周期性机械拉伸对大鼠成骨细胞生理活性和力学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用生物力学、细胞生物学、细胞动力学等方法,研究周期性拉伸刺激对成骨细胞生理活性和力学性质的影响,并对成骨细胞对力学信号的响应机理作了探讨。主要工作和结论如下:
     (1)采用消化法从初生大鼠的颅盖骨中分离、培养成骨细胞。
     (2)使用四点弯曲加载装置对大鼠颅盖骨分离出的细胞施加周期性拉伸应变,应变水平分别为500με、1000με和1500με,工作频率为0.4Hz,研究周期性拉伸刺激对成骨细胞在不同应变水平和加载时间的条件下的生化响应以及力学性质的影响。结果表明:
    a)应变分别为500με、1000με和1500με,频率为0.4Hz的周期性拉伸刺激影响大鼠颅盖骨中分离出的成骨细胞的生理活性。其中500με的应变水平能够促进成骨细胞的增殖、Ⅰ型胶原合成、胞外钙基质分泌、碱性磷酸酶活力和骨钙素合成。而1000με和1500με的应变水平抑制了成骨细胞的增殖、Ⅰ型胶原合成、胞外钙基质分泌、碱性磷酸酶活力和骨钙素合成。1500με的拉伸对成骨细胞的抑制作用比1000με的拉伸更明显。拉伸对成骨细胞生理活性的影响(促进或抑制作用)随加载时间的增加而增加。成骨细胞对周期性拉伸刺激的响应表现出在增殖、基质合成和分化、矿化上的一致变化。
     b)利用微管吸吮技术研究应变分别为500με、1000με和1500με,频率为0.4Hz的周期性拉伸刺激对大鼠颅盖骨中分离出的成骨细胞的力学特性的影响。拉伸使成骨细胞的粘附力和铺展面积增加。而且细胞的粘附力和铺展面积随应变的增加而增加。加载时间对细胞的粘附力和铺展面积的影响不明显。
    (3)首次设计了应变水平成梯度增加的方式,使成骨细胞在500με下加载2小时后,将应变增加到1000με加载2小时,最后再将应变升高到1500με加载2小时。以这种方式探讨成骨细胞对变化的力学环境的响应情况。结果表明:
     a)成骨细胞所处的力学环境从适宜的力学环境(500με)变化到不利的力学环境时(1000με以上),细胞能够将其生理活性迅速地调节至新的力学环境下的状态,表现出细胞增殖、Ⅰ型胶原合成、胞外钙基质分泌、碱性磷酸酶活力和骨钙素合成的急剧变化。说明细胞能够识别不同的力学环境并作出相应的生化活性的调整。
    
    
    b)应变水平成梯度增加的方式对成骨细胞力学性质的影响表现出与生理活性方面的响应相同的趋势。细胞在力学环境发生变化时粘附力和铺展面积都有明显变化。
    (4)胞内钙离子在细胞的力转导过程中其重要作用。本文用荧光探针研究了成骨细胞响应拉伸应变时胞内钙离子浓度的变化。对成骨细胞胞内钙离子浓度的测量表明,在周期性拉伸刺激作用下,成骨细胞表现出胞内钙离子浓度的升高。用钙通道抑制剂(三七总皂苷)处理细胞后再加载的结果证实胞内钙离子浓度的升高部分来源于胞外钙的内流,部分来源于胞内钙库的释放,其中胞外钙的内流起主要作用。
The effects of cyclic stretching on the physiological activity and mechanical property of osteoblasts were studied through biomechanical ,cell biological and cell dynamical methods, as well as the mechanism by which osteoblasts respond to mechanical signal was investigated in the present paper. The main work and conclusions as follows:
     (1) Osteoblasts were delievered and cultured from the new-born Wistar rats calvaria by the digesting method.
