雌激素受体α66介导乳腺癌细胞对紫杉醇耐药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最为常见的恶性肿瘤之一。美国癌症协会研究表明,乳腺癌已成为女性发病率最高的恶性肿瘤,死亡率仅次于肺癌居第二位。随着我国经济的不断发展,近些年来乳腺癌发病率已位居女性恶性肿瘤首位。如何有效提高乳腺癌综合治疗效果,降低发病率和死亡率,已成为当前乳腺癌研究重点之一
     乳腺癌组织中雌激素受体(Estrogen receptor, ER)的状态被广泛认为是预测患者对内分泌治疗反应性和预后的关键指标之一。雌激素受体主要有两个亚型,即ERa和ER6。由于剪切异构体的存在,ER66尚有三个亚型,即ERa66, ERa46和ERa36,其中ERα66即为通常所说的ERα,也简称为ER66。大量临床试验和回顾性研究都表明ER66阳性的乳腺癌患者对化疗的反应性不如阴性患者敏感,ER66可能影响乳腺癌患者化疗的有效性。紫杉醇是乳腺癌化疗最有效的药物之一,近些年来大量的临床试验表明ER66可能影响乳腺癌患者对紫杉醇的敏感性。本课题研究了转染ER66 (BC-ER)和转染空质粒(BC-V)的乳腺癌细胞对紫杉醇敏感性的差异及可能机制。具体内容如下:
     1.乳腺癌细胞的转染
     我们将pcDNA3.1-ER66和pcDNA3.1空载体转入ER66-的Bcap37乳腺癌细胞,进行RT-PCR和Western-blot鉴定,建立稳定转染细胞株,即转染ER66的BC-ER细胞和转染空载体的BC-V细胞。
     2. BC-ER和BC-V乳腺癌细胞对紫杉醇敏感性差异的研究
     以建立的同源细胞模型(BC-ER和BC-V细胞)为基础来研究ER66的表达对紫杉醇敏感性的影响。用MTT法和流式PI染死细胞法检测BC-ER(转染ER66)和BC-V(转染空质粒)细胞对紫杉醇的敏感性。实验结果表明在E2作用下BC-ER细胞较BC-V细胞对紫杉醇耐药。
     3. BC-ER和BC-V乳腺癌细胞对紫杉醇敏感性差异的机制研究
     (1)细胞增殖速度在BC-ER和BC-V乳腺癌细胞对紫杉醇敏感性差异中的作用研究
     化疗敏感性和细胞增殖速度有一定关系,增殖慢的细胞对化疗耐药。MTT结果提示E2可以抑制BC-ER细胞的增殖活力,我们进一步检测了BC-ER和BC-V在E2作用下细胞周期和周期蛋白D1的表达变化,结果提示,在BC-ER细胞,E2作用下G2/S期细胞减少,周期蛋白D1表达下调,提示E2作用可抑制BC-ER细胞的增殖速度。推测BC-ER细胞在E2作用下细胞增殖速度的减慢可能对紫杉醇耐药有一定的影响。
     (2)细胞凋亡通路在BC-ER和BC-V乳腺癌细胞对紫杉醇耐药差异中的作用研究
     BC-ER和BC-V乳腺癌细胞对紫杉醇敏感性差异的研究表明Bcap37细胞表达ER66后可降低其对紫杉醇的敏感性,接下来我们检测了ER66在紫杉醇诱导乳腺癌细胞凋亡中的可能作用。用Western-blot检测两种细胞在紫杉醇作用下凋亡蛋白caspase3的表达差异,结果表明在BC-ER细胞E2作用下可以抑制紫杉醇诱导的caspase3酶原活化裂解,而转染空载体的BC-V细胞没有此变化,也就是说在BC-ER细胞ER66可以通过caspase3途径抑制紫杉醇的促凋亡作用。在具体机制上,我们用Western-blot检测了凋亡信号通路蛋白NF-κB/Iκ-Bα, JNK和AKT的表达及磷酸化状态的变化。结果提示,紫杉醇作用下可以引起BC-ER和BC-V细胞IK-Ba磷酸化降解。而在转染ER66的BC-ER细胞,E2可抑制紫杉醇诱导的IK-Ba磷酸化降解,在转染空载的BC-V细胞没有发现E2对Iκ-Ba有明显影响。推测NF-κB/Iκ-Bα通路可能在BC-ER细胞对紫杉醇耐药上起一定作用。JNK和AKT通路我们只是初步的研究,对于它们在ER66介导紫杉醇诱导凋亡中的具体作用仍需要深入研究。
Breast cancer is the most commonly diagnosed cancer type in women. American Cancer Sociaty estimates, breast cancer has been the highest incidence of femal malignant tumor and ranks the second in female cancer deaths. With the development of economy, in our country, breast cancer has ranked first in female cancer incidences. So more understandings about breast cancer are needed for the improvement of early detection and comprehensive treatment.
