用户名: 密码: 验证码:
磁性微结构的制作及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在超高密度磁存储技术、磁阻传感器、磁随机存储器等诸多方面有着广泛的应用前景,微米、纳米磁性单元阵列最近吸引了越来越多的兴趣。目前,磁性单元研究包括微米、亚微米以及纳米尺度的磁性单元的制作及其特殊的磁特性研究。这些微小的单元的磁特性与大块材料以及连续膜的磁性有着诸多的不同之处。各向异性、单元之间的相互作用以及不同状态的磁畴结构是其中的几个最重要的问题,它们对于磁滞回线、矫顽力、剩磁、饱和场都有影响,而这些参数对于磁性单元的应用是很重要的,虽然已经有大量的工作对其进行了研究,但由于磁性单元结构磁性的复杂性,还需要进行更多的研究。在众多的磁性材料中,CoFe被认为是在自旋电子学领域有着广泛应用前景的铁磁性材料之一。本文以采用磁控溅射在Si衬底上沉积Ta\Co_(0.9)Fe_(0.1)\Ta的三明治薄膜为基底,采用全息光刻-离子束刻蚀技术制作微米、亚微米以及深亚微米的Co_(0.9)Fe_(0.1)单元结构,并研究了Co_(0.9)Fe_(0.1)单元磁性。论文的主要工作包括:
     一.Ta\Co_(0.9)Fe_(0.1)\Ta单元阵列的全息光刻离子束刻蚀制作研究
     1)全息光刻获得二维图形的研究。本文采用苏州瑞红公司RZJ-390型正性光刻胶,系统研究了劳埃镜光路两次曝光制作二维的光刻胶图形从孔阵到点阵的演变过程,及其与曝光量和显影时间的关系,得出获得二维光刻胶孔阵和点阵的最佳曝光量与显影时间。讨论了全息光刻工艺的影响因素,探讨了优化的工艺参数组合。
     2)高反射率基底垂直驻波图形及其消除方法的研究。磁性材料具有高反射率,实验测得50nm厚的Ta\Co_(0.9)Fe_(0.1)\Ta薄膜对于波长为441.6nm的全息光刻激光光源具有较大的反射率,全息光刻的基底反射形成的垂直驻波将对光刻胶图形产生严重影响。惯用的减少垂直驻波影响的方法是使用抗反膜(ARC),也有采用增加曝光量的方式来减少垂直驻波。但是,使用抗反膜的工艺复杂,增加曝光量则使得光刻工艺的可重复性以及可控性下降,本文利用光刻胶灰化工艺很好地消除了垂直驻波的影响,使得高反射基底全息光刻可控性得以提高。
     3)全息光刻实现100nm以下图形尺寸的方案研究。利用增加曝光量、增加两相干光夹角的方法获得了特征尺寸200nm的一维光刻胶条纹图形和特征尺寸100nm的二维点阵图形。利用光刻胶灰化工艺的各向同性,将光刻胶灰化技术引入纳米级精确可控光刻胶图形研究,制得了单元尺寸为150nm的光刻胶图形。
     4)Co_(0.9)Fe_(0.1)合金膜图形化氧化防护研究。由于离子束刻蚀后,大量单元侧壁暴露在空气中,因此Co_(0.9)Fe_(0.1)会被氧化。采用XPS研究了刻蚀后样品中的元素氧化情况,表明在空气中放置一周后的样品中的Fe大部分被氧化成三价氧化物。为了防止样品的氧化,我们采用刻蚀后原位溅射生长Au薄层的方法,很好地解决了样品氧化问题。
     二.Co_(0.9)Fe_(0.1)单元阵列的磁性研究
     将软X射线磁性圆二色(SXMCD)技术引入到铁磁性微结构表征的研究中。以国家同步辐射实验室的磁性圆二色实验站为平台,探讨了XMCD技术用于磁性微结构单元表征所需要的条件。研究了样品有效吸收面积减小对于XMCD谱的影响。采用SMOKE、SQUID获得了多种Co_(0.9)Fe_(0.1)磁性深亚微米图形单元的室温的磁滞回线。得到其饱和磁场强度、矫顽力等重要的磁性。利用磁力显微镜(MFM)获得了Co_(0.9)Fe_(0.1)磁性深亚微米图形单元磁畴结构,并分析了其磁畴形态。我们的研究成果与已有的研究结果吻合,并丰富了铁磁性亚微米单元磁性研究技术。
Recently,magnetic microstructures and nanostructures have attracted much attentionfor a variety of applications such as high density magnetic recording, magnetoresistive sensing,and magnetic random access memories. Researches on magnetic microstructures and nanostructures include fabrication of magnetic elements and characterization of them.These very small elements have totally different magnetic properties from the bulk materials and continuous thin films.Wherein,the anisotropy,the interaction between the nearby elements and the domain of different magnetization states are the most important properties because they give influences on their hysteresis loop,coercivity,remanence,saturation field which are important in the applications of magnetic micro- and nano- structures.Although there are variety of researches focused on them,they need to be studied penetratingly, because of the complexity of the magnetic properties of magnetic elements. In plentiful magnetic materials,CoFe alloy is regarded as one of ferromagnetic materials with varieties applied in the field of spintronics.In this thesis,The Ta\Co_(0.9)Fe_(0.1)\Ta film substrates deposited on oxidated Si wafers by using magnetron sputtering method are patterned into micrometer,sub-micrometer and deep sub-micrometer elements by holographic lithography combined with ion beam etching,and the magnetic properties of these Co_(0.9)Fe_(0.1)elements are studied.The most significant advance of the work described in this thesis is as the follows.
     Ⅰ.Fabrication of Ta\Co_(0.9)Fe_(0.1)\Ta arrays by using holographic lithography combined with ion beam lithography
     1)Researches on two dimensional patterns fabricated by holographic lithography.In this thesis,positive photoresist,RZJ-390 produced by Su Zhou Ruihong company,is exposed twice with Lloyd's Mirror interferometer.The process of the evolvement of the patterns form holes to dots is studied systemically.And the best exposure dose and developing time to form resist holes and dots are given.The process conditions of holographic lithography and optimized process parameters are discussed.
     2)Studies on vertical standing wave pattern.Holographic lithography suffers from vertical standing wave pattern caused by interference of the coming light with light reflecting from the film surface.Ta\Co_(0.9)Fe_(0.1)\Ta film possesses high reflectivity to the laser with wavelength 441.6nm,which induces severe vertical standing wave pattern in the lithographic pattern.To restrain vertical standing wave pattern,procedure which apply antireflection coatings(ARC) under the photoresist is idiomatic,and increasing exposure dose is applied too.But the procedure of antireflection coatings is complex,and the repetition and controlling of lithographic process are decreased with increasing exposure dose.We develop photoresist ashing process to restrain vertical standing wave pattern well,which make the controlling of holographic lithography improved.
     3)Pattern under critical dimension 100nm fabricated by holographic lithography.Photoresist stripe pattern with critical dimension 200nm is fabricated by increasing exposure dose.By increasing incident angle and increasing exposure dose,100nm diameter dots array are achieved.Utilizing the isotropy of photoresist ashing,we develop photoresist ashing technology to realize the fabrication of resist nanostructure,which make the fabrication process rigor and controllable.Elements with size under 150nm are obtained.
     4)Preventing the magnetic pattern from oxidation.Cobalt and iron are prone to be oxidized in the air.The oxidation of the etched Co_(0.9)Fe_(0.1)pattern is characterized by XPS.The result shows that most Fe is oxidized into Fe~(3+).To prevent the magnetic pattern from oxidation,we apply in-situ Au film deposition after ion beam etching,which solve the problem of oxidation.
     Ⅱ.Magnetic properties of Co_(0.9)Fe_(0.1)patterns
