自旋转移矩效应驱动磁性纳米结构的磁化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨磁电阻效应(GMR)已经被广泛的应用在磁性存储器、传感器等领域。近年来发现的自旋转移矩效应(Spin transfer torque, STT)被认为是继GMR效应之后又一里程碑的发现。自旋转移矩效应是一种在没有外磁场的作用下可以有效地控制磁化方向的方法。自旋转移矩效应可以应用在磁性随机存储器(MRAM)、高频微波发生器、赛道存储器(Racetrack Memory)等。本论文主要分为微磁学模拟自旋转移矩效应和实验上研究了横向自旋阀结构中的Seebeck效应两部分。主要结果如下:
     (一)微磁学模拟自旋转移矩效应
     这一部分主要基于Landau-Lifshitz-Gilbert方程通过微磁学模拟软件研究了自旋阀和磁性隧道结结构中的自旋转移矩效应。
     (1)通过微波磁场辅助的方法,降低了自旋阀和磁性隧道结中磁化反转所需临界电流密度。微波磁场振幅和频率对临界电流密度的减小量影响非常大。临界电流密度随着微波磁场振幅的增加而减小。微波磁场辅助存在一个最优频率,当微波磁场频率等于最优频率时临界电流密度减小量最大。微波磁场辅助的最优频率等于自旋阀或磁性隧道结的自然共振频率。同时,在微波磁场辅助下磁化反转时间也可以减小。
     (2)在不同偏振形式的微波磁场辅助下,临界电流密度和磁化反转时间的减小量不同。我们分别研究了线偏振和圆偏振微波磁场辅助自旋转移矩激发磁化反转。在圆偏振微波磁场辅助下临界电流密度和磁化反转时间比线偏振微波磁场辅助下的小。
     (3)垂直各向异性不仅可以材料影响动态磁性而且也影响自旋转移矩激发磁化反转。对于In-plane自旋阀结构,其自然共振频率和自旋转移矩效应激发自由层磁化反转所需临界电流密度随着垂直各向异性常数的增加而减小。而对于Out-plane磁性隧道结而言,临界电流密度以及自然共振频率随着磁晶各向异性常数的增加而增加。
     (4)利用微磁学模拟了具有二维周期性边界条件的反点阵列膜的静态磁矩分布以及动态磁性。由于周期性边界条件的引入,使反点阵列膜具有各向异性。对于正方排列的反点阵列膜具有四重对称易轴。通过改变反点阵列膜的孔间距、孔半径以及膜的厚度调节其自然共振频率。其中反点阵列膜的厚度的改变对其本身自然共振频率的影响不大。
     (二)横向自旋阀结构中的Seebeck效应
     这一部分主要研究了三种横向自旋阀结构中的Seebeck效应。首先,我们利用电子束曝光技术制备了横向FM/NM异质纳米结构。并分别利用直流叠加在交流上的锁相放大技术和直接直流测量研究了横向FM/NM异质纳米结构中由焦耳热和Peltier效应引起的Seebeck效应。由焦耳热引起的Seebeck电压与注入偏置直流的二次方成正比,并且关于偏置直流IDC=0mA轴对称。但是对于local横向自旋阀结构,Seebeck电压是不对称的,这种不对称来源于异质结构中的Peltier效应。当通入直流电流为1.5mA时,注入结和探测结之间的温度差为2K。焦耳热不仅可以通过铜传输,而且也可以通过基板传输。通过基板传输的焦耳热大约是通过铜传输焦耳热的12%。同时我们也证明了在同种介质材料中不存在Seebeck效应。
Giant magnetoresistance (GMR) effect had been extensively used in magnetic memory, magnetic sensor and so on. The spin transfer torque was theoretically predicted by Berger and Slonczewski in1996, which was considered as milestone after GMR in magentics. The magnetization can be manipulated by the spin transfer torque rather than the external magnetic field in nanoscale magnetic device. Spin transfer torque holds great promise in the applications of the nonvolatile magnetic random access memory (MRAM), the high-frequency microwave oscillators and the racetrack memory. In this thesis, it is investigated that the spin transfer torque induces magnetization switching under microwave magnetic field assisting by micromagnetic simulation, and the Seebeck voltage is systematically investigated in lateral spin valve by two different measurement techniques. The main results of this thesis are as following:
     (一)Spin transfer torque investigated by micromagnetic
     In this section, the spin transfer torque driven magnetization reversal in spin valve or magnetic tunnel junction (MTJ) is studied based on the extense Landau-Lifshitz-Gilbert equation by micromagnetic simulation.
     (1) The critical current density of magnetization switching induced STT in spin valve and magnetic tunnel junction is systematically investigated under microwave magnetic field assisting by micromagnentic simulation. The simulation results indicate that critical current density and magnetization switching time can be obviously reduced due to the introduction of microwave magnetic field. And the frequency and amplitude of microwave magnetic field can strongly affect both critical current density and magnetization switching time. Critical current density and magnetization switching time decrease with increasing microwave amplitude, when microwave frequency is fixed. The minimums of critical current density and magnetization switching time can be obtained, when microwave frequency comes up to the optimal frequency, which is the natural ferromagnetic resonance frequency of spin valve and MTJ. At one time, the mechanism of magnetization switching changes from nucleation reversal to coherent rotation.
     (2) It is investigated that the STT inducing magnetization reversal is assisted by three types microwave magnetic field (circularly polarized, in-plane linearly polarized and out-plane linearly polarized microwave magnetic field). The reducation of critical current density and magnetization switching time under circularly polarized microwave assisted is bigger than that under linearly polarized microwave assisted.
     (3) Perpendicular anisotropy is very important, because it has an impact not only on dynamic magnetic, but also on STT inducing magnetization reversal. Micromagneitc simulation is carried out to build up a direct relationship between critical current density, natural resonance frequency and uniaxial magnetic anisotropy constant in In-plane spin valve and Out-plane MTJ. In in-plane spin valve, the critical current densiy and natural resonance frequency linearly decrease with the increasing uniaxial magnetic anisotropy constant. But the critical current densiy linearly increases with increasing uniaxial magnetic anisotropy constant in out-plane MTJ.
     (4) Dynamic magetic susceptibilities and static magnentization configurations of permally antidot array with two dimensional periodic boundary condition (2DPBC) are investigated by micromagnetic simulation. The stripy-shaped domains appear in antidot array through the holes, which is originated from the shape anisotropy and magnetic dipolar interaction of neighboring repeating element. The natural resonance frequency can be adjusted by changing the inter-holes distance, inner radius and thinkness of antidot array film. The natural resonance frequency weakly varies with thinkness.
     (二)Seebeck effect in lateral FM/NM hybrid nanstucture
     In this section, the Seebeck effect is systematically investigated in three type lateral Ferromagnetic/Nonmagnetic (FM/NM) hybrid nanostructures. The Seebeck voltage in lateral FM/NM hybrid nanostructure can be obtained by the measurment of different resistance using ac lock-in technology or DC current measurement method. The bias-current dependence background voltage in the conventional nonlocal spin valve measurement is reasonably explained by the Seebeck voltage induced by Peltier effect and Joule heating. The Seebeck voltage curve as function of DC bias current, which is only induced by Joule heating, is symmetry as parabolic function of DC bias current at IDC=0mA axis. The origin of the Seebeck voltage asymmetry curve is the Peltier effect in lateral FM/NM hybrid. The temperature difference between two probes is about2K, when DC bias current is1.5mA.12%of the total thermal power is dispersed through the SiO2/Si substrate via the Cu wire. And there is not Seebeck effect in the same material.
