, L. Opposite End Assembly and Disassembly of Microtubules at Steady-State Invitro[J]. Cell, 1978,13(1): 1-8.
    
    [23]Wegner, A. Head to Tail Polymerization of Actin[J]. Journal of Molecular Biology, 1976,108(1): 139-150.
    
    [24]Cassimeris, L.; Pryer, N. K.; Salmon, E. D. Real-Time Observations of Microtubule Dynamic Instability in Living Cells[J]. Journal of Cell Biology, 1988,107(6): 2223-2231.
    
    [25]Horio, T.; Hotani, H. Visualization of the Dynamic Instability of Individual Microtubules by Dark-Field Microscopy[J]. Nature, 1986,321(6070): 605-607.
    
    [26]Walker, R. A.; Pryer, N. K.; Salmon, E. D. Dilution of Individual Microtubules Observed in Real-Time Invitro - Evidence That Cap Size Is Small and Independent of Elongation Rate[J]. Journal of Cell Biology, 1991,114(1): 73-81.
    
    [27]Weisenbe.Rc; Borisy, G. G; Taylor, E. W. Colchicine-Binding Protein of Mammalian Brain and Its Relation to Microtubules[J]. Biochemistry, 1968,7(12): 4466-&.
    
    [28]Correia, J. J.; Baty, L. T.; Williams, R. C. Mg-2+ Dependence of Guanine-Nucleotide Binding to Tubulin[J]. Journal of Biological Chemistry, 1987,262(36): 17278-17284.
    
    [29] Davidpfeuty, T.; Erickson, H. P.; Pantaloni, D. Guanosine-Triphosphatase Activity of Tubulin Associated with Microtubule Assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977,74(12): 5372-5376.
    