     We applied soft.X-ray magnetic circular dichroism(XMCD)to characterize the magnetic properties of Co_(0.9)Fe_(0.1)patterns.On the base of U18 beam line of NSRL,the condition to apply XMCD to characterize the magnetic properties of magnetic nanostructures.The infection of the decrease of available absorb area to the XMCD spectra is investigated.We obtained hysteresis loops of the samples by SQUID magnetometer and SMOKE technology,and got the approximate saturation magnetization field and coercivity field.The magnetic state of the samples was observed by magnetic force microscopy(MFM).Our research production enriches the research of magnetic sub-micrometer elements.
引文
[1] G. Prinz, K. Hathaway (Eds.), Magnetoelectronics, Phys.Today 48 (4) (1995) (special issue).
    [2] P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 57 (1986)2442-2445.
    [3] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61 (1988)2472-2475.
    [4] P.M. Levy, S. Zhang, A. Fert, Electrical conductivity of magnetic multilayered structures. Phys. Rev. Lett. 65(1990) 1643-1645.
    [5] S.S.P. Parkin, R. Bhadra, K.P. Roche, Oscillatory magnetic exchange coupling through thin copper. Layers. Phys. Rev. Lett. 66 (1991) 2152-2155.
    [6] B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43 (1991) 1297-1300.
    [7] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68 (1992)3745-3748.
    [8] A. Hernando, Magnetic properties and spin disorder in nanocrystalline materials. J. Phys. Condens. :Matter 11 (1999)9455-9458.
    [9] J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68(1992)3749-3752.
    [10] J.A.C. Bland, B. Heinrich (Eds.), Ultrathin Magnetic Structures, Springer, Berlin, 1994.
    [11] K. Nordquist, S. Pandharkar, M. Durlam, D. Resnick, S. Teherani, D. Mancini, T. Zhu, J. Shi, Process development of sub-0.5 μm nonvolatile magnetoresistive random access memory arrays. J. Vac. Sci. Technol. B 15 (1997)2274-2278.
    [12] S.Y. Chou, Quantized Magnetic Disks. J. Magn. Soc. Japan 21 (1997) 1023.
    [13] R.L. White, R.M.H. New, R.F.W. Pease, Patterned media: A viable route to 50 Gbit/in~2 and up for magnetic recording? IEEE Trans. Magn. 33 (1997) 990-993.
    [14] R.P. Cowburn, Room Temperature Magnetic Quantμm Cellular Automata. Science 287 (2000) 1466.
    [15] E. Grochowski, D. Thompson, Outlook for maintaining area density growth rate in magnetic recording. IEEE Trans. Magn. 30 (1994) 3797-3800.
    [16] E. Grochowski, R.F. Hoyt, Future trends in hard disk drives. IEEE Trans. Magn. 32 (1996) 1850-1854.
    [17] K. O'Grady, H. Laidler, J. Magn. Magn. Mater. 200 (1999) 616.
    [18]R. P. Cowburn, Property variation with shape in magnetic nanoelements. J. Phys. D. Appl. Phys. 33 (2000)
    [19] C. Chappert, H. Bernas, J. Ferre, V. Kottler, J.-P Jamet. Y. Chen, E.Cambril, T. Devolder. F. Rousseaux. V. Mathet, H. Launois, Planar Patterned Magnetic Media Obtained by Ion Irradiation. Science vol.280 1919(1998)
    [20] B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H.Rothuizen, and P. Vettiger, "Ion-beam patterning of magnetic films using stencil masks". App. Phys. Lett. 75 403 (1999)
    [21] S.Y. Chou, Patterned Magnetic Nanostructures and QuantizedMagnetic Disks. Proceedings of the IEEE, 85 No. 4,652(1997)
    [22] S.Y, Chou, M.S. Wei, P.R. Krauss, P.B. Fischer, Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in~2 density of ultrahigh density quantμm magnetic storage. J. Appl. Phys. 76 (10)6673(1994)
    [23] R.L. White, R.H.M. New, R.F.W. Pease, "Patterned Media" A Viable Route to 50 Gbit/in~2 and Up for Magnetic Recording?. IEEE Trans.Magn. 33 990 (1997)
    [24] C.A. Ross, H.I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M.C. Abraham, R.J. Ram, Fabrication of patterned media for high density magnetic storage. J. Vac. Sci. Technol. B 17 3168(1999).
    [25] S.H. Charap, P.L. Lu, and Y. He, IEEE Trans. Magn. 33 978 (1997)
    [26] C.A. Ross, M. Farhoud, M. Hwang, H.I. Smith, M. Redjdal, F.B. Humphrey, Micromagnetic behavior of conical ferromagneticparticles. J. Appl. Phys., 2000.
    [27] Katsuyuki Naito, Hiroyuki Hieda, Masatoshi Sakurai, Yoshiyuki Kamata, and Koji Asakawa 2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method IEEE Trans.Magn. 38 1949(2002)
    [28] Baibich M N ,Broto J M ,Fert A. et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. [J]. Phys. Rev. Lett ,1988 , 61 (21) :2472-2475.
    [29] Wolf S A ,Awschalom D D ,Buhrman R A ,et al . Spint ronics :A Spin—Based Elect ronics Vision for the Future [J] . Science, 2001 ,294 :1488-1495.
    [30] Barnas J , Fuss A ,Camley R E ,et al . Novel Magnetoresistance Effect in Layered Magnetic St ructures: Theory and Experiment [J]. Phys. Rev. B ,1990 ,42 :8110.
    [31] Prinz G A. Magnetoelectronics[J]. Science, 1998 ,282 :1660-1663.
    [32] Parkin S S P ,Mauri D. Spin Engineering :Direct Determination of the Ruderman Kittel Kasuya Yosida Far-Field Range Function in Rutheniμm [J]. Phys. Rev. B , 1991 ,44 :7131 -7134.
    [33] Moodera J S , Kinder Lisa R ,Wong Terrilyn M , et al . Large Magnetoresistance at Room Temperature in Thin Film Tunnel J unctions. [J]. Phys. Rev. Lett . ,1994 ,74 :3273-3276.
    [34] Koh G H ,Kim H J ,J eong W C. et al. Fabrication of High Performance 64 kb MRAM[J] . J . of Magnetism and Magnetic Materials ,2004 ,2722276 :1941-1942.
    [35] Sarma S Das , Fabian J aroslav , Hu Xuedong. et al. Spin Electronics and Spin Computation. [J] . Solid State Communications , 2001 ,119 :207-215.
    [36] Ohno H , Mat sukura F , Ohno Y Semiconductor Spin Electronics. [J] . J. SAP International , 2002, (5) :4213.
    [37] R.P. Cowburn. Magnetic nanodots for device applications. Journal of Magnetism and Magnetic Materials 242-245 (2002) 505-511
    [38] Xiaobin Zhu, Dan A. Allwood, Gang Xiong and Russell P. Cowburn, Spatially resolved observation of domain-wall propagation in a submicron ferromagnetic NOT-gate Appl. Phys. Let. 87, 062503 (2005)
    [39] D. A. Allwooda, Gang Xiong. and R. P. Cowburn, Domain wall cloning in magnetic nanowires, J. Appl. Phys. 101,024308(2007)