引文
[1]. I. Zuti, J. Fabian, and S. D. Sarma, "Spintronics:Fundamentals and applications." Reviews of Modern Physics,76,323-410 (2004).
    [2]. W. Thomson, "On the electro-dynamic qualities of metals:effects of magnetization on the electric conductivity of Nickel and of Iron." Proceedings the Royal Society,8,546-550 (1857).
    [3]. R. Hunt, "A magnetoresistive readout transducer." IEEE Transaction on Magnetics,7,150-154(1971).
    [4].焦正宽,曹光旱,“磁电子学.”2005:浙江大学出版社.
    [5]. J. Bruyere, G. Clerc, O. Massenet, D. Paccard, R. Montmory, L. Neel, J. Valin, and A. Yelon, "Indirectly coupled films." IEEE Transactions on Magnetics,1, 174-180(1965).
    [6]. J. Bruyere, O. Massenet, R. Montmory, and L. Neel, "A coupling phenomenon between the magnetization of two ferromagnetic thin films separated by a thin metallic film--Application to magnetic memories." IEEE Transactions on Magnetics,1,10-12 (1965).
    [7]. A. Fert, "Transport in magnetic alloys:Scattering asymmetries (anisotropic scattering, skew scattering, side-jump)." Physica B,86-88,491-500 (1977).
    [8]. O. Jaoul, I. A. Campbell, and A. Fert, "Spontaneous resistivity anisotropy in Ni alloys." Journal of Magnetism and Magnetic Materials,5,23-34(1977).
    [9]. P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, "Layered Magnetic Structures:Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers." Physical Review Letters,57,2442-2445 (1986).
    [10].M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices." Physical Review Letters,61, 2472-2475 (1988).
    [11].G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange." Physical Review B,39,4828-4830 (1989).
    [12].C. G. Lee, J. G. Jung, V. S. Gornakov, R. D. McMichael, A. Chen, and W. F. Egelhoff, "Effects of annealing on the GMR and domain structure stabilization in a Py/Cu/Py/Mnlr spin valve." Journal of Magnetism and Magnetic Materials, 272-276,1887-1888 (2004).
    [13]. J. P. Wang, and H. Meng, "Spin torque transfer structure with new spin switching configurations." European Physical Journal B,59,471-474 (2007).
    [14].T. Aoki, Y. Ando, D. Watanabe, M. Oogane, and T. Miyazaki, "Spin transfer switching in the nanosecond regime for CoFeB/MgO/CoFeB ferromagnetic tunnel junctions." Journal of Applied Physics,103 (2008).
    [15].L. J. Chang, P. Lin, and S. F. Lee, "Vortex Induced by DC Current in a Circular Magnetic Spin Valve Nanopillar." IEEE transactions on Magnetics,48,1297 (2012).
    [16].R. L. White, "Giant magnetoresistance:a primer." IEEE transactions on Magnetics,28,2482-2487 (1992).
    [17].S. S. P. Parkin, R. Bhadra, and K. P. Roche, "Oscillatory magnetic exchange coupling through thin copper layers." Physical Review Letters,66,2152-2155 (1991).
    [18].S. S. P. Parkin, Z. G. Li, and D. J. Smith, "Giant magnetoresistance in antiferromagnetic Co/Cu multilayers." Applied Physics Letters,58,2710-2712 (1991).
    [19].D. H. Mosca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt Jr, and R. Laloee, "Oscillatory interlayer coupling and giant magnetoresistance in Co/Cu multilayers." Journal of Magnetism and Magnetic Materials,94, L1-L5 (1991).
    [20].S. S. P. Parkin, N. More, and K. P. Roche, "Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures:Co/Ru, Co/Cr, and Fe/Cr." Physical Review Letters,64,2304-2307 (1990).
    [21].新庄辉也,前川祯通(责仕编集),“巨大磁气抵抗效果(物理学论文选集 Ⅶ).”日本物理学会,(1996).
    [22]. B. Dieny, V. S. Speriosu, B. A. Gurney, S. S. P. Parkin, D. R. Wilhoit, K. P. Roche, S. Metin, D. T. Peterson, and S. Nadimi, "Spin-valve effect in soft ferromagnetic sandwiches." Journal of Magnetism and Magnetic Materials,93, 101-104(1991).
    [23]. B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, "Magnetotransport properties of magnetically soft spin-valve structures (invited)." Journal of Applied Physics,69,4774-4779 (1991).
    [24].http://en.wikipedia.org/wiki/Spin_valve.
    [25].N. F. Mott, "The Resistance and Thermoelectric Properties of the Transition Metals." Proceedings the Royal Society,156,368-382 (1936).
    [26].J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm, and W. Kude, "Magnetic field sensors using GMR multilayer." IEEE Transactions on Magnetics,30, 4608-4610(1994).
    [27].X. Huang, "Constricted Current perpendicular to plane (CPP) magnetic sensor via electroplating",2011, the University of Minnesota.
    [28].M. Julliere, "Tunneling between ferromagnetic films." Physics Letters A,54, 225-226(1975).
    [29].T. Miyazaki, T. Yaoi, and S. Ishio, "Large magnetoresistance effect in 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junction." Journal of Magnetism and Magnetic Materials,98, L7-L9 (1991).
    [30].T. Miyazaki and N. Tezuka, "Giant magnetic tunneling effect in Fe/A12O3/Fe junction." Journal of Magnetism and Magnetic Materials,139, L231-L234 (1995).
    [31].J. S. Moodera. L. R. Kinder, T. M. Wong, and R. Meservey, "Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions." Physical Review Letters,74,3273-3276 (1995).
    [32].H. X. Wei, Q. H. Qin, M. Ma, R. Sharif, and X. F. Han, "80% tunneling magnetoresistance at room temperature for thin Al--O barrier magnetic tunnel junction with CoFeB as free and reference layers." Journal of Applied Physics, 101,09B501-3 (2007).
    [33]. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, "Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers." Nature Material,3,862-867 (2004).
    [34].S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, "Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature." Applied Physics Letters,93,082508-3 (2008).
    [35].M. Coey, "Spin electronics:Thin skins for magnetic sensitivity." Nat Mater,4, 9-10 (2005).
    [36].李彦波,魏福林,杨正,“磁性隧道结的隧穿磁电阻效应及其研究进展.”物理,38,420-426(2009).
    [37].L. Brey, C. Tejedor, and J. Fernandez-Rossier, "Tunnel magnetoresistance in GaMnAs:Going beyond Julliere formula." Applied Physics Letters,85, 1996-1998(2004).
    [38].L. Berger, "Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films." Journal of Applied Physics,55, 1954-1956(1984).
    [39].C. Y. Hung and L. Berger, "Exchange forces between domain wall and electric current in permalloy films of variable thickness." Journal of Applied Physics,63, 4276-4278(1988).
    [40].L. Berger, "Emission of spin waves by a magnetic multilayer traversed by a current." Physical Review B,54,9353 (1996).
    [41]. J. C. Slonczewski, "Current-driven excitation of magnetic multilayers." Journal of Magnetism and Magnetic Materials,159, L1-L7 (1996).
    [42].E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, "Current-Induced Switching of Domains in Magnetic Multilayer Devices." Science,285,867-870 (1999).
    [43].J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, "Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillars." Physical Review Letters,84,3149 (2000).
    [44].J. Grollier, V. Cros, A. Hamzic, J. M. George, H. Jaffres, A. Fert, G. Faini, J. B. Youssef, and H. Legall, "Spin-polarized current induced switching in Co/Cu/Co pillars." Applied Physics Letters,78,3663-3665 (2001).
    [45]. J. Slonezewski, December 9,1997:United States Patent.