     (2) In order to investigate the effects of cyclic stretching on the biochemical responses and mechanical property of osteoblasts at different strain magitude and loading time, a four-point bending apparatus was used to apply cyclic stretching on osteoblasts .The applied strain magnitudes were 500με、1000μεand 1500μεrespectively and working frequency was 0.4Hz. The results showed that:
    a) Cyclic strtching at 500με,1000μεand 1500μεwith the frequency of 0.4Hz affected the physiological activity of osteoblasts delivered from rat calvaria. Stretching at 500μεincreased cell proliferation, collagen type I secretion, extracellular calcium deposition, alkaline phosphatase (ALP) activity and osteocalcin production. On the contrary, stretching at 1000μεand 1500μεinhabited cells proliferation, collagen type I secretion , extracellular calcium deposition ,ALP activity and osteocalcin production. The inhabiting effects of steteching at 1500μεwere more significant than that of 1000με. The promoting or inhabiting effects of stretching on osteoblasts increased with the loading time. Furthermore, the reponses of osteoblasts to cyclic stimulation expressed accordant changes in prolliferation, matrix production, differentiation and mineralization.
    b)The micropipette aspiration technique was used to study the effects of cyclic stretching on the mechanical property of rat calvirial osteoblasts which were loaded at 500με,1000μεand 1500μεrespectively with the frequency of 0.4Hz. The stretching increased cells adhesive forces and spreading areas. Furthermore, cells adhesive forces and spreading areas
    
    increased with the strain magnitude. Loading time had no significant effect on cells adhesive forces and spreading areas.
     (3) A new loading method, step by step increased stretching (step stretching in shortened form) was also designed and used in this article. Cells were stretched at 500μεfor 2h firstly, followed by stretching at 1000μεfor 2h. Then the strain level was raised to 1500με and cells were stretched for 2h. The step by step increased stretching methods was used to investigate osteoblasts response to the changing mechanical environment. The results showed that:
    a) When the stretching on osteoblasts were changed from an appropriate stimulation (500με) to an inhabiting stimulation (above 1000με), osteoblasts changed their physiological behaviors to adapt to the new mechanical environment. Cells proliferation, collagen typeⅠsecretion , extracellular calcium deposition ,ALP activity and osteocalcin production changed rapidly, suggesting that cells could distinguish different mechanical environment and adjust their biochemical responses accordingly.
    b) The effects of step loading on osteoblasts mechanical property had the same trends as physilogical activity. Cells modified their adhesive forces and spreading areas when the mechanical environment was changed.
    (4) The intracelluler calcium plays an important role in cell mechaotransduction. The fluorescence probe (fluo-3/AM) was used to investigate the changes of intracelluler calcium concentration when osteoblasts responded to stretching. The results showed that osteoblasts that were stretched increased their intracelluler calcium concentration. Cells were stretched after being treated with the panax notoginseng saponins, a Ca2+ channel inhibitor. The results showed that the rise of intracelluler calcium concentration was due to the influx of extracellular calcium and the release of intracellular calcium store, in which the influx of extracellular calcium play the main role.
引文
[1] Roesler H. The history of some fundmental concepts in bone biomechanics. J Biomech. 1987. 20(11-12).1025-1034
    [2] Fung Y C. Biomechanics: Motion, Flow, Stress, and Growth. New York. Springer.1990. 1123-1131
    [3] Turner C H, Forwood M R, Otter M W. Mechanotransduction in bone: do bone cells act as sensor of fluid flow? FASEB J. 1994. 8(11).875-878