    [40] Jing Shi et al., Appl. Phys. Lett., 74(17) (1999)2525
    [41] E.C.Stoner and E.P.Wohlfarth, Philos. Trans. R. Soc. London, Ser.A 240, 559(1948)
    [42] E.Y.Chen, S.Tehrani, T.Zhu, M.Durlam, and H.Goronkin, Submicron spin valve magnetoresistive random access memory cell, J. Appl. Phys. 81, 3992(1997)
    [43] B.A.Everitt and A.V.Pohm, Size Dependence of MRAM Switching Thresholds.J. Appl. Phys. 81, 4020-4033(1997)
    [44] Y.F.Zheng and J.G.Zhu, Switching field variation in patterned submicron magnetic film elements. J.Appl.Phys. 81,5471-5474(1997)
    [45] J. Shi, T.Zhu M.Durlam, S.Tehrani, End domain states and magnetization reversal in submicron magnetic structures. IEEE Trans. Magn. 34 997-999 (1998)
    [46] Jing Shi, S.Tehrani, E.Y.Chen et al., Appl. Phys. Lett., 74(17)(1999)2525
    [47] T.Zhu, J. Shi, K.Nordquist et al.,Switching characteristics of submicron dimension permalloy sandwich films IEEE Trans. Magn. 33 3601-3603 (1997)
    [48] P.R. Cowburn, Property variation with shape in magnetic nanoelements. J. Phys. D: Appl. Phys. 33 (200) R1-R16
    [49] S.Y.Chou, P.R.Krauss, Linshu Kong, Nanolithographically defined magnetic structures and quantum magnetic disk. J. Appl. Phys. 79(8), 6101(1996)
    [1] G. Prinz, K. Hathaway (Eds.). Magnetoelectronics, Phys.Today 48 (4) (1995).
    [2] P. Gr.unberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers,Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 57 (1986)2442.
    [3] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61 (1988)2472.
    [4] P.M. Levy, S. Zhang, A. Fert, Electrical conductivity of magnetic multilayered structures. Phys. Rev. Lett. 65 (1990) 1643.
    [5] S.S.P. Parkin, R. Bhadra, K.P. Roche, Oscillatory magnetic exchange coupling through thin copper Layers. Phys. Rev. Lett. 66 (1991) 2152.
    [6] B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43 (1991) 1297.
    [7] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68 (1992)3745.
    [8] A. Hernando, Magnetic properties and spin disorder in nanocrystalline materials. J. Phys.: Condens. Matter 11 (1999) 9455.
    [9] J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68 (1992) 3749.
    [10] J.A.C. Bland, B. Heinrich (Eds.), Ultrathin Magnetic Structures, Springer, Berlin, 1994.
    [11] J.M. Daughton, Magnetic tunneling applied to memory. J. Appl. Phys. 81 (1997) 3758.
    [12] S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, M. DeHerrera, Progress and outlook for MRAM technology. IEEE Trans. Magn. 35 (1999) 2814-2819.
    [13] R.L. Stamps, Mechanisms for exchange bias. J. Phys. D. 33 (2000) R247.
    [14] M. Kiwi, Exchange bias theory J. Magn. Magn. Mater. 234 (2001) 584-595.
    [15]W.H. Rippard, A.C. Perrella, P. Chalsani, F.J. Albert, J.A. Katine, R.A. Buhrman, Appl. Phys. Lett. 77(2000) 1357.
    [16] F.J. Albert, J.A. Katine, R.A. Buhrman, D.C. Ralph, Appl. Phys. Lett. 77 (2000) 3809.
    [17] S.A. Wolf, D.D. Awschalom, R.A. Burham, J.M. Daughton, S. von Molnlar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294 (2001) 1488.
    [18] E. Grochowski, D. Thompson, IEEE Trans. Magn. 30 (1994) 3797.
    [19] E. Grochowski, R.F. Hoyt, IEEE Trans. Magn. 32 (1996) 1850.
    [20] K. O'Grady, H. Laidler, J. Magn. Magn. Mater. 200 (1999) 616.
    [21] L.F. Thompson, C.G. Wilson, M. Bowden (Eds.), Introduction to Micro lithography, 2nd Edition, American Chemical Society. Washington DC, 1994,.
    [22] J. Canning, J. Vac. Sci. Technol. B 15 (1997) 2109.
    [23] E.J. Lerner, The Ind. Phys. 5 (3) (1999) 18.
    [24] K. Nordquist, S. Pandharkar, M. Durlam, D. Resnick, S. Teherani, D. Mancini, T. Zhu, J. Shi, J. Vac. Sci. Technol. B 15 (1997) 2274.
    [25] S.Y. Chou, J. Magn. Soc. Japan 21 (1997) 1023.
    [26] R.L. White, R.M.H. New, R.F.W. Pease, IEEE Trans. Magn. 33(1997) 990.
    [27] R.P. Cowburn, Science 287 (2000) 1466.
    [28] J.L. Vossen, W. Kern (Eds.), Thin Film Processes, Academic Press, NewYork, 1978.
    [29] Y.D. Park, J.A. Caballero, A. Cabbibo, J.R. Childress, H.D. Hudspeth, T.J. Schultz, F. Sharifi, J. Appl. Phys. 81 (1997)4717.
    [30] P.C. Searson,T.P. Moffat, Crit. Rev. Surf. Chem. 3 (1994) 171.
    [31] C.A. Ross, Ann. Rev. Mater. Sci. 24 (1994) 159.
    [32] W.D. Williams, N. Giordano, Phys. Rev. B 33 (1986) 8146.
    [33] W. Schwarzacher, K. Attenborough, A. Michel, G. Nabiyouni, J.P. Meier, J. Magn. Magn, Mater. 165(1997)23.
    [34] L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65(1994)2484.
    [35] M.M. Alkaisi, R.J. Blaikie, S.J. McNab, Microelectron. Eng. 53 (2000) 237.
    [36] T. Pokhil, D. Song, J. Nowak, J. Appl. Phys. 87 (2000) 6319.
    [37] J.F. Smyth, S. Schultz, D. Kern, H. Schmid, D. Yee, J. Appl. Phys. 63 (1988) 4237.
    [38] P.B. Fischer, S.Y. Chou, Appl. Phys. Lett. 62 (1993) 2989.
    [39] R.M.H. New, R.F.W. Pease, R.L. White, J. Vac. Sci. Technol. B 12 (1994)3196.
    [40] W. Xu, J. Wong, C.C. Cheng, R. Johnson, A. Scherer, J. Vac. Sci. Technol. B 13 (1995) 2372.
    [41] D. Streblechenko, M.R. Scheinfein, J. Vac. Sci. Technol. A 16 (1998) 1374.
    [42] B. Khamsehpour, C.D.W. Wilkinson, J.N. Chapman, A.B. Johnston, J. Vac. Sci. Technol. B 14 (1996)3361.
    [43] D.J. Smith, R.E. Dunin-Borkowski, M.R. McCartney. B. Kardynal, M.R. Scheinfein, J. Appl. Phys. 87 (2000) 7400.
    [44] R.P. Cowburn, J. Phys. D 33 (2000) R1.
    [45] T. Taniyama, I. Nakatani, T. Namikawa, Y. Yamazaki. Phys. Rev. Lett. 82 (1999) 2780.
    [46] J. Rothman, M. Kl.aui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleloch, J.A.C. Bland, Z. Cui, R. Speaks, Phys. Rev. Lett. 86(2001)1098.
    [47] K.J. Kirk, J.N. Chapman, C.D. Wilkinson, Appl. Phys. Lett. 71 (1997) 539.
    [48] J. Yu, U. R. udiger, L. Thomas, S.S.P. Parkin, A.D. Kent, J. Appl. Phys. 85 (1999) 5501.
    [49] S.Y. Chou, P.R. Krauss, J. Magn. Magn. Mater. 155 (1996) 151.
    