    [46].L. Xue, C. Wang, Y. T. Cui, J. A. Katine, R. A. Buhrman, and D. C. Ralph, "Network analyzer measurements of spin transfer torques in magnetic tunnel junctions." Applied Physics Letters,101,022417 (2012).
    [47].H. B. Huang, X. Q. Ma, Z. H. Liu, F. Y. Meng, S. Q. Shi, and L. Q. Chen, "Micromagnetic simulation of critical current density of spin transfer torque switching in a full-Heusler Co2FeAl0.5Si0.5 alloy spin valve nanopillar." Journal of Magnetism and Magnetic Materials,330,16-20 (2013).
    [48].X. W. Yu, V. S. Pribiag, Y. Acremann, A. A. Tulapurkar, T. Tyliszczak, K. W. Chou, B. Brauer, Z. P. Li, O. J. Lee, P. G. Gowtham, D. C. Ralph, R. A. Buhrman, and J. Stohr, "Images of a Spin-Torque-Driven Magnetic Nano-Oscillator." Physical Review Letters,106,167202 (2011).
    [49].J. Zhu, J. A. Katine, G E. Rowlands, Y. J. Chen, Z. Duan, J. G. Alzate, P. Upadhyaya, J. Langer, P. K. Amiri, K. L. Wang, and I. N. Krivorotov, "Voltage Induced Ferromagnetic Resonance in Magnetic Tunnel Junctions." Physical Review Letters,108,197203 (2012).
    [50].L. O'Brien, E. R. Lewis, A. Ferna'ndez-Pacheco, D. Petit, and R. P. Cowburn, "Dynamic Oscillations of Coupled Domain Walls." physical Review Letters,108, 187202(2012).
    [51].Y. Zhang, W. S. Zhao, D. Ravelosona, J. O. Klein, J. V. Kim, and C. Chappert, "Perpendicular-magnetic-anisotropy CoFeB racetrack memory." Journal of Applied Physics,111,093925 (2012).
    [52]. J. Sun, "Applied physics:Spintronics gets a magnetic flute." Nature,425, 359-361 (2003).
    [53].J. C. Slonczewski, "Currents and torques in metallic magnetic multilayers." Journal of Magnetism and Magnetic Materials,247.324-338 (2002).
    [54]. D. C. Ralph, and M. D. Stiles, "Spin transfer torques." Journal of Magnetism and Magnetic Materials,320,1190-1216 (2008).
    [55].M. Covington, "A Ringing Confirmation of Spintronics Theory." Science,307, 215(2005).
    [56].夏海艳,“自旋阀结构中自旋转移矩效应驱动磁化[硕士论文]”,甘肃兰州:兰州大学.(2012).
    [57].S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic Domain-Wall Racetrack Memory." Science,320,190-194 (2008).
    [58].J. W. Forrester, "Digital Information Storage in Three Dimensions Using Magnetic Cores." Journal of Applied Physics,22,44-48 (1951).
    [59].R. Sbiaa, H. Meng, and S. N. Piramanayagam, "Materials with perpendicular magnetic anisotropy for magnetic random access memory." Physica Status Solidi (RRL)-Rapid Research Letters,5,413-419 (2011).
    [60].http://media.freescale.com/phoenix.zhtml?c=196520&p=irol-newsArticle&ID=8 80030.
    [61]. http://www-03.ibm.com/press/us/en/pressrelease/22180.wss.
    [62].http://www.everspin.com/PDF/ST-MRAM_Press_Release.pdf.
    [63].http://en.wikipedia.org/wiki/Magnetic_core_memory.
    [64]. J. Akerman, "Toward a Universal Memory." Science,308,508-510 (2005).
    [65].F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, "A new flash E2PROM cell using triple polysilicon technology." International Electron Devices Meeting,30,464-467(1984).
    [66]. X. F. Han, Z. C. Wen, and H. X. Wei, "Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching." Journal Applied Physics,103,07E933 (2008).
    [67].T. Kawahara, K. Ito, R. Takemura, and H. Ohno, "Spin-transfer torque RAM technology:Review and prospect." Microelectronics Reliability,52,613-627 (2012).
    [68].姜勇,“自旋角动量转移效应的实验研究.”物理学进展,28,215(2008).
    [69]. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, "Current-Controlled Magnetic Domain-Wall Nanowire Shift Register." Science, 320,209-211 (2008).
    [70]. Q. Y. Zhu, C. P. Mu, H. Y. Xia, W. W. Wang, J. B. Wang, and Q. F. Liu, "Faster 360° domain wall motion in nanostrip induced by spin-polarized current with out-of-plane magnetic field." Physica B:Condensed Matter,407,4584-4587 (2012).
    [71]. A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, and A. Fert, "Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion." Physical Review B,87, 020402 (2013).
    [72].M. Yan, C. Andreas, A. Kakay, Felipe Garcia-Sanchez, and R. Hertel, "Fast domain wall dynamics in magnetic nanotubes:Suppression of Walker breakdown and Cherenkov-like spin wave emission." Applied Physics Letters,99,122505 (2011).
    [73]. J. Y. Lee, K. S. Lee, and S. K. Kim, "Remarkable enhancement of domain-wall velocity in magnetic nanostripes." Applied Physics Letters,91,122513-3 (2007).
    [74]. L. Muller-Kirsch, R. Heitz, A. Schliwa, O. Stier, D. Bimberg, H. Kirmse, and W. Neumann, "Many-particle effects in type Ⅱ quantum dots." Applied Physics Letters,78,1418-1420(2001).
    [75]. M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, J. Ganping, L. Bin, K. Pelhos, P. Chubing, R. E. Rottmayer, Y. Xiaomin, Z. Hua, and T. Rausch, "Integrated Heat Assisted Magnetic Recording Head:Design and Recording Demonstration." IEEE Transactions on Magnetics,44,119-124 (2008).
    [76].J. G Zhu, X. C. Zhu, and Y. H. Tang, "Microwave Assisted Magnetic Recording." IEEE Transactions on Magnetics,44,125-131 (2008).
    [77].E. D. Boerner, H. N. Bertram, and G F. Hughes, "Writing on perpendicular patterned media at high density and data rate." Journal of Applied Physics,85, 5318-5320(1999).
    [78]. S. Greaves, Y. Kanai, and H. Muraoka, "Shingled Recording for 2-3 Tbit/in2." IEEE Transactions on Magnetics,45,3823-3829 (2009).
    [79].R. Wood, M. Williams, A. Kavcic, and J. Miles, "The Feasibility of Magnetic Recording at 10 Terabits Per Square Inch on Conventional Media." IEEE Transactions on Magnetics,45,917-923 (2009).
    [80].K. Miura, E. Yamamoto, H. Aoi, and H. Muraoka, "Estimation of Maximum Track Density in Shingled Writing." IEEE Transactions on Magnetics,45, 3722-3725 (2009).
    [81].O. Heinonen and K. Z. Gao, "Extensions of perpendicular recording." Journal of Magnetism and Magnetic Materials,320,2885-2888 (2008).
    [82].C. Thirion, W. Wernsdorfer, and D. Mailly, "Switching of magnetization by nonlinear resonance studied in single nanoparticles." Nature Material,2,524-527 (2003).
    [83].Z. H. Wang, and M. Z. Wu, "Chirped-microwave assisted magnetization reversal." Journal of Applied Physics,105,093903-3 (2009).
    [84].Z. H. Wang, K. Sun, W. Tong, M. Z. Wu, M. Liu, and N. X. Sun, "Competition between pumping and damping in microwave-assisted magnetization reversal in magnetic films." Physical Review B,81,064402 (2010).