    [4] Jorgensen N R, Geist S, Civitelli R, et al. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biology. 1997. 139(2) 497-506
    [5] Zaman G, Cheng M Z, Jessop H L. Mechanical strain activates estrogen response elements in bone cells. Bone. 2000.27(2)233-239
    [6] You L, Cowin S C, Schaffler M B, et al. A model for strain amplification in the actin sytoskelton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001. 34(11).1375-1380
    [7] Williams L, Iannotti JP, Ham A, et al. Effects of fluid shear stress on bone cells. Biotheology. 1994.31(2).163-170
    [8] McBroom R J, Cheal E J, Hayes W C. Strength reductions from metastatic cortical defects in long bone. J Orthop Res . 1988.6(3)369-378
    [9] Buckwalter,J A, Glimcher,M J, Cooper,r.R. et al. Bone biology (Part Ⅱ):formation, form, modeling, remolding, and regulation of cell function. J Bone and Joint Surgery. 1995. 77-A(8).1276-1289
    [10] Clark C R, Morgan C, Sonstegard D A, et al. The effect of biopsy-hole shape and size on bon strength. J Bone and Joint Surgery. 1977.59(2).213-217
    [11] DeScouza M L, An K N, Morry B F, et al.Strength reduction of rectangular cortical defects in diaphyseal bone. Trans Orthop Res Soc. 1989.14(2).113-120
    [12] Burger E H, Klein N J. Mechanotransduction in bone-role of the lacuna-canalicular network. FASEB J. 1999. 13(suppl.). s101-12
    [13] 陈刚, 王大章. 牵张成骨术在腭裂畸形矫治中的应用和研究进展. 国外医学口腔医学分册. 2001. 28(9). 276-278
    [14] Vacanti C A, Upton J. Tissue-engineered morphojenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg. 1994. 21(3).445-462
    Owan I, Burr D B, Turner C H, et al. Mechanotransduction in bone: osteoblasts are more
    
    [15] responsive to fluid forces than mechanical strain. Am J Physiol. 1997.273(42).C810-C815
    [16] Meazzini M C, Toma C D, Schaffer J L, et al. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthopaedic Research. 1998. 16(2).170-180
    [17] Buckwalter,J A, Glimcher,M J, Cooper,r.R. et al. Bone biology (Part Ⅰ):structure, blood supply, cells, matrix,and mineralization. J Bone and Joint Surgery. 1995. 77-A(8).1256-1273
    [18] 张火圣,徐晋斌,樊学军等. 大鼠颅盖骨成骨细胞的体外培养及其弹性力学特性研究. 中国生物医学工程学报. 1999. 18(4). 435-440
    [19] 王红兵, 卢晓, 王远亮等. 拉伸作用对成骨细胞粘附、铺展、粘弹性的影响.生物物理学报. 2001. 17(3). 568-573
    [20] Yamaguchi D T, Huang J, Ma D, et al. Inhabition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol. 2002. 190(2).180-8
    [21] Hung C T, Allen F D, Pollack S R, et al. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech. 1996.29(11).1403-9
    [22] Hung C T, Allen F D, Pollack S R, et al. Intracellular Ca2+ stores and are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomecha. 1996. 29(11). 1411-7
    [23] McAllister T N, Frangos J A. Study and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res. 1999. 14(6).930-936
    [24] Barbara N, Wolfgang B, Hanks S, et al. Induction of a physical linkage between integrins and the cytoskeleton depends on intracellular calcium in an epithelial cell line. Exp Cell Res. 1996. 228(2).100-110
    [25] 王卫华, 于世凤. 成骨细胞体外培养方法研究进展. 国外医学口腔医学分册. 1996. 23(5). 287-291
    [26] 唐昭, 陈治清. 大鼠成骨细胞体外培养研究. 华西口腔医学杂志.1997. 15(1). 70-72
    [27] 李静, 曹谊林, 崔磊. 骨组织工程学研究进展及展望. 国外医学骨科学分册. 2001. 22(1). 5-12
    [28] 司徒镇强, 吴军正. 细胞培养. 第一版.北京.世界图书出版社. 1996. 69-116
    [29] Robey P G, Ternube J D. Human bone cells in vitro. Calcified Tissue Int. 1985. 37(5).453-460
    [30] Lomri A, Marie P J, Tran P V, et al. Characterizationn of endosteal osteoblastic cells isolated from mouse caudav vertebrae. Bone. 1988. (3). 165-175
    [31] Haskin C, Cameron I, Athanasiou K. Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochem Cell Biol. 1993.71(1-2). 27-35
    Ozawa H, Imamura K, Abe E, et al. Effect of a continuously applied compressive pressure on
    
    [32] mouse osteoblast-like cells (MC3T3-E1) in vitro. J Cell Physiol. 1990. 142(1). 177-185
    [33] Frangos J A. Shear stress induced stimulation of mammalian cell metabolism. Biotechnology and Bioengeering. 1988. 32(1).1053-1060