    [50] C. Haginoya, K. Koike, Y. Hirayama, J. Yamamoto, M. Ishibashi, O. Kitakami, Y. Shimada, Appl. Phys. Lett. 75(1999)3159.
    
    [51] R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, Phys. Rev. Lett. 83 (1999) 1042.
    [52] M.S. Wei, S.Y. Chou, J. Appl. Phys. 76 (1994) 6679.
    
    [53] A. Maeda, M. Kμme, T. Ogura, K. Kuroki, T. Yamada, M. Nishikawa, Y. Harada, J. Appl. Phys. 76(1994)6667.
    
    [54] Y.D. Park, J.A. Caballero, A. Cabbibo, J.R. Childress, H.D. Hudspeth, T.J. Schultz, F. Sharifi, J. Appl. Phys. 81 (1997)4717.
    
    [55] R.M.H. New, R.F.W. Pease, R.L. White, J. Vac. Sci. Technol. B 12 (1994) 3196.
    
    [56] C.C. Yao, D.G. Hasko, Y.B. Xu, W.Y. Lee, J.A.C. Bland, J. Appl. Phys. 85 (1999) 1689.
    
    [57] C. Haginoya, S. Heike, M. Ishibashi, K. Nakamura, K. Koike, T. Yoshimura, J. Yamamoto, Y. Hirayama, J. Appl. Phys. 85 (1999) 8327.
    
    [58] S.M. Cherif, J.F. Hennequin, J. Magn. Magn. Mater. 165 (1997) 504.
    
    [59] T. Devolder, C. Chappert, Y. Chen, E. Cambril, H. Bernas, J.P. Jamet, J. Ferre, Appl. Phys. Lett. 74(1999)3383.
    
    [60] K. Matsuyama, K. Matsuo, Y. Nozaki, J. Appl. Phys. 85 (1999) 5474
    
    [61] C. Shearwood, S.J. Blundell, M.J. Baird, J.A.C. Bland, M. Gester, H. Ahmed, H.P. Hughes, J. Appl. Phys. 75(1994)5249.
    
    [62] M. Hanson, C. Johansson, B. Nilsson, P. Isberg, R. W.appling, J. Appl. Phys. 85 (1999) 2793.
    
    [63] Y.B. Xu, A. Hirohata, L. Lopez-Diaz, H.T. Leung, M. Tselepi, S.M. Gardiner, W.Y. Lee, J.A.C. Bland, F. Rousseaux, E. Cambril, H. Launois, J. Appl. Phys. 87 (2000) 7019.
    
    [64] J.I. Martin, J.L. Vicent, J.L. Costa-Kr.amer, J.L. Menendez, A. Cebollada, J.V. Anguita, F. Briones, IEEE Trans. Magn. 36 (2000) 3002.
    
    [65] H. Demand, M. Hehn, K. Ounadjela, R.L. Stamps, E. Cambril, A. Cornette, F. Rousseaux, J. Appl. Phys. 87(2000)5111.
    