     The expression status of estrogen receptor (ER) has been widely accepted as a prognostic marker and a predictor for endocrine therapy response. There are two main subtypes of ER, ERa and ERβ. Due to the existence of splice variants, ERa has three subtypes, namely ERa66, ERa46 and ERa36, ERa66 is simply called ER66. Data from clinical trials or retrospective analyses suggested that ER66 status might also affect the efficacy of chemotherapy, Specifically, it has been observed that some chemotherapeutic agents may be less effective in patients with ER66+breast tumors than those with ER66-breast tumors. Taxanes (paclitaxel and docetaxel) is an active agent used in breast cancer chemotherapy. Evidence is accumulating that improvements in taxane-based adjuvant chemotherapy disproportionately benefit patients with ER66-breast tumors. In the present study, we investigate paclitaxel susceptibility difference in BC-ER and BC-V cells and its underlying mechanism. The details are listed below:
     1. Stable transfection of breast cancer cells
     We established several isogenic ER66 cell lines by stable transfection of ER66 expression vectors and empty vector into ER66-Bcap37 breast cancer cells, The expression vector was successfully transfected into Bcap37 breast cancer cells and the expression of ER66 protein was confirmed by RT-PCR and Western-blot, and established Bcap37 transfected with pIRES-ER66 expression vector (BC-ER), or empty vector (BC-V) cells.
     2. To investigate paclitaxel susceptibility difference in BC-ER and BC-V cells
     To investigate the possible influence of ER66 on the therapeutic efficacy of paclitaxel in BC-ER and BC-V cells. We did MTT assays and Flow cytometric analyses to determine whether the expression of ER66 would affect the sensitivity of Bcap37 cells to paclitaxel. We showed that E2 significantly reduces the overall cytotoxicity of paclitaxel in Bcap37-expressing ER66 but has no influence on the ER66-parental cells.
     3. To investigate the mechanisms underlying paclitaxel susceptibility difference in BC-ER and BC-V cells
     (1) Cell proliferation rate was examined to investigate the paclitaxel susceptibility difference in BC-ER and BC-V cells
     Chemotherapy susceptibility is associated with cell proliferation rate, High growth rate tumors are sensitivity to chemotherapy. MTT assays show E2 would affect the vitality of BC-ER cells, next, we examine the possible effect of E2 on Cell cycle and cyclinD1 protein, the results show E2 decreases the population of cells at G2/S phase and the protein levels of cyclin D1, so E2 can restrain proliferation rate of BC-ER cell.To infer cell proliferation rate decreasesing via E2 in BC-ER cells is likely to strongly influence variation the efficacy of paclitaxel therapy;
     (2) Apoptosis-associated proteins were examined to investigate the paclitaxel susceptibility difference in BC-ER and BC-V cells
     The data mentioned above reveal that E2 significantly reduces the overall cytotoxicity of paclitaxel in Bcap37-expressing ER66, next, we examined the possible inhibitory effect of ER66 on the ability of paclitaxel to induce breast cancer cell apoptosis. Western-blot exames paclitaxel induce caspase3 protein expressing difference in BC-ER and BC-V cells. The result shows, in BC-ER cells, pretreatment with E2 attenuated the paclitaxel-induced caspase3 down-regulation, it indicates inhibitory effect of ER66 on the ability of paclitaxel to induce apoptosis through caspase3 apoptosis pathway. To investigate the possible molecular mechanisms, we analyzed the expression and possible alterations of apoptosis-associated proteins including NF-KB/IK-Ba, JNK和AKT. The results reveal paclitaxel causes degradation of Iκ-Ba in BC-ER and BC-V cells. However, pretreatment with E2 attenuated the paclitaxel-induced IK-Ba down-regulation in BC-ER cells, although it has no effect in BC-V cells. Our studies have suggested that activation of the NF-κB/Iκ-Bαsignaling pathway maybe play an active role in mediating paclitaxel-induced apoptosis in BC-ER cells. We just preliminary studies JNK and AKT signaling pathway, the roles they play in ER66 mediating paclitaxel-induced apoptosis need further research.
引文
1. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin 2009;59:225-249
    2.杨玲,李连弟,陈育德。中国2000年及2005年恶性肿瘤发病死亡的估计与预测。中国卫生统计,2005;22(4):218-221.
