永磁同步电动机增量运动信息预测控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增量运动控制是一种动态不确定环境下的优化控制方法,对于复杂非线性的控制问题,经典的线性控制理论很难得到满意的控制。增量运动控制是一种多模态的控制过程。在控制的整个时域范围内,表现为位置、速度、加速度等不同运动模态。采用的控制方式包括点动控制、恒频控制、升降频控制,只有在不同的模态下,达到高精度的控制,才可使系统全局最优。
     预测控制是在工业控制实践过程中发展起来的一种基于模型的先进控制方法,基本原理是以预测模型为基础,采用二次在线滚动优化性能指标,反馈校正预测模型,因此,预测模型、滚动优化、反馈校正是预测控制的三个基本要素,同时也是预测控制在实际工程应用中取得成功的技术关键。
     随着电力电子与微电子技术的发展,电力传动控制的基本模式由连续模拟控制形式逐步发展为“DSP—IPM—电动机”的离散数字控制模式。其离散控制本质与预测控制的模型预测—滚动优化—反馈校正的离散控制模式相一致。通过对系统输出量变化的预测,根据优化性能指标得出相应的控制对策,然后利用实测过程数据对模型做必要的修正,从而克服系统中存在的不确定性。预测控制的应用使得运动控制的控制目标、控制性能得以在采样时间序列上得实现和优化,系统模型参数也将在每一周期得到适当的修正。
     增量运动控制系统涉及微秒级甚至纳秒级的电力电子器件的开关暂态过程、毫秒级的数字控制器调节过程和秒级的电动机机电过渡过程。在系统的统一时序控制之下,系统具有离散控制的基本特性。由于这一系统的复杂性,迫使必须延伸研究工作以寻求更能面对控制特性、对数学模型要求不高、在线计算方便、控制效果好的、又便于综合的控制方法。本文研究中,首次提出了增量运动系统的非参量建模问题,采用动态矩阵控制(DMC),取得很好的控制效果。提出速度、位置、电流的多模态预测控制,在这方面进行了很有成就的基础性研究工作。
Increment motion control is a kind of optimize control method under dynamic and uncertain conditions. For complex non-linear control problems, it is difficult to gain a satisfactory solution using classical linear control theory. Increment motion control is a multi-state control process. During the whole control time-field area, the system represents different states such as position, rate, acceleration and so on. The control methods include step control, constant frequency control and rise-drop frequency control. Only under different states and reaching high precision control, the system could attain whole optimization.Predictive control is an advanced control system based on the model developing with the industry control practice. The basic principle is based on predictive model with quadratic online to optimize the performance, then feedback emendate the predictive model. So predictive model, roll optimization and feedback emendation are basic factors of predictive control, which are also the key technologies for using it in practice successfully.Developing with the electronic and the micro-electronics technology, the basal mode of modern drive control has developed from continuous analog control to "DSP-IPM-motor" discrete digital control. The hypostasis of discrete control is accord with predict control. The uncertainty of the system can be overcome through predicting the change of the system and getting the corresponding control method based on the optimized performance, then correcting the model using the practiced process dates. The application of predictive control could make the control object and control performance get implementing and optimization, parameters of system model get proper correction in every cycle.Increment motion control system refers to microsecond even nanosecond electronic apparatus switch transient process、 millisecond digital controller adjust process and second motor transition process. In unify time-order control, the system has discrete control characteristic. Because of the system complicacy, it make us have to range our research to find a better control method, which could against the control character and need lower requirement to math model, more convenient online calculation, better control effect and easier to integration. In this paper, presents the non-parameters modeling issue about increment motion system for the first time, use the dynamic matrix control (DMC) technique and obtain well control effect. It presents position-speed-current predictive control, and makes basic research in this area.