    [66] S. Ganesan, C.M. Park, K. Hattori, H.C. Park, R.L. White, H. Koo, R.D. Gomez, IEEE Trans. Magn. 36 (2000) 2987.
    
    [67] M. Farhoud, H.I. Smith, M. Hwang, C.A. Ross, J. Appl. Phys. 87 (2000) 5120.
    
    [68] K.B. Jung, H. Cho, K.P. Lee, J. Marburger, F. Sharifi, R.K. Singh, D. Kumar, K.H. Dahmen, S.J. Pearton, J. Vac. Sci. Technol. B 17 (1999) 3186.
    
    [69] K.B. Jung, J. Hong, J.R. Childress, S.J. Pearton, F. Sharifi, M. Jenson, A.T. Hurst, J. Magn. Magn. Mater. 198-199 (1999) 204.
    
    [70] W. Xu, J. Wong, C.C. Cheng, R. Johnson, A. Scherer, J. Vac. Sci. Technol. B 13 (1995) 2372.
    [71] P.R. Krauss, P.B. Fischer, S.Y. Chou, J. Vac. Sci. Technol. B 12 (1994) 3639.
    [72] S.Y. Chou, M.S. Wei, P.R. Krauss, P.B. Fischer, J. Appl. Phys. 76 (1994) 6673.
    [73] J. Wong, A. Scherer, M. Todorovic, S. Schultz, J. Appl. Phys. 85 (1999) 5489.
    [74] M.A. McCord, J. Vac. Sci. Technol. B 15 (1997) 2125.
    [75] J.P. Silverman, J. Vac. Sci. Technol. B 15 (1997) 2117.
    
    [76] Y. Chen, R.K. Kupka, F. Rousseaux, F. Carcenac, D. Decanini, M.F. Ravet, H. Launois, J. Vac. Sci. Technol. B 12(1994)3959.
    
    [77] F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M.F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, P. Veillet, J. Vac. Sci. Technol. B 13 (1995) 2787.
    
    [78] C. Miramond, C. Fermon, F. Rousseaux, D. Decanini. F. Carcenac, J. Magn. Magn. Mater. 165 (1997)500.
    
    [79] M. Hehn, R. Ferr!e, K. Ounadjela, J.-P. Bucher, F. Rousseaux, J. Magn. Magn. Mater. 165 (1997) 5.
    
    [80] J.E. Wegrowe, O. Fruchart, J.-P. Nozieres, D. Givord, F. Rousseaux, D. Decanini, J.Ph. Ansermet, J. Appl. Phys. 86 (1999) 1028.
    
    [81] J.P. Jamet, S. Lemerle, P. Meyer, J. Ferre, B. Bartenlian, N. Bardou, C. Chappert, P. Veillet, F. Rousseaux, D. Decanini, H. Launois, Phys. Rev. B 57 (1998) 14320.
    
    [82] M. Farhoud, M. Hwang, H.I. Smith, M.L. Schattenburg, J.M. Bae, K. Youcef-Toμmi, C.A. Ross, IEEE Trans. Magn. 34 (1998) 1087.
    
    [83] M. Farhoud, J. Ferrera, A.J. Lochtefeld, T.E. Murphy, M. Schattenburg, J. Carter, C.A. Ross, H.I. Smith, J. Vac. Sci. Technol. B 17 (1999) 3182.
    
    [84] S. Kreuzer, K. Pr. ugl, G. Bayreuther, D. Weiss, Thin Solid Films 318 (1998) 219.
    
    [85] T.A. Savas, M. Farhoud, H.I. Smith, M. Hwang, C.A. Ross, J. Appl. Phys. 85 (1999) 6160.
    
    [86] C.A. Ross, R. Chantrell, M. Hwang, M. Farhoud, T. Savas, Y. Hao, H.J. Smith, F.M. Ross, M. Redjdal, F.B. Hμmphrey, Phys. Rev. B 62 (2000) 14252.
    
    [87] M.A.M. Haast, I.R. Heskamp, L. Abelmann, J.C. Lodder, T.J.A. Popma, J. Magn. Magn. Mater. 193(1999)511.
    
    [88] M.A.M. Haast, J.R. Schuurhuis, L. Abelmann, J.C. Lodder, T.J. Popma, IEEE Trans. Magn. 34 (1998) 1006.
    
    [89] M. Hwang, M.C. Abraham. T.A. Savas, H.I. Smith, R.J. Ram, C.A. Ross, J. Appl. Phys. 87 (2000)5108.
    
    [90] Y. Hao, M. Walsh, M. Farhoud, C.A. Ross, H.I. Smith, J.Q. Wang, L. Malkinski, IEEE Trans. Magn. 36(2000)2996.
    
    [91] C. Pike, A. Fernandez, J. Appl. Phys. 85 (1999) 6668.
    
    [92] M. Schneider, H. Hoffmann. J. Appl. Phys. 86 (1999) 4539.
    
    [93] M. Z. olfl, S. Kreuzer, D. Weiss, G. Bayreuther, J. Appl. Phys. 87 (2000) 7016.
    
    [94] K. Bessho, Y. Iwasaki, S. Hashimoto, J. Appl. Phys. 79 (1996) 5057.
    