    3. Dickson RB, Lippman ME. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr Rev 1987;8:29-43
    4. Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients:findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 1988;6:1076-1087
    5. Paik S, Hartmann DP, Dickson RB, Lippman ME. Antiestrogen resistance in ER positive breast cancer cells. Breast Cancer Res Treat 1994;31:301-307
    6. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res 2002;4:197-201
    7. Henderson IC, Berry DA, Demetri GD, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 2003;21:976-983
    8. Maehara Y, Emi Y, Sakaguchi Y, et al. Estrogen-receptor-negative breast cancer tissue is chemosensitive in vitro compared with estrogen-receptor-positive tissue. Eur Surg Res 1990;22:50-55
    9. Poly chemotherapy for early breast cancer:an overview of the randomised trials. Early Breast Cancer Trialists'Collaborative Group. Lancet 1998;352:930-942
    10. Rowinsky EK. Donehower RC. Paclitaxel (taxol). N Engl J Med 1995;332:1004-1014
    11. Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 1998;58:3620-3626
    12. Valeriote F, van Putten L. Proliferation-dependent cytotoxicity of anticancer agents:a review. Cancer Res 1975;35:2619-2630
    13. Maehara Y, Emi Y, Sakaguchi Y, et al. Estrogen-receptor-negative breast cancer tissue is chemosensitive in vitro compared with estrogen-receptor-positive tissue. Eur Surg Res 1990;22:50-55
    14. Bacus SS, Gudkov AV, Lowe M, et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001;20:147-155
    15. Sunters A, Madureira PA, Pomeranz KM, et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 2006;66:212-220
    16. Sui M, Huang Y, Park BH, Davidson NE, Fan W. Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res 2007;67:5337-5344
    17. Sanchez R, Nguyen D, Rocha W, White JH, Mader S. Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays 2002;24:244-254
    18. Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995;270:1491-1494
    19. 徐潮阳,王林波。耐药基因对乳腺癌化疗的影响。国际肿瘤学杂志,2007;34(12):917-919.
    20. Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy:predictive markers and relation with outcome. Br J Cancer 2003;88:406-412
    21. Berry DA, Cirrincione C, Henderson IC, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 2006;295:1658-1667
    22. Razandi M, Pedram A, Levin ER. Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 2000;14:1434-1447
    23. Fan W. Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 1999;57:1215-1221
    24. Nam W, Tak J, Ryu JK, et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 2007;29:335-340
    25. Bacus SS, Gudkov AV, Lowe M, et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001;20:147-155
    26. Wu L, Tannock IF. Effect of the selective estrogen receptor modulator arzoxifene on repopulation of hormone-responsive breast cancer xenografts between courses of chemotherapy. Clin Cancer Res 2005;11:8195-8200
    27. Chen D, Hackl W, Ortmann O, Treeck O. Effects of a combination of exemestane and paclitaxel on human tumor cells in vitro. Anticancer Drugs 2004; 15:55-61
    28. Hug V, Johnston D, Finders M, Hortobagyi G. Use of growth-stimulatory hormones to improve the in vitro therapeutic index of doxorubicin for human breast tumors. Cancer Res 1986;46:147-152
    29. Abal M, Andreu JM, Barasoain I. Taxanes:microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 2003;3:193-203
    30. Zhang H, Lin Y, Xiao Y, et al. Stable transfection of estrogen receptor-alpha suppresses expression of cyclooxygenase-2 and vascular endothelial growth factor-C in MDA-MB-231 breast cancer cells. Chin Med J (Engl) 2010;123:1989-1994
    31. Dougherty MK, Schumaker LM, Jordan VC, et al. Estrogen receptor expression and sensitivity to paclitaxel in breast cancer. Cancer Biol Ther 2004;3:460-467
    32. Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A 1993;90:2532-2536
    33. DeGraffenried LA, Chandrasekar B, Friedrichs WE, et al. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 2004;15:885-890
    34. Zhou Y, Eppenberger-Castori S, Eppenberger U, Benz CC. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 2005; 12 Suppl1:S37-S46
    35. Huang Y, Johnson KR, Norris JS, Fan W. Nuclear factor-kappaB/IkappaB signaling pathway may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res 2000;60:4426-4432
    36. Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A 1993;90:2532-2536
    37. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007;19:142-149
    38. Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis 2007;28:1379-1386
    39. Miller TW, Hennessy BT, Gonzalez-Angulo AM, et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 2010;120:2406-2413
    40. Sunters A, Madureira PA, Pomeranz KM, et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 2006;66:212-220
    41. Hugh J, Hanson J, Cheang MC, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer:use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 2009;27:1168-1176
    42. von Minckwitz G, Sinn HP, Raab G, et al. Clinical response after two cycles compared to HER2, Ki-67, p53, and bcl-2 in independently predicting a pathological complete response after preoperative chemotherapy in patients with operable
    43. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83:835-839.