    [34] Williams J L, Iannotti J P, Ham A, et al. Effects of fluid shear stress on bone cells. Biotheology. 1994. 31(2). 162-170
    [35] Jones D B. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991.12(2).101-110
    [36] Michael J. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillotac Sury. 1990. 48(2). 276-282
    [37] Gilbert J A, Weinhold P S, Banes A J, et al.. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J Biomechanics. 1994. 27(9). 1169-1177
    [38] Sato M, Therer D P, Wheeler L T, et al. Application of micropipette techinique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomechanical Engineering. 1990. 112(3). 263-268
    [39] Charras G T, Lehenkari P P, Horton M A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy. 2001. 86(1-2).85-95
    [40] 张西正, 匡震邦, 蔡绍皙等. 一种四点弯曲单向交变应变细胞加载装置的研制. 医疗卫生装备. 1999. 83(4). 6-8
    [41] Rubin C T, McLeod K J. Promotion of bony ingrowth by frequency-specific, low amplitude mechanical strain. Clin Orthop. 1994. 298.165-174
    [42] Turner C H. Forwood M R. Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994. 9(1).87-97
    [43] Karlsson M K, Johnell O, Obrant K J. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int. 1995. 57(5). 325-328
    [44] Roer R D, Dillaman R M. Bone growth and calcium loss during simulated weightlessness in the rat. Appl Physiol. 1990. 68(1).13-20
    [45] Tilton F E, Degionanni J J, Schneider V S, et al. Long-term follow-up of skylab bone demineralization. Aviat Space Environ. 1980. 51(11).1209-1213
    [46] Hasegawa S, Sato S, Saito S, et al. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int. 1985. 37(4). 431-436
    
    
    [47] Kaspar D, Seidl W, Neidlinger-wilke C, et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomechanics. 2000. 33.(1) 45-51
    [48] Harter L V, Hrusks K A, Duncan R L. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology. 1995. 136.(2) 528-535
    [49] Gooch K J, Frangos J A. Flow- and bradykinin-induced niric oxide production by endothelial cells is independent of membrane potential. Am J Physiol. 1996. 270(2pt1). C546-561
    [50] Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol. 1995. 27(1). 133-140
    [51] Patrock C W, McIntire L V. Shear stress and cyclic strain modulation of gene expression in vascular endothelial cells. Blood Purif. 1995. 13(3). 112-124
    [52] Sanchez-Estebar J, Wang Y, Cicchiello L A, et al. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts. Am J Physiol. 2002. 282(30. L448-456
    [53] Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblats in vitro. FASEB J. 1999.13(supl)s129-s134
    [54] 翟中和. 细胞生物学. 第一版. 北京. 高等教育出版社. 2000.282-310
    [55] Casser M, Murray A B, Clois E T, et al. Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif Tissue Int. 1990. 46(1). 46
    [56] Green J,Schotland S, Stauber D J, et al. Cell-matrix interaction in bone: typeⅠcollagen modulates signal transduction in osteoblast-like cells. Am J Phy. 1995. 268(5pt1). C1090-c1103
    [57] 傅荣, 杨志明. 骨膜成骨细胞培养于生物活性陶瓷复合的实验研究. 中国修复重建外科杂志. 1996. 10(4).120
    [58] Brighton C T, Stanford B, Gross S B, et al. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone and Surgery. 1991. 75(3).320-331
    [59] Ushida T, Uemura T, Tateishi T. Changes in cell proliferation, alkaline phosphatase activity and cAMP production by mechanical strain in osteoblast-like cells differentiated from rat bone marrow. Materials Science and Engineering C. 2001. 17(1). 51-53
    [60] Kizer N, Guo X L, Hruska K. Reconstitution of stretch-activated cation channels by expression of the α-subunit of the epithelial sadiium channel cloned from osteoblasts. Proc Natl Acad Sci USA, 1997,94(3):1013-8
    
    
    [61] Caillot A A, Lafage M H, Soler C, et al. Bone formation and resorption biological markers in cosmonauts during and after a 180-days space flight. Clin Chem. 1998. 44(3). 578-585