    [85].N. Barros, M. Rassam, H. Jirari, and H. Kachkachi, "Optimal switching of a nanomagnet assisted by microwaves." Physical Review B,83,144418 (2011).
    [86].T. R. Ger, N. H. Yang, M. W. Shih, and Z. H. Wei, "AC Field Assisted Magnetization Reversal in Ferromagnetic Thin Films." IEEE Transactions on Magnetics,47,521-523 (2011).
    [87].S. Okamoto, N. Kikuchi, J. Li, O. Kitakami, T. Shimatsu, and H. Aoi, "Frequency and Time Dependent Microwave Assisted Switching Behaviors of Co/Pt Nanodots." Applied Physics Express,5,043001 (2012).
    [88]. http://www.nedo.go.jp/content/100115632.pdf.
    [89].H. X. Wei, M. C. Hickey, G. I. R. Anderson, X. F. Han, and C. H. Marrows, "Current-induced magnetization switching in a microscale ring-shaped magnetic tunnel junction." Physical Review B,77,132401 (2008).
    [90]. Y. Jiang, G. H. Yu, Y. B. Wang, J. Teng, T. Ochiai, N. Tezuka, and K. Inomata, "Spin transfer in antisymmetric exchange-biased spin-valves." Applied Physics Letters,86,192515-3 (2005).
    [91].H. Meng, J. Wang, and J. P. Wang, "Low critical current for spin transfer in magnetic tunnel junctions." Applied Physics Letters,88,082504 (2006).
    [92].H. Meng, and J. P. Wang, "Composite free layer for high density magnetic random access memory with lower spin transfer current." Applied Physics Letters,89,152509(2006).
    [93].X. Li, Z. Z. Zhang, Q. Y. Jin, and Y. W. Liu, "Spin-torque-induced switching in a perpendicular GMR nanopillar with a soft core inside the free layer." New Journal of Physics,11,023027 (2009).
    [94].F. L. Bakker, A. Slachter, J. P. Adam, and B. J. van Wees, "Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves." Physical Review Letters,105,136601 (2010).
    [95]. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, "Observation of the spin Seebeck effect." Nature Letters,455, 778-781 (2008).
    [1]. E. E. Fullerton, D. T. Margulies, M. E. Schabes, M. Carey, B. Gurney, A. Moser, M. Best, G Zeltzer, K. Rubin, H. Rosen and M. Doerner, "Antiferrmagnetically coupled magnetic media layers for thermally stable high-density recording." Applied Physics Letters,77,3806-3808 (2000).
    [2]. H. Kronmuller, "General Micromagnetic Theory." Vol.2. John Wiley & Sons. (2007)
    [3].钟文定,“铁磁学(中册)”科学出版社,(1998).
    [4].廖绍彬,“铁磁学(下册)”科学出版社,(1998).
    [5]. L. Berger, "Emission of spin waves by a magnetic multilayer traversed by a current." Physical Review B,54,9353 (1996)..
    [6]. J. C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials,159(1-2), L1-L7 (1996).
    [7]. M. J. Donahue, and D. G. Porter, OOMMF User's Guide, Version 1.2a3 Available Online:, http://math.nist.gov/oommf/.
    [8]. S. F. Zhang, P. M. Levy, and A. fert, "Mechanisms of Spin-Polarized Current Driven Magnetization Switching." Physics Review Letters,88,26601 (2002).
    [9]. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, "Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillars." Physical Review Letters,84(14),3149 (2000).
    [10]. J. C. Sankey, Y. T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, "Measurement of the spin-transfer torque vector in magnetic tunnel junctions." Nature Physics,4,67 (2008).
    [11]. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, "Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions." Nature Physics,4:37 (2008).
    [12].S. Zhang, and Z. Li, "Roles of Nonequilibrium Conduction Electrons on the Magnetization Dynamics of Ferromagnets." Physical Review Letters,93(12), 127204 (2004).
    [13].S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic Domain-Wall Racetrack Memory." Science,320(5873),190-194 (2008).
    [14]. D. Suess, J. Fidler, and T. Schrefl, "Mciromagnetic Simulation of Magnetic Materials. Handbook of Magnetic Materials." Vol.16. Elsevier (2006).
    [15]. http://nmag.soton.ac.uk/nmag/.
    [16]. http://www.magpar.net/.
    [17]. http://code.google.com/p/mumax2/.
    [18].A. Vansteenkiste, and B. Van de Wiele, "MuMax:A new high-performance micromagnetic simulation tool." Journal of Magnetism and Magnetic Materials, 323(21),2585-2591(2011).
    [19]. http://www.micromagus.de/.
    [20].http://llgmicro.home.mindspring.com/.
    [21].http://www.magoasis.com/index.php.
    [22].http://pcluster.tongji.edu.cn/index.html.
    [23].http://math.nist.gov/oommf/contrib/oxsext/.
    [24].http://www.nanoscience.de/group_r/stm-spstm/projects/temperature/download.sh tml.
    [25].http://info.ifpan.edu.pl/-lebecki/pbc.htm.
    [26].http://www.southampton.ac.uk/-fangohr/software/oxs_uniaxial4.html.
    [27].http://www.southampton.ac.uk/-fangohr/software/oxs_cubic8.html.
    [28].http://www.zurich.ibm.com/st/magnetism/spintevolve.html.
    [29].http://oommf-2dpbc.sourceforge.net/.
    [30].王伟伟,“微磁学中的边界条件及动态磁化反转的研究”[硕士论文],甘肃:兰州大学(2011).
    [31].http://spintronics.inha.ac.kr/STT-OOMMF.html.
    [32].http://math.nist.gov/oommf/oommf_cites.html.
    [33].刘荣林,“低维磁性材料的微磁学模拟”[硕士论文],甘肃:兰州大学(2008).
    [34].C. P. Mu, W. W. Wang, B. Zhang, Q. F. Liu, and J. B. Wang, "Dynamic micromagnetic simulation of permalloy antidot array film." Physica B: Condensed Matter,405(5),1325-1328 (2010).
    [35]. W. B. Chen(陈文兵),M.G.Han(韩满贵),H. Zhou(周浩),Y.Ou(欧雨),and L. J. Deng(邓龙江),’'Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays:the effect of magnetostatic interaction." Chinese Physics B,19(8),087502 (2010).
    [36].张彬,“磁性纳米结构的微磁学研究”[硕士论文],甘肃:兰州大学(2010).
    [1]. P. Grivet, Electron optics.1965:Pergamon.
    [2].崔铮,微纳米加工技术及应用.2009:高等教育出版社.
    [3]. E. G Lean, and A. N. Broers, "Microwave surface acousitc delay lines." Microwave Jouranl,13,97-101 (1970).
    [4]. http://www.elionix.co.jp/english/products/ELS/ELS7800.html.
    [5]. D. Mcmullan, "Scanning Electron Microscopy 1928-1965." 17,175-185 (1995).
    [6]. http://202.121.199.249/ytyang/clbzjs/.
    [7].朱正宇,胡巧声,”半导体封装超声波压焊的工艺参数优化.”电子工业专业设备,134,55(2006).
    [1]. L. Berger, "Emission of spin waves by a magnetic multilayer traversed by a current." Physical Review B,54,9353 (1996).
    [2]. J. C. Slonczewski, "Current-driven excitation of magnetic multilayers." Journal of Magnetism and Magnetic Materials,159, L1-L7 (1996).
    [3]. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, "Current-Induced Switching of Domains in Magnetic Multilayer Devices." Science,285,867-870 (1999).