    44. Kumar VL, Kumar S, Srivastava A, et al. Observations on the presence of E domain variants of estrogen receptor-alpha in the breast tumors. J Surg Oncol. 2006; 94(4):332-337.
    45. Flouriot G, Brand H, Denger S, et al. Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J. 2000; 19(17):4688-4700.
    46. Gustafsson JA. Estrogen receptor beta--a new dimension in estrogen mechanism of action. J Endocrinol.1999; 163(3):379-383.
    47. Melnick M, Chen H, Min ZY, Jaskoll T. The functional genomic response of developing embryonic submandibular glands to NF-kappa B inhibition. BMC Dev Biol 2001;1:15
    48. 方勇,吴金民,潘宏铭。Caspase-3:抑制剂抑制长春碱诱导的人乳腺癌细胞凋亡及IκB-α降解。中国病理生理学杂志2009;25(2):215-219
    1. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin 2009;59:225-249
    2. 杨玲,李连弟,陈育德。中国2000年及2005年恶性肿瘤发病死亡的估计与预测。中国卫生统计,2005;22(4):218-221.
    3. Fu HJ,Jia LT,Bao W,et al.Stable knockdown of estrogen receptor alpha by vector-based RNA interference suppresses proliferation and enhances apoptosis in breast cancer cells. Cancer Biol Ther.2006,5(7):842-47.
    4. Sayeed A,Konduri SD,Liu W, et al.Estrogen receptor alpha inhibits p53-mediated transcriptional repression:implications for the regulation of apoptosis. Cancer Res.2007,67(16):7746-55.
    5. Osipo C,Liu H,Meeke K,et al.The consequences of exhaustive antiestrogen therapy in breast cancer:estrogen-induced tumor cell death. Exp Biol Med (Maywood).2004,229(8):722-31.
    6. Rangasamy V,Mishra R,Mehrotra S,et al.Estrogen suppresses MLK3-mediated apoptosis sensitivity in ER+breast cancer cells. Cancer Res.2010,70(4):1731-40.
    7. Song RX,Zhang Z,Mor G,et al.Down-regulation of Bcl-2 enhances estrogen apoptotic action in long-term estradiol-depleted ER(+) breast cancer cells. Apoptosis.2005,10(3):667-78.
    8. Gompel A, Chaouat M, Hugol D, et al.Steroidal hormones and proliferation, differentiation and apoptosis in breast cells. Maturitas.2004,49(1):16-24.
    9. Ogawa S, Inoue S, Watanabe T, et al. The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun.1998; 243(1):122-126.
    10. Weihua Z, Andersson S, Cheng G, et al. Update on estrogen signaling. FEBS Lett. 2003; 546(1):17-24.
    11. Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim).2009; 342(3):133-149.
    12. Baguley BC.Multidrug resistance in cancer.Methods Mol Biol.2010,596:1-14
    13. Liu FS.Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review.Taiwan J Obstet Gynecol.2009,48(3):239-44.
    14. Shah MA,Schwartz GK.Cell cycle-mediated drug resistance:an emerging concept in cancer therapy.Clin Cancer Res,2001,7(8):2168-81.
    15.潘光栋,严律南。肿瘤多药耐药形成机制研究进展。医学综述。2009,15(8):1162-64。
    16.吴平平,李苏宜。紫杉醇耐药与微管蛋白的研究进展。临床肿瘤学杂志。2008,13(8):755-57。
    17. Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy:predictive markers and relation with outcome. Br J Cancer 2003;88:406-412.
    18. Berry DA, Cirrincione C, Henderson IC, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 2006;295:1658-1667.
    19. Polychemotherapy for early breast cancer:an overview of the randomised trials. Early Breast Cancer Trialists'Collaborative Group. Lancet 1998;352:930-942.
    20. Badve SS, Baehner FL, Gray RP, et al. Estrogen-and progesterone-receptor status in ECOG 2197:comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol.2008;26(15):2473-81
    21. Wang L, Jiang Z, Sui M, et al. The potential biomarkers in predicting pathologic response of breast cancer to three different chemotherapy regimens:a case control study. Bmc Cancer 2009;9:226
    22. Berry DA, Cirrincione C, Henderson IC, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA.2006; 295(14):1658-1667.
    23. Mazouni C, Kau SW, Frye D, et al. Inclusion of taxanes, particularly weekly paclitaxel, in preoperative chemotherapy improves pathologic complete response rate in estrogen receptor-positive breast cancers. Ann Oncol.2007; 18(5):874-880.