    [95] K. Bessho, Y. Iwasaki, S. Hashimoto. IEEE Trans. Magn. 32 (1996) 4443.
    [96] T. Schaub, R. Wiesendanger, H.J. G.untherodt, Nanotechnology 3 (1992) 77.
    [97] C.X. Guo, D.J. Thomson, Ultramicroscopy 42-44 (1992) 1452.
    [98] S. Wirth, J.J. Heremans, S. von Molnlar, M. Field, K.L. Campman, A.C. Gossard, D.D. Awschalom, IEEE Trans. Magn. 34 (1998) 1105.
    [99] W. Schindler, D. Hofmann, J. Kirshner, J.-Appl. Phys. 87 (2000) 7007.
    [100] Chou S Y,Krauss P R ,Renstrom PJ. Imprint of sub - 25 nm vias and trenches in polymers [J]. Applied physics letters, 1995, 67( 21) :3114 -3116.
    [101] http ://www.nanonex.com/Technology.Html
    [102] Guo, L. Zhuang, J. Vac. Sci. Technol. B 15 (1997) 2897.
    [103] C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, D. Pescia, Science 282 (1998) 449.
    [104] Cui Z, Jenkins D W K, Schneider A, Mcbride G.. SP1E, v4407, p.119 2001
    [105] G. Carter, J. Phys. D 34 (2001) R1.
    [106] K. Koike, H. Matsuyama, Y. Hirayama, K. Tanahashi, T. Kanemura, O. Kitakami, Y. Shimada, Appl. Phys. Lett. 78(2001)784.
    [107] B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, J. Kellock, H. Rothuizen, P. Vettiger, Appl. Phys. Lett. 75(1999)403.
    [108] B.D. Terris, D. Weller, L. Folks, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, P. Vetrtiger, J. Appl. Phys. 87 (2000) 7004.
    [109] W.H. Bruenger, M. Torkler, C. Dzionk, B.D. Terris, L. Folks, D. Weller, H. Rothuizen, P. Vettiger, G. Stangl, W. Fallmann, Microelectron. Eng. 53 (2000) 605.
    [110] O. Fruchart, M. Klaua, J. Barthel, J. Kirschner, Phys. Rev. Lett. 83 (1999) 2769.
    [112] D.D. Chambliss, R.J. Wilson, S. Chiang, Phys. Rev. Lett. 66 (1991) 1721.
    [113] J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. Sundar, Manoharan, J. Kirschner, Phys. Rev. B 56 (1997) 2340.
    [114] K.L. Lee, R.R. Thomas, A. Viehbeck, E.J.M. O'Sullivan, J. Vac. Sci. Technol. B 11 (1993) 2204.
    [115] M. Malac, R.F. Egerton, M.J. Brett, B. Dick, J. Vac. Sci. Technol. B 17 (1999) 2671.
    [116] M. Park, C. Harrison, P. Chaikin, R.A. Register, D.H. Adamson, Science 276 (1997) 1401.
    [117] P. Mansky, Y. Liu, E. Huang, T.P. Russell, C. Hawker, Science 275 (1997) 1458.
    [118] E. Huang, L. Rockford, T.P. Russell, C.J. Hawker, Nature 395 (1998) 757.
    [119] E. Huang, S. Pruzinsky, T.P. Russell, J. Mays, C.J. Hawker, Macromolecules 32 (1999) 5299.
    [120] K. Liu, S.M. Baker, M. Tuominen, T.P. Russell, I.K. Schuller, Phys. Rev. B 63 (2001) 060403.
    [121] T. Thurn-Albercht, J. Schotter, G.A. K.astle, N. Emley, T. Shibauchi, L. Krusin-Elbaμm, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, Science 290 (2000) 2126.
    [122] S.P. Li, W.S. Lew, Y.B. Xu, A. Hirohata, A. Samad, F. Baker. J.A.C. Bland, Appl. Phys. Lett. 76 (2000) 748.
    [123] G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Gode, Nature 272 (1978) 433.
    [124] M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R.D. Kirby, D.J. Sellmyer, Phys. Rev. B 62 (2000) 12282.
    [125] S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du, J. Magn. Magn. Mater. 222 (2000) 97.
    [126] H. Zeng, M. Zheng, R. Skomski, D.J. Sellmyer, Y. Liu, L. Menon, S. Bandyopadhyay, J. Appl. Phys. 87(2000)4718.
    [127] S.Y. Chou, Proc. IEEE 85 (1997) 652.
    [128] M. Thielen, S. Kirsch, H. Weinforth, A. Carl, E.F. Wassermann, IEEE Trans. Magn. 34 (1998) 1099.
    [129] K.J. Kirk, J.N. Chapman, C.D.W. Wilkinson, J. Appl. Phys. 85 (1999) 5237.
    [130] T. Ono, H. Miyajima, K. Shigeto, T. Shinjo, J. Magn. Magn. Mater 198-199 (1999) 225.
    [131] R.M.H. New, R.F.W. Pease, R.L. White, J. Magn. Magn. Mater. 155 (1996) 140.
    [132] F.G. Monzon, D.S. Patterson, M.L. Roukes, J. Magn. Magn. Mater. 195 (1999) 19.
    [133] R.D. Gomez, M.C. Shih, R.M.H. New, R.F.W. Pease, R.L. White, J. Appl. Phys. 80 (1996) 342.
    [134] 钟文定 铁磁学 科学出版社 1987
    [135] K.J. Kirk, J.N. Chapman, S. McVitie, P.R. Aitchison, C.D.W. Wilkinson, Appl. Phys. Lett. 75 (1999)3683.
    [136] J.A. Johnson, M. Grimsditch, V. Metlushko, P. Vavassori, B. Ilic, P. Neuzil, R. Kumar, Appl. Phys. Lett. 77(2000)4410.
    [137] P. Vavassori, O. Donzelli, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, R. Kumar, J. Appl. Phys. 88 (2000) 999.
    [138] K.J. Kirk, J.N. Chapman, C.D.W. Wilkinson, J. Appl. Phys. 85 (1999) 5237.
    [139] J. Lohau, S. Kirsch, A. Carl, E.F. Wassermann, Appl. Phys. Lett. 76 (2000) 3094.
    [140] K.J. Kirk, J.N. Chapman, S. McVitie, P.R. Aitchison, C.D.W. Wilkinson, Appl. Phys. Lett. 75 (1999)3683.
    [141] J. Gadbois, J.G. Zhu, IEEE Trans. Magn. 31 (1995) 3802.