    [30]Macneal, R. K.; Purich, D. L. Stoichiometry and Role of Gtp Hydrolysis in Bovine Neurotubule Assembly[J]. Journal of Biological Chemistry, 1978,253(13): 4683-4687.
    [31]Spiegelman,B.M.;Penningroth,S.M.;Kirschner,M.W.Turnover of Tubulin and N Site Gtp in Chinese-Hamster Ovary Cells[J].Cell 1977,12(3):587-600.
    [32]Obrien,E.T.;Voter,W.A.;Erickson,H.P.Gtp Hydrolysis During Microtubule Assembly[J].Biochemistry,1987,26(13):4148-4156.
    [33]Marx,A.;Mandelkow,E.A Model of Microtubule Oscillations[J].European Biophysics Journal with Biophysics Letters,1994,22(6):405-421.
    [34]Brylawski,B.P.;Caplow,M.Rate for Nucleotide Release from Tubulin[J].Journal of Biological Chemistry,1983,258(2):760-763.
    [35]Bayley,P.M.;Schilstra,M.J.;Martin,S.R.A Simple Formulation of Microtubule Dynamics - Quantitative Implications of the Dynamic Instability of Microtubule Populations Invivo and Invitro[J].Journal of Cell Science,1989,93:241-254.
    [36]Caplow,M.;Fee,L.Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules[J].Biochemistry,2003,42(7):2122-2126.
    [37]Mandelkow,E.M.;Mandelkow,E.;Milligan,R.A.Microtubule Dynamics and Microtubule Caps-a Time-Resolved Cryoelectron Microscopy Study[J].Journal of Cell Biology,1991,114(5):977-991.
    [38]Davis,A.;Sage,C.R.;Dougherty,C.A.;Farrell,K.W.Microtubule Dynamics Modulated by Guanosine Triphosphate Hydrolysis Activity of Beta-Tubulin[J].Science,1994,264(5160):839-842.
    [39]Davidpfeuty,T.;Erickson,H.P.;Pantaloni,D.Gtpase Activity of Tubulin Associated with Microtubule Assembly[J].Journal of Cell Biology,1977,75(2):A273-A273.
    [40]Hyman,A.A.;Chretien,D.;Areal,I.;Wade,R.H.Structural-Changes Accompanying Gtp Hydrolysis in Microtubules-Information from a Slowly Hydrolyzable Analog Guanylyl-(Alpha,Beta)-Methylene-Diphosphonate[j].Journal of Cell Biology,1995,128(1-2):117-125.
    [41]Melki,R.;Carlier,M.F.;Pantaloni,D.;Timasheff,S.N.Cold Depolymerization of Microtubules to Double Rings - Geometric Stabilization of Assemblies[J].Biochemistry,1989,28(23):9143-9152.
    [42]Carlier,M.F.;Didry,D.;Simon,C.;Pantaloni,D.Mechanism of Gtp Hydrolysis in Tubulin Polymerization - Characterization of the Kinetic Intermediate Microtubule-Gdp-Pi Using Phosphate Analogs[J].Biochemistry,1989,28(4):1783-1791.
    [43]Caplow,M.;Ruhlen,R.L.;Shanks,J.The Free-Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is near Zero - All of the Free-Energy for Hydrolysis Is Stored in the Microtubule Lattice[J].Journal of Cell Biology,1994,127(3): 779-788.
    [44]Carlier,M.F.;Didry,D.;Melki,R.;Chabre,M.;Pantaloni,D.Stabilization of Microtubules by Inorganic-Phosphate and Its Structural Analogs,the Fluoride Complexes of Aluminum and Beryllium[J].Biochemistry,1988,27(10):3555-3559.
    [45]Melki,R.;Carlier,M.F.;Pantaloni,D.Direct Evidence for Gtp and Gdp-Pi Intermediates in Microtubule Assembly[J].Biochemistry,1990,29(38):8921-8932.
    [46]Schilstra,M.J.;Martin,S.R.;Bayley,P.M.On the Relationship between Nucleotide Hydrolysis and Microtubule Assembly-Studies with a Gtp-Regenerating System[J].Biochemical and Biophysical Research Communications,1987,147(2):588-595.
    [47]Stewart,R.J.;Farrell,K.W.;Wilson,L.Role of Gtp Hydrolysis in Microtubule Polymerization-Evidence for a Coupled Hydrolysis Mechanism[J].Biochemistry,1990,29(27):6489-6498.
    [48]Voter,W.A.;Obrien,E.T.;Erickson,H.P.Dilution-Induced Disassembly of Microtubules-Relation to Dynamic Instability and the Gtp Cap[J].Cell Motility and the Cytoskeleton,1991,18(1):55-62.
    [49]Caplow,M.;Shanks,J.Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules[J].Molecular Biology of the Cell,1996,7(4):663-675.
    [50]Fygenson,D.K.;Flyvbjerg,H.;Sneppen,K.;Libchaber,A.;Leibler,S.Spontaneous Nucleation of Microtubules[J].Physical Review E,1995,51(5):5058-5063.
    [51]Koren,R.;Hammes,G.G.Kinetic Study of Protein-Protein Interactions[J].Biochemistry,1976,15(5):1165-1170.
    [52]Northrup,S.H.;Erickson,H.P.Kinetics of Protein Protein Association Explained by Brownian Dynamics Computer-Simulation[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(8):3338-3342.
    [53]Chen,Y.D.;Hill,T.L.Monte-Carlo Study of the Gtp Cap in a 5-Start Helix Model of a Microtubule[J].Proceedings of the National Academy of Sciences of the United States of America,1985,82(4):1131-1135.
    [54]Shelden,E.;Wadsworth,P.Observation and Quantification of Individual Microtubule Behavior Invivo-Microtubule Dynamics Are Cell-Type Specific[J].Journal of Cell Biology,1993,120(4):935-945.
    [55]Dhamodharan,R.;Wadsworth,P.Modulation of Microtubule Dynamic Instability in-Vivo by Brain Microtubule-Associated Proteins[J].Journal of Cell Science,1995,108:1679-1689.
    [56]Rodionov, V. I.; Borisy, G. G. Microtubule treadmilling in vivo[J]. Science, 1997, 275(5297): 215-218.
    
    [57]Gildersleeve, R. F.; Cross, A. R.; Cullen, K. E.; Fagen, A. P.; Williams, R. C. Microtubules Grow and Shorten at Intrinsically Variable Rates[J]. Journal of Biological Chemistry, 1992,267(12): 7995-8006.
    