引文
[1] 张崇巍,运动控制系统.武汉理工大学出版社,2002
    [2] 陈瑜,电力电子与运动控制技术.中国电力出版社,2003
    [3] 徐殿国,运动控制技术中的自动控制理论.控制理论与应用.1992,9(3)-322-324
    [4] 尔桂花,运动控制系统,清华大学出版社,2002
    [5] Irma I. Siller A. Generalized Predictive Control for Nonlinear Systems with Unstable Zero Dynamics. Instrumentation and Development Vol.5 No.3 December 2001
    [6] R. Hedjar, R. Toumi et al. Cascaded Nonlinear Predictive Control of Induction Motor. Proceedings of the 2000 IEEE international Conference on Control Applications. Anchorage, Alaska, USA, Sep.2000
    [7] R. Hedjar, R. Toumi et al. End Point Constraints Nonlinear Continuous Predictive Control For Induction Motors. 15th Triennial World Congress, Barcelona, Spain, IFAC 2002
    [8] Tong liu Iqbal Husain, et al. Torque Ripple Minimization with On-line Parameter Estimation Using Neural Networks in Permanent Magnet Synchronous Motors. Department of Electrical Engineering. The University of Akron, OH, USA
    [9] Kyusung Kim, Alexander G. Patios. Induction Motor Fault Diagnosis Based on Neuropredictors and Wavelet Signal Processing. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL.7. NO.2, JUNE 2002
    [10] Kay-Soon Low, Koon-yang Chiun, et al. Evaluating Generalized Predictive Control for a Brushless DC Driver. IEEE TRANSACTIONS
    [11] 葛宝明,蒋静坪。永磁同步电动机传动系统的模型算法控制。中国电机工程学报。Vol.19,No.10,Oct.1999
    [12] 邹恩,徐福仓。预测控制在位置调节器软件设计中的应用。电气传动自动化。第22卷第一期,Feb,2000
    [13] James R. Michalec. A Proposed Motor Predictive Maintenance Program. American Electric Power,2001
    [14] Xu Qiang, Jia Zheng chun. Real-Time Adaptive Predictive Controller for AC Servo Drivers. HUazhong University of Science & Technology, 2000
    [15] 李志民,张遇杰。同步电动机调速系统。机械工业出版社,1996
    [16] Hyung-tae Moon, Myung-joong Youn. A Modified Predictive Current Controller for PMSM. PEDS'01 Indonesia, 2001
    [17] 许强,贾正春。永磁同步电动机的自适应预测控制电流控制。电气传动,1997.4
    [18] Hyung-tae Moon, Myung-joong Youn. Predictive Current Controller for PMSM with Consideration of Calculation Delay. Electronics Letters Vol.37 No.24 22nd November 2001
    [19] Gianluca Brando, Andrea Del Pizzo. A Predictive Control Technology for PWM-Rectifier in Vector Controlled Induction Motor Drivers. 2002
    [20] In-Hwan Oh, Young-Seok Jung, et al. A Source Voltage-Clamped Resonant Link Inverter for a PMSM sing a Predictive Current Control Technique. IEEE TRANSACTION ON POWER ELECTRONICS, VOL.14, NO.6, NOVEMBER 1999
    [21] Yongdong Li, Hu Hu, et al. Predictive Control of Torque and Flux of Induction Motor with an Improved Stator Flux Estimator. Tsing Hua University, 2001
    [22] 胡耀华,贾欣乐。广域预测控制的直接算法。控制与决策,第15卷第2期,2000.3
    [23] 王一晶,左志强。基于改进BP网络的广域预测控制快速算法。基础自动化,第9卷第9期,2002.4
    [24] 孙明玮.陈增强,袁著祉。无限时域预测控制的直接求解算法。应用数学,2003.13(3):5~9
    [25] 杜晓宁,席裕庚,李少远。约束预测控制的一种快速算法。上海交通大学学报,Vol.35,No.11、NOV.2001
    [26] 许敏,李少远。典型过程控制系统的快速预测控制算法。河北工业大学学报,Vo.30,No.5,2001
    [27] 杨丽曼,李天石。广域预测控制的一种直接算法及其应用。机床与液压,NO.4,2001
    [28] R. Wu, G. R. Slemon, A Permanent Magnet Motor Drive without a Shaft Sensor. ISA, 1990, pp 553-558
    [29] 潘月斗,交流伺服系统智能控制研究:天津大学博士学位论文 2001.12
    [30] P. Pillay and R. Krishnam, Modeling, Analysis and Simulation of a High Performance Synchronous Motor Drive. IEEE IAS Annual Meeting, Atlanta, Georgia, 1987
    [31] 陈坚,交流电机数学模型及调速系统.北京,国防工业出版社,1989
    [32] 高景德,交流电机及其系统的分析.北京,清华大学出版社,1992
    [33] 陈伯时,陈敏逊,交流调速系统.北京,机械工业出版社,1998
    [34] 李练兵,永磁同步电动机多模态预测控制的研究:河北工业大学博士学位论文,2003.3
    [35] 葛宝明,蒋静坪,孙鹤旭,同步电动机位置模态L~5预测控制的研究.控制理论与应用,1999,vol.16,No1,pp.67~70
    [36] 王晓军,交流步进传动及离散控制的研究:河北工业大学硕士论文,2003.3
    [37] R. Monajemy, R. Krishnan, Implementation Strategies for Concurrent Flux Weakening and Torque Control of the PM Synchronous Motor. in IEEE Ind. Application, Society Annu. Meet. 1995, pp.238-245
    [38] 诸静,智能预测控制及其应用.杭州:浙江大学出版社,2000
    [39] Clarke D W, Mohtadic,Tuffs P S. Generalised Predictive Control (Part 1 & Part 2). Automatica, 1987
    [40] 席裕庚,预测控制.国防工业出版社,1993
    [41] 李农庄,多变量广义预测控制在单元机组协调控制系统中的应用研究:华北电力大学硕士学位论文,1999.12
    [42] 王晓明,王玲。电动机的DSP控制——TI公司DSP应用。北京航空航天大学出版社,2004
    [43] 张雄伟,曹铁勇,DSP芯片的原理与开发应用,电子工业出版社.2000
    [44] Texas Instruments, TMS320C24X DSP Controller, Reference Set. 1997
    [45] Texas Instruments, TMS320C2XX User's Guide. 1997
    [46] 张兴华。空间矢量脉宽调制恒压频比控制的数字实现。天津,电气传动,2004.2,pp:12-15
    [47] 薛山,温旭辉,徐志捷。基于AD2S90的数字旋转变压器。北京,电工技术杂志,2003.9,pp:102-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700