    [142] R.P. Cowburn. M.E. Welland, Appl. Phys. Lett. 72 (1998) 2041.
    [143] R.P. Cowburn, M.E. Welland, Phys. Rev. B 58 (1998) 9217.
    [144] R.P. Cowburn, M.E. Welland, J. Appl. Phys. 86 (1999) 1035.
    [145] W. Rave, K. Ramst.ock, A. Hubert, J. Magn. Magn. Mater. 183 (1998)329.
    [146] A. Thiaville, D. Tom!as, J. Miltat, Phys. Stat. Sol. (a) 170 (1998) 125.
    [147] X.H. Huang. M. Pardavi-Horvath, IEEE Trans. Magn. 32 (1996) 4180.
    [148] A. Aharoni, Introduction to the Theory of Magnetism, Oxford Science Publications, Oxford, 1996.
    [149] T. Schrefl, J. Fidler, K.J. Kirk, J.N. Chapman, J. Magn. Magn. Mater. 175 (1997) 193.
    [150] S.Y. Chou, P.R. Krauss, L. Kong, J. Appl. Phys. 79 (1996) 6101.
    [151] J. Lohau, S. Kirsch, A. Carl, E.F. Wassermann, Appl. Phys. Lett. 76 (2000) 3094.
    [152] M. Thielen, S. Kirsch, H. Weinforth, A. Carl, E.F. Wassermann, IEEE Trans. Magn. 34 (1998) 1099.
    [153] A. Carl, S. Kirsch, J. Lohau, H. Weinforth, E.F. Wassermann, IEEE Trans. Magn. 35 (1999) 3106.
    [154] L. Thomas, S.S.P. Parkin, J. Yu, U. R. udiger, A.D. Kent, Appl. Phys. Lett. 76 (2000) 766. [155] R.D. Gomez, T.V. Luu, A.O. Park, K.J. Kirk, J.N. Chapman, J. Appl. Phys. 85 (1999) 6163.
    [156] H. Koo, T.V. Luu, R.D. Gomez, V.V. Metlushko, J. Appl. Phys. 87 (2000) 5114.
    [157] R.E.Dunin-Borowski, M.R. McCartney, B. Kardynal, D.J. Smith, M.R. Scheinfein, Appl. Phys. Lett. 75 (1999)2641.
    [158] R.H. Kodama, J. Magn. Magn. Mater. 200 (1999) 359.
    [159] J.T. Richardson, W.O. Milligan, Phys. Rev. 102 (1956) 1289.
    [160] S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, J. Appl. Phys. 81 (1997) 5561.
    [161] B. Hillebrands, C. Mathieu, C. Hartmann, M. Bauer, O. B. uttner, S. Riedling, B. Roos, S.O. Demokritov, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril, A. M. uller, B. Hoffmann, U. Hartmann, J. Magn. Magn. Mater. 175 (1997) 10.
    [162] N.A. Usov, S.E. Peschany, J. Magn. Magn. Mater. 110 (1992) L1.
    [1]R M Bozorth:'Ferromagnetism';1951,D.Van Nostrand Co.Inc.
    [2]J M MacLaren,T C Schulthess,W H Butler,et al.J.Appl.Phys.85 4833(1999)
    [3]J W Cai,O Kitakami,Y Shimada.J.Phys.D,28:1778(1995)[4]N Shiwata,C Wakabayashi,H Urai.J.Appl.Phys.,69(8):5616(1991)
    [5]S Ohnμma,N Kobayashi,T Masμamoto,et al.J.Appl.Phys.,85(8):4574(1999)
    [6]S Liao.IEEE Trans.Magn.,23(5):2981(1987)
    [7]E H Kim,Y K Kim,S -R Lee.J.Magn.Magn.Mater.,233(3):142(2001)
    [8]S Ikeda,I Tagawa,Y Uehara,et al.IEEE Trans.Magn.,38(5):2219(2002)
    [9]M K Minor,T J Klemmer.J.Appl.Phys.,93(10):6465(2003)
    [10]E J Yun,W Win,R M Walser.IEEE Trans.Magn.,32(5),4535(1996)
    [11]T Osaka,T Yokoshima,D Shiga,et al.Electrochemical and Solid-State Letters.,6(4),C53(2003)
    [12]王劼,李红红,王锋等.软X射线磁性圆二色光束线的调试和实验.核技术,28(7):489(2005)
    [13]C H Tolman.J.Appl.Phys.,38(8):3409(1967)
    [14]祝绍箕等.衍射光棚,1986,北京:机械工业出版社
    [15]张 锦,冯伯儒,郭永康等.用于大面积周期性图形制造的激光干涉光刻[J].光电工程200128(6):20-23.
    [16]张 锦,冯伯儒,郭永康.振幅分割无掩模激光干涉光刻的实现方法[J].光电工程2004 31 211-15.
    [17]张 锦,冯伯儒.郭永康.波前分割无掩模激光干涉光刻的实现方法[J].光电工程2004 31 28-10
    [18]Cowan J J.Holographic honeycomb microlens[J].Optical Engineering,1985,24(5):796-802
    [19]徐向东 全息离子束刻蚀真空紫外及软X射线衍射光栅研究 博士学位论文
    [20]H.M.史密斯.全息记录材料.科学出版社,1984:269~274
    [21]赵劲松,李立峰,吴振华.全息光栅制作中的实时潜像自监测技术.光学学报,2004,24(6):851-858
    [22]F.H.Dill Optical lithography IEEE Trans.Electron Devices,1975,22(7):440-444
    [23]F.H.DilI,W.P.Hornberger,P.S.Hauge et al.Characterization of positive photoresist.IEEE Trans.Electron Devices.,1975,22(7):445-452
    [24]K.L.Konnerth,F.H.Dill.In-situ measurement of electric thickness during etching or developing processes.lEEE Trans.Electron Devices.,1975,22(7):452-456
    [25]F.H.DilI,A.R.Neureuther,J.A.Tuttle et al.Modeling projection printing of positive photoresists.IEEE Trans.Electron Devices.,1975,22(7):456-464
    [26]S.Austin,F.T.Stone,Fabrication of thin periodic structures in photoresist:fabrication and experimental evaluation.Appl.Opt.1976,15(4):2126-2130
    [27]L.Mashev,S.Toncbev.Formation of holographic diffraction gratings in photoresist.Appl.Phys.1981,A26:143-149
    [28]B.de A.Mello,I.F.da Costa,C.R.A.Lima et al.Developed profile of holographically exposed photoresist gratings.Appl.Opt.1995,34(4):597-603
    [29]C.A.Ross,H.I.Smith,T.Savas,M.Schattenburg,M.Farhoud,M.Hwang,W.Walsh,M.C.Abraham,R.J.Ram,J.Vac.Sci.B 17(1999)3168.
    [30]A.Fernandez,H.T.Nguyen,J.A.Britten,R.D.Boyd,M.D.Perry,D.R.Kania,A.M.Hawryluk,J.Vac.Sci.Technol.B 15(1997)729.
    [31]M.J.Beesley,J.G.Castledine.The use of photoresist as a holographic recording mediμm.Appl.Opt.1970,9(12):2720-2724