    24. Hugh J, Hanson J, Cheang MC, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer:use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 2009;27:1168-1176
    25. von Minckwitz G, Sinn HP, Raab G, et al. Clinical response after two cycles compared to HER2, Ki-67, p53, and bcl-2 in independently predicting a pathological complete response after preoperative chemotherapy in patients with operable carcinoma of the breast. Breast Cancer Res 2008;10:R30
    26. Maehara Y, Emi Y, Sakaguchi Y, et al. Estrogen eceptor negative breast cancer tissue is chemosensitive in vitro compared with estrogen receptor positive tissue. Eur Surg Res 1990;22:50-5.
    27. Razandi M, Pedram A, Levin ER. Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 2000;14:1434-1447.
    28. Huang Y, Fan W. IkappaB kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Mol Pharmacol 2002:61:105-113
    29. Huang Y, Fang Y, Dziadyk JM, Norris JS, Fan W. The possible correlation between activation of NF-kappaB/IkappaB pathway and the susceptibility of tumor cells to paclitaxel-induced apoptosis. Oncol Res 2002;13:113-122
    30. van Wijngaarden J, van Beek E, van Rossum G, et al. Celecoxib enhances doxorubicin-induced cytotoxicity in MDA-MB231 cells by NF-kappaB-mediated increase of intracellular doxorubicin accumulation. Eur J Cancer 2007;43:433-442
    31. Bednarski BK, Ding X, Coombe K, Baldwin AS, Kim HJ. Active roles for inhibitory kappaB kinases alpha and beta in nuclear factor-kappaB-mediated chemoresistance to doxorubicin. Mol Cancer Ther 2008;7:1827-1835
    32. Weldon CB, Burow ME, Rolfe KW, et al. NF-kappa B-mediated chemoresistance in breast cancer cells. Surgery 2001;130:143-150
    33. Huang Y, Ray S, Reed JC, et al. Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat 1997;42:73-81
    34. Pusztai L,Krishnamurti S,Perez Cardona J,et al.Expression of BAG-1 and BcL-2 proteins before and after neoadjuvant chemotherapy of locally advanced breast cancer. Cancer Invest.2004,22(2):248-56.
    35. Buchholz TA, Davis DW, McConkey DJ,et al.Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. BuchhCancer J. 2003,9(1):33-41.
    36. Sjostrom J,Blomqvist C,von Boguslawski K,et al.The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. Clin Cancer Res.2002,8(3):811-16.
    37. Yang QF, Sakurai T, Yoshimura G,et al.Expression of Bcl-2 but not Bax or p53 correlates with in vitro resistance to a series of anticancer drugs in breast carcinoma. Breast Cancer Res Treat.2000,61(3):211-16
    38. Oltval ZN,Milliman CL,Korsmeyer SJ,et al. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.Cell, 1993,74(4):609.
    39. Gompel A,Somai-S,Chaouat M,et al.Hormonal regulation of apoptosis in breast cells and tissues. Steroids.2000,65(10-11):593-98.
    40. Perillo B,Sasso A,Abbondanza C,et al.17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol.2000,20(8):2890-901.
    41. Tabuchi Y, Matsuoka J, Gunduz M, et al. Resistance to paclitaxel therapy is related with Bcl-2 expression through an estrogen receptor mediated pathway in breast cancer. Int J Oncol.2009,34(2):313-19.
    42. Teixeira C, Reed JC, Pratt MA.Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells.Cancer Res.1995,55(17):3902-07.
    43. Huang Y, Ray S, Reed JC,et al.Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells.Breast Cancer Res Treat.1997,42(1):73-81.
    44. Sui M, Huang Y, Park BH,et al.Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res. 2007,67(11):5337-44.
    45. Sui M, Jiang D, Hinsch C,et al.Fulvestrant (ICI 182,780) sensitizes breast cancer cells expressing estrogen receptor alpha to vinblastine and vinorelbine. Breast Cancer Res Treat.2010,121(2):335-45.
    46. Lee HH, Zhu Y, Govindasamy KM,et al.Downregulation of Aurora-A overrides estrogen-mediated growth and chemoresistance in breast cancer cells. Endocr Relat Cancer.2008 Sep;15(3):765-75.
    47. Razandi M, Pedram A, Levin ER. Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 2000; 14:1434-47.
    48. Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A 1993;90:2532-2536
    49. Dougherty MK, Schumaker LM, Jordan VC, et al. Estrogen receptor expression and sensitivity to paclitaxel in breast cancer. Cancer Biol Ther 2004;3:460-467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700