    [4]. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, "A perpendicular-anisotropy CoFeB/MgO magnetic tunnel junction." Nature Material,9,721-724 (2010).
    [5]. A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A. V. Khvalkovskiy, K. A. Zvezdin, K. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, "Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities." Nature Physics,7,626-630 (2011).
    [6]. E. Y. Tsymbal. "Spintronics:Electric toggling of magnets." Nature Material,11, 12-3(2011).
    [7]. H. Zhang, Z. W. Hou, J. W. Zhang, Z. Z. Zhang, and Y. W. Liu, "Precession frequency and fast switching dependence on the in-plane and out-of-plane dual spin-torque polarizers." Applied Physics Letters,100,142409 (2012).
    [8]. H. B. Huang, X. Q. Ma, Z. H. Liu, F. Y. Meng, S. Q. Shi, and L. Q. Chen, "Micromagnetic simulation of critical current density of spin transfer torque switching in a full-Heusler Co2FeA10.5Si0.5 alloy spin valve nanopillar." Journal of Magnetism and Magnetic Materials,330,16-20 (2013).
    [9]. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, "Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions." Nature Physics,4,37-41 (2007).
    [10].P. M. Braganca, B. A. Gurney, B. A. Wilson, J. A. Katine, S. Maat, and J. R. Childress, "Nanoscale magnetic field detection using a spin torque oscillator." Nanotechnology.21,235202(2010).
    [11]. W. Skowronski, T. Stobiecki, J. Wrona, G. Reiss, and S. v. Dijken, "Zero-Field Spin Torque Oscillator Based on Magnetic Tunnel Junctions with a Tilted CoFeB Free Layer." Applied Physics Express,5,063005 (2012).
    [12].K. Kab-Jin, K. W. Moon, K. S. Lee, and S. B. Choe, "Control of magnetic domain-wall polarization by means of angled Oersted field writing." Nanotechnology,22,025702 (2011).
    [13]. A. Singh, and A. Ghosh, "Domain-wall creep driven by spin torque in nanoscale ferromagnetic cylinders." Physical Review B,84,060407 (2011).
    [14]. M. Jamali, K.-J. Lee, and H. Yang, "Metastable magnetic domain wall dynamics." New Journal of Physics,14,033010 (2012).
    [15].G. Finocchio, I. N. Krivorotov, L. Torres, R. A. Buhrman, D. C. Ralph, and B. Azzerboni, "Magnetization reversal driven by spin-polarized current in exchange-biased nanoscale spin valves." Physical Review B,76,174408 (2007).
    [16].S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic Domain-Wall Racetrack Memory." Science,320,190-194 (2008).
    [17].T. Koyama, D. Chiba, K. Ueda, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, and T. Ono, "Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire." Applied Physics Letters,98,192509-3 (2011).
    [18].H. M. Yu, S. Granville, D. P. Yu, and J. Ph Ansermet, "Evidence for Thermal Spin-Transfer Torque." Physical Review Letters,104,146601 (2010).
    [19].M. Miinzenberg, "Taking advantage of nature for a greener nonvolatile memory." Physics,3,19(2010).
    [20].姜勇,“自旋角动量转移效应的实验研究.”物理学进展,28,215-235(2008).
    [21]. Y. Jiang, S. Abe, T. Nozaki, N. Tezuka, and K. Inomate, "Perpendicular giant magnetoresistance and magnetic switching properties of a single spin valve with a synthetic antiferromagnet as a free layer." Physical Review B,68,224426 (2003).
    [22]. J. Guo, M. B. A. Jalil, and Y. Jiang, "Current-induced magnetization switching in pseudo-spin-valve multilayers with and without a Ru capping layer." Physical Review B,72,064439 (2005).
    [23].L. Berger, "Multilayer configuration for experiments of spin precession induced by a dc current." Journal of Applied Physics,93,7693-7695 (2003).
    [24].H. Meng, J. Wang, and J. P. Wang, "Low critical current for spin transfer in magnetic tunnel junctions." Applied Physics Letters,88,082504-3 (2006).
    [25]. D. Apalkov, M. Pakala, and Y. Huai, "Micromagnetic simulation of spin transfer torque switching by nanosecond current pulses." Journal Applied Physics,99, 08B907 (2006).
    [26]. G D. Fuchs, I. N. Krivorotov, P. M. Braganca, N. C. Emley, A. G. F. Garcia, D. C. Ralph, and R. A. Buhrman, "Adjustable spin torque in magnetic tunnel junctions with two fixed layers." Applied Physics Letters,86,152509-3 (2005).
    [27].X. Li, Z. Z. Zhang, Q. Y. Jin, and Y. W. Liu, "Domain nucleation mediated spin-transfer switching in magnetic nanopillars with perpendicular anisotropy." Applied Physics Letters,92,122502-3 (2008).
    [28]. H. Meng, and J. P. Wang, "Composite free layer for high density magnetic random access memory with lower spin transfer current." Applied Physics Letters, 89,152509-3 (2006).
    [29].O. Ozatay, N. C. Emley, P. M. Braganca, A. G. F. Garcia, G. D. Fuchs, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph, "Spin transfer by nonuniform current injection into a nanomagnet." Applied Physics Letters,88,202502 (2006).
    [30].夏海艳,“自旋阀结构中自旋转移矩效应驱动磁化[硕士论文]”2012,兰州大学(甘肃兰州).
    [31].G. Finocchio, M. Carpentieri, B. Azzerboni, L. Torres, E. Martinez, and L. Lopez-Diaz, "Micromagnetic simulations of nanosecond magnetization reversal processes in magnetic nanopillar." Journal of Applied Physics,99,08G522 (2006).
    [32].D. Bedau, H. Liu, J. J. Bouzaglou, A. D. Kent, J. Z. Sun, J. A. Katine, E. E. Fullerton, and S. Mangin, "Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy." Applied Physics Letters,96,022514-3 (2010).
    [33]. J. B. Wang, C. P. Mu, W. W. Wang, B. Zhang, H. Y. Xia, Q. F. Liu, and D. S. Xue, "Low current density spin-transfer torque effect assisted by in-plane microwave field." Applied Physics Letters,99,032502 (2011).
    [34].C. P. Mu, W. W. Wang, H. Y. Xia, B. Zhang, Q. F. Liu, and J. B. Wang, "Fast Magnetization Switching by Linear Vertical Microwave-Assisted Spin-Transfer Torque." Journal of Nanoscience and Nanotechnology,12,7460-7463 (2012).
    [35].C. P. Mu, W. W. Wang, B. Zhang, Q. F. Liu, and J. B. Wang, "Dynamic micromagnetic simulation of permalloy antidot array film." Physica B: Condensed Matter,405,1325-1328 (2010).
    [36].Z. H. Wang, K. Sun, W. Tong, M. Z. Wu, M. Liu, and N. X. Sun, "Competition between pumping and damping in microwave-assisted magnetization reversal in magnetic films." Physical Review B,81,064402 (2010).
    [37].G Winkler, D. Suess, J. Lee, J. Fidler, M. A. Bashir, J. Dean, A. Goncharov, G. Hrkac, S. Bance, and T. Schrefl, "Microwave-assisted three-dimensional multilayer magnetic recording." Applied Physics Letters,94 (2009).
    [38].H. T. Nembach, H. Bauer, J. M. Shaw, M. L. Schneider, and T. J. Silva, "Microwave assisted magnetization reversal in single domain nanoelements." Applied Physics Letters,95,062506-3 (2009).
    [39].T. Moriyama, R. Cao, J. Q. Xiao, J. Lu, X. R. Wang, Q. Wen, and H. W. Zhang, "Microwave-assisted magnetization switching of Ni[sub 80]Fe[sub 20] in magnetic tunnel junctions." Applied Physics Letters,90,152503-3 (2007).