    [62] Win S R, Hollinger O. An osteogenic cell culture system to evaluate the cytocompatibility of osteoset, a calcium sulfate bone void filler. Biomaterials. 2000. 21(23). 2413-2423
    [63] Beertsen W, van den Bos T. Alkalime phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J Clin Invest. 1992. 89(6). 1974-1980
    [64] Boskey A L. Mineral-matrix interaction in bone and cartilage. Clin Orthop. 1992.281(8). 244-271
    [65] Kunisada T, Kawai A, Inoue H, et al. Effects of simulated micrrogravity on human osteoblast-like cells in culture. Acta med Okayama. 1997. 51(3). 135-140
    [66] Boppart M D, Kimmel D B, Yee J A, et al. Time course of osteoblast apperance after in vivo mechanical loading. Bone. 1998. 23(5). 409-415
    [67] Dollas S L, Zaman G, Pend M J, et al. Early strain-ralated changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J Bone Miner Res. 1993. 8(3). 251-259
    [68] Stein G S, Lian J B, Owen T A. Relationship of cell growth to the regulation of tissue-specific gene expression during osteobalst differentiation. FASEB J. 1990. 4(13). 3111-3123
    [69] Ward M D, Hammer D A. Focal contact assembly through cytoskeletal polymerization : steady state analysis. J Math Biol. 1994. 32(1). 677-704
    [70] Ingber D E. How cells (might) sense microgravity. FASEB J. 1999. 13(suppl). S3-s15
    [71] 秦廷武,杨志明,蔡绍皙等。 组织工程中细胞与材料的粘附作用. 中国修复重建外科杂志. 1999. 13(1). 31-37
    [72] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7).667-682
    [73] 王红兵, 黄岂平, 卢晓等. 机械拉伸对血管平滑肌细胞粘附及生长的影响. 2001. 28(1). 103-107
    [74] Langille B L. Morphologic responses of endothelium to shear stress: reorganization of the adherens junction . Microcirculation. 2001. 8(3). 195-206
    [75] Haier J, Wicolson G L. PTEN regulate tumor cell adhesion of colon carcinoma cells under dynamic conelitions of fluid flow. Oncogene. 2002. 21(9). 1450-1460
    [76] Buckley K A, Wagstaff S C, McKay G, et al. Parathyroid hormone potentiates nucleotide-induced [Ca2+]i release in rat osteoblasts independently of Gq activation or coghcmono phosphate accumulation: A mechanism for localizing systemic responses in bone. J Biol chem. 2001. 276(12). 9565-9571
    Wang N , Butler J P, Ingber D E . Mechanotransduction across the cell surface and through the
    
    [77] cytoskeleton . Science , 1993 , 260(5111): 1124-1127
    [78] Toma C D, Ashkar S, Gray M, et al. Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997. 12(10). 1626-1636
    [79] Meazzini M C, Toma C D, Schaffer J L. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthop Res. 1998. 16(2).170-179.
    [80] Chen C S , Mrksich M , Huang S , et al .Geometric control of cell life and death.. Science , 1997 , 276 (5317): 1425-1428
    [81] 孙大业. 兼有胞内、胞外功能的信号分子的普遍性及生物学意义. 科学通报.1999. 44(15). 1576-1581
    [82] Barry M A, Eastman A. Endonuclease activation in the regulation of apoptosis. J Leukoc Biol. 1996. 59(4). 775-783
    [83] 黄春明, 叶晖, 徐建华等. 极低频弱磁场对PC-12瘤细胞胞内游离钙离子浓度的影响. 生物医学工程学杂志. 2000. 79(1). 63-65
    [84] Allen F D, Hung C T, Pollack S R, et al. Comparison of the [Ca2+]i response to fluid of MC3T3-E1, ROS17/2.8 and cultured primary osteoblast-like cells. Cell Eng .1996. 1(1).117-124
    [85] Brighton C T, Wang W, Seldes R, et al. Signal transduction in electrically stimulated bone cells. J Bone Jiont Surg. 2001. 83-A(10). 1154-1123
    [86] 邹寿彬, 陈良怡, 康华光等. 胞内钙信号系统. 生命的化学. 2000. 20(6).254-256
    [87] Chen N X, Ryder K D, Pavalko F M, et al. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and expression in osteoblasts. Am J Physiol. 2000. 278. C989-997
    [88] Raab-Cyllen D M, Thiede M A, Peterson D N, et al. Mechanical loading stimulates rapid changdes in periosteal gene expression. Calcif Tissue Int. 1994. 55.473-478
    [89] Jones D B, Bingman D. How do osteoblasts repond to mechanical stimulation? Cells Materials. 1991. 78(1). 329-340
    [90] Walker L M, Publicover S J, Preston M R, et al. Calciium channel activation and matrix protein upregulation in bone cells in response to mechanical strain. J Cell Biochem. 2000. 79(4). 648-661.
