放电等离子体与催化剂共同作用的放电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先设计了一种大功率脉冲高压电源,其电压、频率在0~30KV、0~10KHz范围内可以调节。
    同时在总结前人研究的基础上设计了一种新型介质板+γ—Al_2O_3小球的脉冲放电等离子体反应器,并对反应器的放电特性进行了研究,这些研究包括:介质板介电常数、电压频率、电压波型、及间隙距离对放电能量的影响规律,并拍摄了相应的放电图像。通过分析得出以下主要结论:
    带介质板的反应器放电功率与介质板介电常数关系密切。在周期电压作用下对我们所研究的介质板介电常数范围,有如下规律:
    (1)Pmax(ε=8)> Pmax(ε=590)> Pmax(ε=3700)> Pmax(ε=14000)。
    (2)不同介质板介电常数,放电功率与电压频率有关,出现最高放电功率的电压频率随着介质板介电常数的减小而增加。
    当反应器在单极性定长脉冲作用下时,在我们研究的脉宽范围内:
    (1)随着脉冲宽度由几百纳秒增加到几千纳秒,放电能量增加,较强的放电出现在几个微秒。
    (2)在无介质板情况,放电能量明显低于有介质板情况,在脉冲宽度达到微秒级后,其也有所增加,但在间隙击穿前能达到的放电能量仍然较低,在本文研究的脉宽范围和介电常数范围内,ε=590反应器的放电能量始终较高。
    (3)输入电压脉宽越小,电极间隙距离对放电能量的影响越大,较小的间隙距离明显有利于放电能量的提高。
At first, This paper designed a kind of high-voltage pulse power supply, The voltage, frequency could be regulated in 0-30KV, 0-10KHz ,At the same time , a new type of dielectric plate +γ—Al_2O_3 reactor on the basis of the theory has been improved. We study discharge characteristic of dielectric plate +γ—Al_2O_3 reactor ,including the influence of pulse voltage frequency , dielectric constants of dielectric plat , pulse voltage waveform , interval of discharge electrode on dielectric plate +γ—Al_2O_3 reactor discharge energy. The photo of discharge has been taken and the results were analyzed based on the data. The result shows:
    The maximum discharge energy(Pmax) of dielectric plate +γ—Al_2O_3 reactor largely relates with dielectric constant of dielectric plate, the disciplinarian is as follows:
    (1) Pmax(ε=8)> Pmax(ε=590) > Pmax(ε=3700) > Pmax(ε=14000).
    (2) Under different dielectric constants of dielectric plate, the discharge energy relates with voltage frequency. The less dielectric constants of dielectric plate, the larger the discharge energy.
    Under the single pole pulse (in the pulse duration range of paper study).The results following:
    (1) With the increasing of pulse duration from several hundreds to several ten hundreds nanosecond ,the discharge energy increase.
    (2) The discharge energy with dielectric plate is obviously larger than that without dielectric plate. In the pulse duration range of the paper, The maximum discharge energy occur when dielectric constant of plate is 590.
    (3) The shorter the pulse duration, The larger influence electrode interval on the discharge energy. The shorter electrode interval is more advantageous for increasing discharge energy.
引文
[1] 江红. 中国燃煤电厂烟气二氧化硫污染治理技术. 环境保护, 1998, 7: 27
    [2] 李劲, 王泽文, 高秋华等. 脉冲放电等离子体水处理技术中的放电问题. 高电压技术, 1997, 23(2): 7-12
    [3] S. Br?er, T. Hammer. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalysis B: Environmental, 2000, 28(2): 101-111
    [4] H. Kim, K. Takashima, S. Katsura. Low-temperature NOX reduction processes using combined systems of pulsed corona discharge and catalysts, Journal of Physics D: Applied physics, 2001, 34(4): 604-613
    [5] 杨津基. 气体放电. 第 1 版. 北京: 科学出版社, 1983
    [6] 徐学基, 诸定昌. 气体放电物理. 第 1 版. 上海: 复旦大学出版社, 1996
    [7] X. Xu. Dielectric barrier discharge-properties and applications. Thin Solid Films, 2001, 390(1-2): 237-242
    [8] Xiao Chen, Jeff Rozak et, al Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT (plasma and catalyst integrated technologies) reactors. Applied Catalysis A: General, 2001, 219: 25-31
    [9] Einaga, H, et al: erformance Evaluation of a Hybrid System Comprising Silent Discharge Plasma and Manganese Oxide Catalysts for Benzene Decompostion, IEEE Trans on Ind Appl, 2001, 37(5): 1476-1482
    [10] Oda, T. , et al. Analysis of low-temperature surface discharge plasma products from gaseous organic compounds. IEEE Trans on Ind Appl, 1996, 32(50): 1044-1050
    [11] 陈殿英等. 低温等离子体及其在废气处理中的应用. 化工环保, 2001, 21(3): 136-139
    [12] D. M. Willberg. P. S et al. Degradation of 4-cholophenol, 3, 4, -dichloronline and 2, 4, 6-trinitrotoluene in an electrohydraulic discharge reactror, Environ. Sci. Technol. , 1996, 30: 2526-2534
    [13] 毛本将, 王宝健等. 等离子体烟气脱硫脱硝工业实验装置. 电力环境保护, 2000, 3(16): 5-7