    [58]Gamblin, T. C; Williams, R. C. Determination of Microtubule Polarity in-Vitro by the Use of Video-Enhanced Differential-Interference Contrast Light-Microscopy and Chlamydomonas Flagellar Axonemal Pieces[J]. Analytical Biochemistry, 1995, 232(1):43-46.
    
    [59]Billger, M. A.; Bhatacharjee, G; Williams, R. C. Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: Neither variability of growth and shortening rates nor "rescue" requires microtubule-associated proteins[J]. Biochemistry, 1996,35(42): 13656-13663.
    
    [60]Bayley, P.; Schilstra, M.; Martin, S. A Lateral Cap Model of Microtubule Dynamic Instability [J]. Febs Letters, 1989,259(1): 181-184.
    
    [61]Bayley, P. M.; Schilstra, M. J.; Martin, S. R. Microtubule Dynamic Instability - Numerical-Simulation of Microtubule Transition Properties Using a Lateral Cap Model [J]. Journal of Cell Science, 1990,95: 33-48.
    
    [62] Hill, T. L. Introductory Analysis of the Gtp-Cap Phase-Change Kinetics at the End of a Microtubule [J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1984, 81(21): 6728-6732.
    
    [63]Hill, T. L.; Chen, Y. Phase-Changes at the End of a Microtubule with a Gtp Cap[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1984,81(18): 5772-5776.
    
    [64]Hammele, M.; Zimmermann, W. Modeling oscillatory microtubule polymerization[J]. Physical Review E, 2003,67(2): 021903-021922.
    
    [65]Carlier, M. F.; Pantaloni, D. Kinetic-Analysis of Guanosine 5'-Triphosphate Hydrolysis Associated with Tubulin Polymerization[J]. Biochemistry, 1981,20(7): 1918-1924.
    
    [66]Carlier, M. F.; Didry, D.; Pantaloni, D. Microtubule Elongation and Guanosine 5'-Triphosphate Hydrolysis - Role of Guanine-Nucleotides in Microtubule Dynamics[J]. Biochemistry, 1987,26(14): 4428-4437.
    
    [67] Gal, V; Martin, S.; Bayley, P. Fast Disassembly of Microtubules Induced by Mg-2+ or Ca-2+[J]. Biochemical and Biophysical Research Communications, 1988, 155(3):1464-1470.
    [68]Chen,Y.D.;Hill,T.L.Theoretical-Studies on Oscillations in Microtubule Polymerization[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(23):8419-8423.
    [69]Mandelkow,E.;Mandelkow,E.M.;Hotani,H.;Hess,B.;Muller,S.C.Spatial Patterns from Oscillating Microtubules[J].Science,1989,246(4935):1291-1293.
    [70]Mandelkow,E.M.;Mandelkow,E.Microtubule Oscillations[J].Cell Motility and the Cytoskeleton,1992,22(4):235-244.
    [71]Martin,S.R.;Schilstra,M.J.;Bayley,P.M.Dynamic Instability of Microtubules-Monte -Carlo Simulation and Application to Different Types of Microtubule Lattice[J].Biophysical Journal,1993,65(2):578-596.
    [72]VanBuren,V.;Odde,D.J.;Cassimeris,L.Estimates of lateral and longitudinal bond energies within the microtubule lattice[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(9):6035-6040.
    [73]Pedigo,S.;Williams,R.C.Concentration dependence of variability in growth rates of microtubules[J].Biophysical Journal,2002,83(4):1809-1819.
    [74]Tao,Y.C.;Peskin,C.S.Simulating the role of microtubules in depolymerization-driven transport:A Monte Carlo approach[J].Biophysical Journal,1998,75(3):1529-1540.
    [75]Gliksman,N.R.;Skibbens,R.V.;Salmon,E.D.How the Transition Frequencies of Microtubule Dynamic Instability(Nucleation,Catastrophe,and Rescue) Regulate Microtubule Dynamics in Interphase and Mitosis - Analysis Using a Monte-Carlo Computer-Simulation[J].Molecular Biology of the Cell,1993,4(10):1035-1050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700