    [91] Peake M A, Cooling L M, Magnay J L, et al. Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J Appl Physiol. 2000. 89(6). 2498-2507
    [92] Guan Y Y, Kwan C Y, He H, et al. Effects of Panal motoginseng saponins on receptor-operated Ca2+ channels in vascular smooth muscle. Acta Pharm Sinica. 1994. 15(5). 392-398
    Mikuni-Takagaki Y. Mechanical responses and signal transdution pathways in stretched
    
    [93] osteocytes. J Bone Miner Metab. 1999. 17(1). 57-60
    [94] 陆裕朴. 实用骨科学. 北京. 人民军医出版社. 第三版. 1991. 7-26
    [95] 邱明才. 骨结构与骨代谢. 医用生物力学. 1995. 10(4). 253-256
    [96] Ecarot-Charrier B, Glorieux F H, van der Rest M D, et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983. 96(3). 639-654
    [97] 朱红, 潘凌. 成骨细胞与破骨细胞的功能调节及其关系. 国外医学口腔医学分册. 1996. 23(5). 291-293
    [98] Kuo R F, Chao E Y S, Park J B. The effect of defect size on the stress concentration and fracture characteristics for a tubular torsional model with a transverse hole. J Biomechanics. 1991. 24(2). 147-155
    [99] 冯元祯. 生物力学. 重庆. 重庆大学出版社.. 第二版. 1993. 655-670
    [100] Frost H M. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents.Bone Miner. 1987. 2(2). 73-85
    [101] Skerry T M, Bitensky L, Chayen J et al. Early strain related changes in evzyme zctivity in osteocytes following bone loading in vivo.. J Bone Miner Res. 1999. 4(5). 783-788
    [102] Moall M R, Wang S, Caldwell n J. Mechanical stimulation induces pp125 (FAK) and pp60 (SRC) activity in vivo model of trabecullar bone formation. J Appl Physiol. 2001. 91(2). 912-918
    [103] Lanyon L E, Rubin C T. Statics versus dynamic loads as an influence on bone remodeling. J Biomech. 1984. 17(12). 897-905
    [104] Otter M W, Palmieri V R, Wu D D, et al. A comparative analysis of streaming potentials in vivo and in vitro. J Orthop Res. 1992. 10(5). 710-719
    [105] Arnaud S B, Sherrard D J, Maloney N, et al. Effects of 1-week head-down tilt bed rest on bone
     formation and the calcium emdocrine system. Avlat Space Environ Med. 1992.63. 14-20
    [106] Roer R D, Dillaman R M. Bone growth and calcium loss during stimulated weightlessness in the rat. Appl Physio. 1990. 68(1). 13-20
    [107] Dallas S L, Zaman G, Pead M J, et al. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in viivo. J Bone Miner Res. 1993. 8(3). 251-259
    [108] Rawlinson S C, Mosley J R, Suzswllo R F, et al. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J Bone Miner Res. 1995. 10(8). 1225-1232
    [109] Mikuni T Y, Suzuki Y, Kawase Y, et al. Distinct response of different populations of bone cells to mechanical stress. Endocrinology. 1996. 137(5). 2028-2035
    
    
    [110] Duncan r L, Turner C T. Mechanotransduction and the functional response of bone to mechanical
     strain. Calcif Tissue Int. 1995. 57(5). 344-358
    [111] Stanford C M, Morcuende J A, Brand R A. Proliferative and phenptypic responses of bone-like cells to mechanical deformation. J Orthop Res. 1995. 13(5). 664-670
    [112] Davies J E, Matsuda T. Extracellular matrix production by osteoblasts on bioactive substrate in
     vitro. Scanning Microsc. 1998. 2(1). 1445-1452
    [113]Roelofsen , Klein-Nulend J, Burger E H, et al. Mechanical stimulation by intermittent hydrostatic
     compression promotes bone-specific gene expression in vitro. J Biomech. 1995. 28(12). 1493-1503
    [114] Kletsas D, Basdra E K, Papavessiliou A G. Effect of protein kinase inhibitors on the stretch-elicited c-fos and c-jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol. 2002. 190(3).313-321
    [115] Kuroki Y, Shiozawa S, Kawo J, et al. Competion between c-fos and 1,25 (OH)2 vitamin D3 in the transcription control of type Ⅰcollagen synthesis in MC3T3E osteoblastic cells. J Cellular Physioloy. 1995. 164(3).459-464