    [40].T. Moriyama, R. Cao, J. Q. Xiao, J. Lu, X. R. Wang, Q. Wen, and H. W. Zhang, "Magnetization reversal by microwave in magnetic tunnel junctions." Journal Applied Physics,103,07A906 (2008).
    [41].Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, "Dynamics of ultrafast magnetization reversal in submicron elliptical Permalloy thin film elements." Physical Review B,73,104425 (2006).
    [42]. X. Fan, E. Himbeault, Y. S. Gui, A. Wirthmann, G. Williams, D. Xue, and C. M. Hu, "Electrical detection of large cone angle spin precession from the linear to the nonlinear regime." Journal of Applied Physics,108,046102 (2010).
    [43]. Y. S. Gui, A. Wirthmann, N. Mecking, and C. M. Hu, "Direct measurement of nonlinear ferromagnetic damping via the intrinsic foldover effect." Physical Review B,80 (2009).
    [44]. J. G. Zhu, and Y. M. Wang, "Microwave Assisted Magnetic Recording Utilizing Perpendicular Spin Torque Oscillator With Switchable Perpendicular Electrodes." Magnetics, IEEE Transactions on,46,751-757 (2010).
    [45].Z. H. Wang, and M. Z. Wu, "Chirped-microwave assisted magnetization reversal." Journal of Applied Physics,105,093903-3 (2009).
    [1]. D. S. Xue, F. S. Li, X. L. Fan, and F. S. Wen, "Bianisotropy Picture of Higher Permeability at Higher Frequencies." Chinese Physics Letters,25(11),4120 (2008).
    [2]. D. Weller, and A. Moser, "Thermal effect limits in ultrahigh-density magnetic recording." Magnetics, IEEE Transactions on,35(6),4423-4439 (1999).
    [3]. R. M. White, "Magnetic recording-Pushing back the superparamagnetic barrier." Journal of Magnetism and Magnetic Materials,226-230(Part 2),2042-2045 (2001).
    [4].杨正,“磁记录物理.”1986:兰州大学出版社.
    [5]. A. T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, and O. Hellwig, "L1[sub 0] FePt based exchange coupled composite bit patterned films." Applied Physics Letters,98(24),242503 (2011).
    [6]. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer." Nature Photon,3(4),220-224 (2009).
    [7]. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, "Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets.' Science,315(5810),349-351 (2007).
    [8]. L. Berger, "Emission of spin waves by a magnetic multilayer traversed by a current." Physical Review B,54(13),9353-9358 (1996).
    [9]. J. C. Slonczewski, "Current-driven excitation of magnetic multilayers." Journal of Magnetism and Magnetic Materials,159(1-2), L1-L7(1996).
    [10].E. Y. Tsymbal, "Spintronics:Electric toggling of magnets." Nature Material, 11(1),12-3 (2011).
    [11]-V. Uhlir, S. Pizzini, N. Rougemaille, V. Cros, E. Jimenez, L. Ranno, O. Fruchart, M. Urbanek, G. Gaudin, J. Camarero, C. Tieg, F. Sirotti, E. Wagner, and J. Vogel, "Direct observation of Oersted-field-induced magnetization dynamics in magnetic nanostripes." Physical Review B(R),83(2),020406 (2011).
    [12].H. B. Huang, X. Q. Ma, Z. H. Liu, F. Y. Meng, S. Q. Shi, and L. Q. Chen, "Micromagnetic simulation of critical current density of spin transfer torque switching in a full-Heusler Co2FeA10.5Si0.5 alloy spin valve nanopillar." Journal of Magnetism and Magnetic Materials,330,16-20 (2013).
    [13].S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic Domain-Wall Racetrack Memory." Science,320(5873),190-194 (2008).
    [14].C. Y. You, "Reduced spin transfer torque switching current density with non-collinear polarizer layer magnetization in magnetic multilayer systems." Applied Physics Letters,100(25),252413 (2012).
    [15].S. C. Lee, U. H. Pi, K. Kim, K. S. Kim, J. Shin, and U. In Chung, "Current driven magnetic damping in dipolar-coupled spin system." Scientific Reports, 2(531),1-7(2012).
    [16].D. M. Bromberg, D. H. Morris, L. Pileggi, and J. G. Zhu, "Novel STT-MTJ Device Enabling All-Metallic Logic Circuits." IEEE Transactions on Magnetics, 48(11),3215-3218 (2012).
    [17].K. Oguz, M. Ozdemir, O. Dur, and J. M. D. Coey, "Low magnetisation alloys for in-plane spin transfer torque devices." Journal of Applied Physics,111(11), 113904(2012).
    [18].A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr, "Fast Switching in Magnetic Tunnel Junctions With Two Pinned Layers:Micromagnetic Modeling." IEEE Transactions on Magnetics,48(4),1289 (2012).
    [19]J. B. Wang, C. P. Mu, W. W. Wang, B. Zhang, H. Y. Xia, Q. F. Liu, and D. S. Xue, "Low current density spin-transfer torque effect assisted by in-plane microwave field." Applied Physics Letters,99(3),032502 (2011).
    [20].M. Munzenberg, and J. S. Moodera, "Taking advantage of nature for a greener nonvolatile memory." Physics,3,19 (2010).
    [21].C. P. Mu, W. W. Wang, H. Y. Xia, B. Zhang, Q. F. Liu, and J. B. Wang, "Fast Magnetization Switching by Linear Vertical Microwave-Assisted Spin-Transfer Torque." Journal of Nanoscience and Nanotechnology,12(9),7460-7463 (2012).
    [22].夏海艳,“自旋阀结构中自旋转移矩效应驱动磁化[硕士论文],” 2012,兰州大学(甘肃兰州).
    [23].H. Meng, and J. P. Wang, "Composite free layer for high density magnetic random access memory with lower spin transfer current." Applied Physics Letters,89(15),152509 (2006).
    [24].X. Li, Z. Z. Zhang, Q. Y. Jin, and Y. W. Liu, "Domain nucleation mediated spin-transfer switching in magnetic nanopillars with perpendicular anisotropy." Applied Physics Letters,92(12),122502 (2008).
    [25].D. V. Berkov, C. T. Boone, and I. N. Krivorotov, "Micromagnetic simulations of magnetization dynamics in a nanowire induced by a spin-polarized current injected via a point contact." Physical Review B,83(5),054420 (2011).
    [26]. P. K. Amiri, Z. M. Zeng, J. Langer, H. Zhao, G. Rowlands, Y. J. Chen, I. N. Krivorotov, J. P. Wang, H. W. Jiang, J. A. Katine, Y. Huai, K. Galatsis, and K. L. Wang, "Switching current reduction using perpendicular anisotropy in CoFeB/MgO magnetic tunnel junctions." Applied Physics Letters,98(11), 112507-3(2011).
    [27].J. Z. Sun, "Spin-current interaction with a monodomain magnetic body:A model study." Physical Review B,62(1),570-578 (2000).
    [28]. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, "Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillars." Physical Review Letters,84(14),3149 (2000).
    [29]. Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, and K. Inomata, "Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve." Natural Material,3(6),361-364 (2004).
    [30].X. Li, Z. Z. Zhang, Q. Y. Jin, and Y. W. Liu, "Spin-torque-induced switching in a perpendicular GMR nanopillar with a soft core inside the free layer." New Journal of Physics,11(2),023027 (2009).
    [31].邱永成,“垂直磁各向异性器件中自旋转移矩效应模拟研究[硕士论文]”,2010,复旦大学(上海).