    [32]Y.Nakano,K.Tada.In situ monitoring technique for fabrication of high-quality diffraction gratings.Opt.Lett.1988,13(1):7-9
    [33]谢建平,明海,多田邦雄。GaAs基片上制作优质衍射光栅的实时监测技术分析。半导体学报。1990,II(2):153-157
    [34]J.A.Britten,R.D.Boyd,B.W.Shore.In situ end-point detection during development of submicrometer grating structures in photoresist.Opt.Eng.1995,34(2):474-479
    [35]L.Li.Multilayer modal method for diffraction gratings of arbitrary,depth,and permittivity,J.Opt.Soc.Am.1993,A10(12):2581-2591
    [36]L.F.Johnson,G.W.Kammlott and K.A.Ingersll,"Generation of periodic surface corrugations,"App,Opt.17(8),1165-1181.
    [37]M.L.Schatternburg et al.,Opt.Eng.30,1590(1991)
    [38]M.L.Schattenburg,R.J.Aucoin,and R.C.Fleming J.Vac.Sci.Technol.B 13(6),3007(1995).
    [39]R.Murillo,H.A.van Wolferen,L.Abelmann,J.C.Lodder.Fabrication of patterned magnetic nanodots by laser interference lithography,Microelectronic Engineering 78-79(2005)260-265
    [40]Ono M,Saito M,Yoshitomi T A,et al.,40 nm gate length n2MOSFET electron devices[J]IEEE Transactions Dev,1995,42(10):1822 - 18301
    [41]孙自敏,刘理天,李忠坚 微细加工技术1998(2)31
    [42]徐向东、洪义麟,傅绍军 真空科学与技术23(5),362(2003)
    [43]王旭迪,刘 颖,洪义麟,徐向东,付绍军 微细加工技术 2003(3)35
    [44]徐向东.周洪军,洪义麟 光刻胶灰化技术用于同步输射闪耀光栅制作[J]微细加工技术,2000,(3):35-381
    [45]A.Kawai,H.Nagata,H.Abe et al.Adhension between photoresist and inorganic substrate.Jpn.J.Appl.Phys.1991,30(1):121-125
    [1]J L Erskine and E A Stern.Phys.Rev.B 12:5016(1975)
    [2]G Schutz,W Wagner,W Wilhelm,et al.Phys.Rev.Lett.58:737(1987)
    [3]G Schutz,R Frahm,P Mautner,et al.Phys.Rev.Lett.62 2620(1989)
    [4]B T Thole,P Carra,F Sette,et al.Phys.Rev.Lett.68 1943(1992)
    [5]P Carra,B T Thole,M Altarelli,et al.Phys.Rev.Lett.70 694(1993)
    [6]T Funk,A Deb,S J George,et al.Coordiantion Chemistry Reviews.249 3(2005)
    [7]丁海峰,董国胜,金晓峰.物理,27 621(1998)
    [8]J Stohr,H A Padmore,S Anders,et al.Surface Review and Letters.5(6):1297(1998)
    [9]R Nakajima.Ph.D.dissertation,Standford University,1998.
    [10]J Stohr and H Konig.Phys.Rev.Lett.75 3748(1995)
    [11]P Carra and M Altarelli.Phys.Rev.Lett.64 1286(1990)
    [12]Quantμm Mechanics by Claude Cohen-Tannoudji,Bernard Diu and Franck Laloe,Wiley,New York,1977,chapter 13
    [13]N V Smith,C T Chen,F Sette,et al.Phys.Rev B 46(2):1023(1992)
    [14]B T Thole,P Carra,G van der Laan,et al.Phys.Rev.Lett.8(12):1943(1992)
    [15]R Wu.D S Wang,A J Freeman,et al.Phys.Rev.Lett.71(21):3581(1993)
    [16]A Scherz,Dissertation.Betlin:Verlag im Internet GmbH.2004
    [17]R Wu,A J Freeman.Phys.Rev.Lett.73(14):1994(1994)
    [18]O S Brown,D E Moncton.Handbook on Synchrotron Radiation.North-Holland:Elsevier,1991
    [19]C T Chen,Y U Idzerda,H J Lin,et al.Phys.Rev.Lett.75(1):152(1995)
    [20]M Pompa,A M Flank,P Lagarde,et al.Phys Rev B 56(4):2267(1997)
    [21]王劼,李红红,王锋等.核技术.28(7):489(2005)
    [22]郭玉献.博士论文.中国科学技术大学 2007
    [1]G.Prinz,K.Hathaway.Physics today,4,24(1995)
    [2]E.C.Stoner and E.P.Wohlfarth,Philos.Trans.R.Soc.London,Set.A 240,559,(1948)
    [3]E.Y.Chen,S Tehrani,T Zhu,et al.J.Appl.Phys.,81,3992,(1997)
    [4]B.A.Eveitt and A V Pohm,J.Appl.Phys.,81,4020,(1997)
    [5]Y.F.Zheng and J.G.Zhu,J.Appl.Phys.,81,5471,(1997)
    [6]J.Shi,T.Zhu,M.Durlam,E.Chert,et al.,IEEE Trans.Magn.,34,997,(1998)
    [7]J.Shi,S.Tehrani,T.Zhu,et al.,Appl.Phys.Lett.,74(17),2525,(1999)
    [8]T.Zhu,J.Shi,K.Nordquist,et al.,IEEE Trans.Magn.,33(5),3601,(1997)
    [9]R.P.Cowburn,J Phys.D:Appl.Phys.,33,1,(2000)
    [10]A.Hubert,R.Schafer.Magnetic Domains,Chapter 3.Springer-Verlag Berlin Heidelberg(1998)
    [11]C.Shearwood,S.J.Blundell,M.J.Daird,et al.J.Appl.Phys.75,5249(1994)
    [12]M.Faraday,Trans.Roy.Soc.(London),5,592(1846)
    [13]J.Kerr,Philos.Mag.,3,339.(1877)
    [14]E.R.Moog,S.D.Bader,Superlattices Microstruct.,1,543,(1985)
    [15]翟亚 博士论文 东南大学 2003
    [16]R.P.Cowburn,A.Ercole,S.J.Gray,and J.A.C.Bland J.Appl.Phys.81(10),6880-6884
    [17]R.P.Cowburn,A.O.Adeyeye,and M.E.Welland,Phys.Rev.Lett.81,5414(1998).
    [18]A.Fernandez,M.R.Gibbons,M.A.Wall.Journal of Magnetism and Magnetic Materials,1998,71-80
    [19]J.F.Smyth,S.Schultz,D.Kern,H.Schmid,D.Yee,J.Appl.Phys.63(1988)4237.
    [20]K.J.Kirk,J.N.Chapman,C.D.Wilkinson,Appl.Phys.Lett.71(1997)539.
    [21]G.binning,H.Rober,et al.,Surface studies by scanning tunneling microscopy.P hys.Rev.Lett.,1982,Vol.49,No.1:57-61
    [22]Xiaobin Zhu,P.Grutter,V.Metlushko,et al.,Appl.Phys.Lett.,80(25),4789,(2002)
    [23]A.Lebib,S.P.Li,M.Natali,and Y.Chen.J.Appl.Phys.89(2001)3892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700