    [116] Reich K M, Frangos J A. Effect of flow on prostaglanding E2 and inositol trisphosphate levels in osteoblasts. Am J Physiol. 1991. 261(3pt1). C428-432
    [117] Weinbaum S, Cowin S C, Zeng Y. A model for the excitation of osteocytes by mechanical loading- induced bone fluid shear stresses. J Biomech. 1994. 27(3). 339-360
    [118] Frost H M. A determinat of bone architecture. The minimum effective strain. Clin. Orthop. 1983. 175.286-292
    [119] Moreau R, Hurst A M, Lapointe J Y. Activation of maxi-K channels by parathyroid hormone and prostaglandin E2 in human osteoblast bone cells. J Membr Biol. 1996. 150(2). 175-184
    [120] Stanford C M, Morcuende J A, Bran R A, et al. Proliferative and phenotypic responses of bone-like cells to mechanical deformation.. J Orthop Res. 1995. 13(5). 664-670
    [121] Davidson R M, Tatakis D W, Auerbach A L, et al. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflagers Arch. 1990. 416(6). 646-651
    [122] Fuller B . Tensegrity . Portfolio Artnews Annu.. 1961 . 4. 112-127
    [123] Connelly R , Back A . Mathematics and tensegrity . American Scientist . 1998. 86(2). 142-159
    [124] Connelly R , Whiteley W . Second-order rigidity and prestress stability for tensegrity frameworks.. SIAM J of Discrete Mathematics . 1996. 9 (3). 453-491
    [125] Ingber D E . The architechture of life . Scientific American , 1998. 278(1). 30-39
    [126] Ingber D E , Folkman J . Growth control through fibronectin-dependent modulation of cell shape
    
    J.Cell Biology. 1987. 105(1). 219-222
    [127] Ingber D E , Folkman J . Tension and compression as basic determinants of cell form and function : utilization of a cellular tensegrity mechanism . Stein ed . Cell Shape Determinants : Regulation and Regulatory Role . Orlando , FL . Academic Press . 1989. 1-32
    [128] Pourati J , Maniotis A , Spiegel D , et al. Is cytoskeleton tension a major determinant of cell deformability in adherent endothelial cells ? Am. J. Physiol.. 274. C1283-c1289
    [129] Bailly E , Celati C , Bornens M . The cortical actomyosin system of cyto chalasin D-treated lymphoblasts . Exp .Cell Res . 1991. 196(2). 287-293
    [130] Coughlin M F , Stamenovic D . A tensegrity model of the cytoskeleton in spread and round cells . Journal of Biomechanical Engineering . 1998 . 120(12). 770-777
    [131] Jones J C , Goldman A E , Steinert P M , et al . Dynamics aspects of the supermolecular organization of intermediate filament networks in cultured epidemal cells . Cell Motil. 1982. 2(3).197-213
    [132] Heidemann S R , Buxbaum R E . Tension as a regulator and integrator of axonal growth. Cell Motil.Cytoskel. 1990. 17(1). 6-10
    [133] Mooney D , Hansen L , Langer R , et al . Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover . Mol.Biol.Cell .1994 . 5(12). 1281-1288
    [134] Ingber D E . Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton . Journal of Cell Science . 1993. 104(pt3). 616-619
    [135] Ingber D E . Tensegrity : the architectural basis of cellular mechanotransdution . Annual Review of Physiology . 1997. 59. 575-599
    [136] Huang S , Chen C S , Ingber D E . Control of cyclin D1,p27Kip1 and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension . Mol.Biol.Cell. 9.3179-3193
    [137] Zaner K S , Valberg P A . Viscoelasticity of F-actin measured with magnetic microparticle . J. Cell Biol. 1989 . 109(5). 2233-2243
    [138] Ingber D E , Jamieson J D . Tumor formation and malignant invasion : role of basal lamina . In :Tumor Invasion and Metastasis . Liotta L A , Hart I R , eds . Nijhoff , The Hague. 1982 . 335-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700