    [32]. S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E. Fullerton, "Current-induced magnetization reversal in nanopillars with perpendicular anisotropy." Nature Material,5(3),210-215 (2006).
    [33].M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, and H. Yoda, "Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy." Journal of Applied Physics,103(7),07A710 (2008).
    [34].L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, "Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect." Physical Review Letters,109(9), 096602 (2012).
    [35]. W. J. Zhu, Y. W. Liu, and C. G. Duan, "Modeling of the spin-transfer torque switching in FePt/MgO-based perpendicular magnetic tunnel junctions:A combined ab initio and micromagnetic simulation study." Applied Physics Letters,99(3),032508 (2011).
    [36].Z. H. Wang, and M. Z. Wu, "Chirped-microwave assisted magnetization reversal." Journal of Applied Physics,105(9),093903-3 (2009).
    [1]. N. W. Ashcroft, and N. D. mermin, Solid State Physics.1976:Saunder.
    [2]. G. S. Nolas, J. Sharp, and H. J. Goldsmid, "Thermoelectrics:Basic Principles and New Materials Development." 2001:Springer.
    [3]. C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, "Giant spin Seebeck effect in a non-magnetic material." Nature,487(7406),210-213 (2012).
    [4]. M. Erekhinsky, F.1. Casanova, I. K. Schuller, and A. Sharoni, "Spin-dependent Seebeck effect in non-local spin valve devices." Applied Physics Letters,100(21), 212401 (2012).
    [5]. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, "Observation of the spin Seebeck effect." Nature,455(7214), 778-781 (2008).
    [6]. A. A. Tulapurkar, and Y. Suzuki, "Contribution of electron-magnon scattering to the spin-dependent Seebeck effect in a ferromagnet." Solid State Communications,150(11-12),466-470 (2010).
    [7]. F. Dejene, J. Flipse, and B. van Wees, "Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves." Physical Review B,86(2), 024436(2012).
    [8]. F. Bakker, A. Slachter, J. P. Adam, and B. van Wees, "Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves." Physical Review Letters, 105(13),136601 (2010).
    [9]. F. Giazotto, T. Heikkila, A. Luukanen, A. Savin, and J. Pekola, "Opportunities for mesoscopics in thermometry and refrigeration:Physics and applications." Reviews of Modern Physics,78(1),217-274 (2006).
    [10].Y. Dubi and M. Di Ventra, "Colloquium:Heat flow and thermoelectricity in atomic and molecular junctions." Review of Modern Physics,83(1),131-156 (2011).
    [11]. A. Slachter, F. L. Bakker, J. P. Adam, and B. J. van Wees, "Thermally driven spin injection from a ferromagnet into a non-magnetic metal." Nature Physics,6(11), 879-882 (2010).
    [1].刘荣林,“低维磁性材料的微磁学模拟[硕士论文]”2008,甘肃:兰州大学。
    [2]. A. V. Chumak, V. S. Tiberkevich, A. D. Karenowska, A. A. Serga, J. F. Gregg, A. N. Slavin, and B. Hillebrands, "All-linear time reversal by a dynamic artificial crystal." Nature Communication,1,141 (2010).
    [3]. C. A. Ross, "Patterned magnetic recording media." Annual Review of Materials Research,31,203-235 (2001).
    [4]. J. Ding, D. Tripathy, and A. O. Adeyeye, "Effect of antidot diameter on the dynamic response of nanoscale antidot arrays." Journal of Applied Physics,109, 07D304(2011).
    [5]. M. Jaafar, R. Yanes, A. Asenjo, O. Chubykalo-Fesenko, M. Vazquez, E. M. Gonzalez, and J. L. Vicent, "Field induced vortex dynamics in magnetic Ni nanotriangles." Nanotechnology,19,285717 (2008).
    [6]. B. Van de Wiele, A. Manzin, A. Vansteenkiste, O. Bottauscio, L. Dupre, and D. De Zutter, "A micromagnetic study of the reversal mechanism in permalloy antidot arrays." Journal of Applied Physics,111,053915 (2012).
    [7]. S. Krimpalis, N. Lupu, and H. Chiriac, "Mechanism of Magnetization Reversal in Arrays of Multilayered Nanowires." IEEE Transaction on Magnetics,47, 4534-454I (2011).
    [8]. X. H. Han, R. L. Liu, Q. F. Liu, J. B. Wang, T. Wang, and F. S. Li, "Micromagnetic simulation of the magnetic spectrum of two magnetostatic coupled ferromagnetic stripes." Physica B:Condensed Matter,405,1172-1175 (2010).
    [9]. F. Boust, and N. Vukadinovic, "Micromagnetic simulations of vortex-state excitations in soft magnetic nanostructures." Physical Review B,70(17),172408 (2004).
    [10]. J. S. Yang, C. M. Lee, and C. R. Chang, "Switching Behavior of Vortex Cores in Bilayer Nanodots by Uniform Magnetic Field Pulses." IEEE Transactions on Magnetics,47,641-644 (2011).
    [11]. R. L. Liu, J. B. Wang, Q. F. Liu, H. Wang, and C. J. Jiang, "Micromagnetic simulation of the magnetic spectrum of ferromagnetic nanowire." Journal of Applied Physics,103,013910 (2008).
    [12]. I. Purnama, M. Chandra Sekhar, S. Goolaup, and W. S. Lew, "Current-induced coupled domain wall motions in a two-nanowire system." Applied Physics Letters,99,152501 (2011).
    [13].J. L. Palma, C. Morales-Concha, B. Leighton, D. Altbir, and J. Escrig, "Micromagnetic simulation of Fe asymmetric nanorings." Journal of Magnetism and Magnetic Materials,324,637-641 (2011).
    [14].G. D. Chaves-O'Flynn, A. D. Kent, and D. L. Stein, "Micromagnetic study of magnetization reversal in ferromagnetic nanorings." Physical Review B,79, 184421 (2009).
    [15].J. B. Wang, B. Zhang, Q. F. Liu, Y. Ren, and R. L. Liu, "Micromagnetic calculation of dynamic susceptibility in ferromagnetic nanorings." Journal of Applied Physics,105,083908 (2009).
    [16].C. P. Mu, W. W. Wang, B. Zhang, Q. F. Liu, and J. B. Wang, "Dynamic micromagnetic simulation of permalloy antidot array film." Physica B: Condensed Matter,405,1325-1328 (2010).
    [17].Q. Wang, L. C. Jin, X. L. Tang, F. M. Bai, H. W. Zhang, and Z. Y. Zhong, "Micromagnetic Simulation of the Dynamic Susceptibility Spectra of Antidot Array Films With Two Sublattices." IEEE Transaction on Magnetics,48, 3046-3249 (2012).
    [18].L. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. Vaz, J. Bland, R. Matelon, U. Volkmann, and P. Fischer, "Magnetization reversal in cobalt antidot arrays." Physical Review B,73,214429 (2006).
    [19].Q. F. Liu, J. B. Wang, Z. J. Yan, and D. S. Xue, "Characterization and magnetic properties of Fel-xNix nanowire arrays." Physical Review B,72,144412 (2005).
    [20].Mikhail Kostylev, Rhet Magaraggia, Feodor Y. Ogrin, Evgeny Sirotkin, Vladimir F. Mescheryakov, Nils Ross, and R. L. Stamps, "Ferromagnetic Resonance Investigation of Macroscopic Arrays of Magnetic Nanoelements Fabricated Using Polysterene Nanosphere Lithographic Mask Technique." IEEE Transaction on Magnetics,44,2741 (2008).