    [14] K. Yan et al. Electron energy for primary and secondary streamers of pulsed corona in relation with flue gas cleaning. Proc. 11th Int. Symp. Plasma Chem, 1993: 609-614
    [15] J. Sidney Clements et al. Combined removal of SO2, NOx, and fly ash from simulated flue gas using pulsed steamer corona. IEEE Trans on Ind, Appl. 1989, 25(1): 62-69
    [16] 马志民, 章兴文. 放电等离子体烟气脱硫脱硝技术研究 黑龙江大学自然科学学报, 1997, 14(2): 83-86
    [17] 中国环境科学会. 脱硫技术. 北京: 中国环境科学出版社, 1995
    [18] Li Jie, WuYan, et al. Effect of activated NH3 on SO2 removal by pulsed corona discharge plasma in flue gas. Journal of Environmental Scinence, 2000, 12(4): 448-451
    [19] 龚大国, 袁宗宣等. 等离子体汽车尾气治理技术, 重庆环境科学, 2003, 25(2): 28-32
    [20] 余必敏等. 工业废水处理与利用. 北京: 科学出版社, 1979
    [21] Tokumaga O. Nishimara K. , Suzuki N, and Washino M, Effect of CO, O2, NO, H2O, and irradiation temperature on the radiation induced oxidation of SO2, J. Chem. Soc/ Japan-Chem, Ind. Chem, (in Japanese), 1977, 11: 1582-1586
    [22] Abdulathim Marafee, Changjun liu An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La2O3 catalyst. Ind. Eng. Chem. Res. , 1997, 36: 632-637
    [23] Chang-jun liu, Lance L. Experimental investigations on the interaction between plasma and catalyst for plasma catalytic methane conversion(PCMC) over zeolites NATURAL GAS CONVERSION V Studies in Surface Science and Catalysis, 1998, 119: 361-366
    [24] Changjun liu, Abdulathim Marafee Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups Appl. Catal. A, 1997, 164: 21-33
    [25] Kazuo Shimizu. Non-thermal Plasma Processing of Flue Gas with Catalytic Reactions and Water Vapor. Proceedings, ICESP VII, Sep. 20-25, Hyongju, Korea, 1998: 310-315
    [26] Hee-Joon Kim, et al. Development of A New Dry Desulfurization Process Using A TiO2 Catalyst and A Non-Thermal Plasma Hybrid Reactor. Proceeding, ICESP Ⅶ. Kyongju, Korea, Sep. 20-25, 1998: 292-299
    [27] Toshiaki Yamamoto, et al. Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction. IEEE Trans. On Ind. Appl. , 1996, 32(1): 100-105
    [28] 李胜利, 李劲, 李端娇. 催化剂对脉冲放电转化 CO2 为 CO 的影响. 高电压技术, 1999, 25(4): 2337-2341
    [29] M. A, Dimitriou. Design guidance manual for ozone systems. Norwalk, Connecticut: The pan American committee of the international ozone association, 1990
    [30] 马虹斌, 丘毓昌. 高压网状电极臭氧发生器特性研究. 电工电能新技术, 1996, (4): 12-15
    [31] Y. Nomoto, Tohkubo, S. Kanazawa et al. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer. IEEE Trans Ind Applicat, 1995, 31(6): 1458-1462
    [32] Y. Nomoto, T. Ohkubo, S. Kanazawa et al. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer. IEEE Trans Ind Applicat, 1995, 31(6): 1458-1462
    [33] 吴彦, 张若兵, 许德玄. 利用高压脉冲放电处理废水的研究进展[J]. 环境污染治理技术与设备, 2002, 3(3): 51-55
    [34] 王晓明, 赵莹, 史文祥等. 放电等离子体反应器装置及电场分析评述[J]. 高压电器, 2004, 40(4): 275-278
    [35] W. J. M. Samaranayake, Y. Miyahara, T. Namihira et al. Ozone generation in dry air using pulsed discharges with and without a solid dielectric layer.. IEEE Trans DEI, 2001, 8(4): 687-697
    [36] 鮑慈光, 杨宗璐, 张一玲等. 臭氧发生器用陶瓷电极材料的研制. 云南大学学报(自然科学版), 1999, 21(4): 282-284
    [37] 刘维良, 吴坚强, 陈云霞等. 臭氧发生器用 Al2O3 陶瓷基板材料的改性研究. 陶瓷学报, 2001, 22(2): 73-77
    [38] 邢福保, 许鑫华, 孔凡. EPDM-陶瓷高介电常数低损耗复合电介质薄膜. 天津化工, 1999(5): 1-4
    [39] Jae-Duk Moon, Sang-Taek Geum, Discharge and Ozone Generation Characteristics of a Ferroelectric-Ball/Mica-Sheet Barrier, IEEE Trans. On INDUSTRY APPLICATIONS, 1998, 34(6): 1206
    [40] 魏旭, 刘虹等. 提高臭氧发生器放电室效率的研究. 电工电能新技术, 1998(2): 46-50
    [41] 李正瀛. 脉冲功率技术. 第 1 版. 北京: 水利电力出版社, 1992: 6-28
    [42] 华中工学院, 上海交通大学合编. 高电压试验技术. 第 1 版. 北京: 水利电力出版社, 1983: 68, 123
    [43] 杨传谱, 孙敏. 电路理论——时域与频域分析. 第 1 版. 武汉: 华中理工大学出版社, 1998
    [44] 王瑞华编著. 脉冲变压器设计. 第 1 版. 北京: 科学出版社, 1996
    [45] 李胜利. 脉冲放电等离子体催化还原脱硫技术研究: [博士论文]. 湖北: 华中科技大学, 2001
    [46] 王水平. 开关稳压电源——原理、设计与实用电路. 第 1 版. 西安: 西安电子科技大学出版社, 1999: 12, 146
    [47] 姚宗干. 高电压试验技术. 北京: 水利电力出版社, 1983: 132-138
    [48] [苏]卡兰塔罗夫, 采伊特林编著电感计算手册. 北京: 机械工业出版社, 1992
    [49] 刘和平, 黄长开, 严利平, 潘伟峰等译. PIC 16F87X 数据手册-28/40 脚 8 位FLASH 单片机. 北京航空航天大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700