    [21].M. Jaafar, R. Yanes, D. Perez de Lara, O. Chubykalo-Fesenko, A. Asenjo, E. M. Gonzalez, J. V. Anguita, M. Vazquez, and J. L. Vicent, "Control of the chirality and polarity of magnetic vortices in triangular nanodots." Phycical Review B,81, 054439(2010).
    [22]. S. Okamoto, N. Kikuchi, J. Li, O. Kitakami, T. Shimatsu, and H. Aoi, "Frequency and Time Dependent Microwave Assisted Switching Behaviors of Co/Pt Nanodots." Applied Physics Express,5,043001 (2012).
    [23].蒋长军,“反点阵列膜的结构和磁性[博士论文].” 2007,甘肃:兰州大学。
    [24].N. G Deshpande, J. S. Hwang, K. W. Kim, J. Y. Rhee, Y. H. Kim, L. Y. Chen, and Y. P. Lee, "Enhancement of the magneto-optical properties in 2-dimensional bilayered magnetic anti-dot lattice." Applied Physics Letters,100,222403 (2012).
    [25].A. Manzin, and O. Bottauscio, "Micromagnetic modelling of the anisotropy properties of permalloy antidot arrays with hexagonal symmetry." Journal of Physics D:Applied Physics,45,095001 (2012).
    [26].E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, "Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry." Physical Review B,81,054424 (2010).
    [27].C. C. Wang, A. O. Adeyeye, and N. Singh, "Magnetic antidot nanostructures: effect of lattice geometry." Nanotechnology,17,1629 (2006).
    [28].G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, "Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films." Nano Letters,9,1-6 (2008).
    [29].N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, "Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry." Applied Physics Letters,96,122503 (2010).
    [30].N. G. Deshpande, M. S. Seo, S. J. Lee, L. Y. Chen, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. P. Lee, "Magnetization reversal mechanism of bilayered magnetic anti-dot lattices." Journal of Applied Physics,111,013906 (2012).
    [31].Y. M. Hou, J. Xu, X. J. Zhang, and D. P. Yu, "SERS on periodic arrays of coupled quadrate-holes and squares." Nanotechnology,21(19),195203 (2010).
    [32].D. Tse, S. Steinmuller, T. Trypiniotis, D. Anderson, G. Jones, J. Bland, and C. Barnes, "Static and dynamic magnetic properties of Ni80Fe20 square antidot arrays." Physical Review B,79(5),054426 (2009).
    [33].H. Ulrichs, B. Lenk, and M. Munzenberg, "Magnonic spin-wave modes in CoFeB antidot lattices." Applied Physics Letters,97,092506-3 (2010).
    [34].F. Fettar, L. Cagnon, and N. Rougemaille, "Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays." Applied Physics Letters,97,192502(2010).
    [35].X. M. Liu, J. Ding, and A. O. Adeyeye, "Magnetization dynamics and reversal mechanism of Fe filled Ni80Fe20 antidot nanostructures." Applied Physics Letters,100,242411 (2012).
    [36].I. Ruiz-Feal, L. Lopez-Diaz, A. Hirohata, J. Rothman, C.M. Guertler, J.A.C. Bland, L.M. Garcia, J.M. Torres, J. Bartolome, F. Bartolome, M. Natali, D. Decanini, and Y. Chen, "Geometric coercivity scaling in magnetic thin film antidot arrays." Journal of Magnetism and Magnetic Materials,242-245 597-600 (2002).
    [37].I. Guedes, M. Grimsditch, V. Metlushko, P. Vavassori, R. Camley, B. Ilic, P. Neuzil, and R. Kumar, "Magnetization reversal in an Fe film with an array of elliptical holes on a square lattice." Physical Review B,67(2),024428(2003).
    [38].V. N. Krivoruchko, and A. I. Marchenko, "Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices." Journal of Applied Physics,109,083912 (2011).
    [39]. D. H. Y. Tse, S. J. Steinmuller, T. Trypiniotis, D. Anderson, G. A. C. Jones, J. A. C. Bland, and C. H. W. Barnes, "Static and dynamic magnetic properties of Ni80 Fe20 square antidot arrays." Physical Review B,79,054426 (2009).
    [40].H. R. Hilzinger and H. Kronmuller, "Statistical theory of the pinning of Bloch walls by randomly distributed defects." Journal of Magnetism and Magnetic Materials,2,11-17(1975).
    [41].B. Anjan, "Control of magnonic spectra in cobalt nanohole arrays:the effects of density, symmetry and defects." Journal of Physics D:Applied Physics,43, 195002(2010).
    [42]. L. Torres, L. Lopez-Diaz, O. Alejos, and J. Iniguez, "Micromagnetic study of lithographically defined non-magnetic periodic nanostructures in magnetic thin films." Physica B:Condensed Matter,275,59-64 (2000).
    [43].M. J. Donahue, and D. G. Porter, "OOMMF User's Guide, Version 1.2a3 Available Online:." http://math.nist.gov/oommf/.
    [44].王伟伟,“微磁学中的边界条件及动态磁化反转的研究[硕士论文]”2011,甘肃:兰州大学.
    [45]. W. W. Wang, C. P. Mu, B. Zhang, Q. F. Liu, J. B. Wang, and D. S. Xue, "Two-dimensional periodic boundary conditions for demagnetization interactions in micromagnetics." Computational Materials Science,49,84 (2010).
    [46].W. W. Wang, C. P. Mu, B. Zhang, Q. F. Liu, and J. B. Wang,2dpbc-code, "http://oommf-2dpbc.sourceforge.net/.".
    [47].H. Fangohr, G. Bordignon, M. Franchin, A. Knittel, P. A. J. de Groot, and T. Fischbacher, "A new approach to (quasi) periodic boundary conditions in micromagnetics:The macrogeometry." Journal of Applied Physics,105,07D529 (2009).
    [48]. J. G. Zhu, and H. N. Bertram, "Micromagnetic studies of thin metallic films (invited)." Journal of Applied Physics,63,3248 (1988).
    [49].F. Garcia-Sanchez, E. Paz, F. Pigazo, O. Chubykalo-Fesenko, F. J. Palomares, J. M. Gonzalez, F. Cebollada, J. Bartolome, and L. M. Garcia, "Coercivity mechanisms in lithographed antidot arrays." Europhysics Letters,84,67002 (2008).
    [50].D. R. Leea, G. Srajer, M. R. Fitzsimmons, V. Metlushko, and S. K. Sinha, "Polarized neutron scattering from ordered magnetic domains on a mesoscopic permalloy antidot array." Applied Physics Letters,82,82-84 (2003).
    [51].B. Zhang, W. W. Wang, C. P. Mu, Q. F. Liu, and J. B. Wang, "Calculations of three-dimensional magnetic excitations in permalloy nanostructures with vortex state." Journal of Magnetism and Magnetic Materials,322,2480-2484 (2010).
    [52].N. Dao, M. J. Donahue, I. Dumitru, L. Spinu, S. L. Whittenburg, and J. C. Lodder, "Dynamic susceptibility of nanopillars." Nanotechnology,15, S634-S638 (2004).
    [53].W. B. Chen, M. G. Han, H. Zhou, Y. Ou, and L. J. Deng, "Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays:the effect of magnetostatic interaction." Chinese Physics B,19,087502 (2010).
    [54].张彬,“磁性纳米结构的微磁学研究[硕士论文]”2010,甘肃:兰州大学.
    [55].O. Gerardin, H. Le Gall, M. J. Donahue, and N. Vukadinovic, "Micromagnetic calculation of the high frequency dynamics of nano-size rectangular ferromagnetic stripes." Journal of Applied Physics,89,7012 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700