江苏省核盘菌(Sclerotinia sclerotiorum)的抗药性监测及对菌核病的防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜菌核病是一种世界性植物病害,严重影响油菜的产量和品质。应用杀菌剂是防治油菜菌核病的主要手段。20世纪80年代以来,多菌灵是我国防治油菜菌核病的主要杀菌剂。由于油菜菌核病菌对多菌灵出现了抗药性,二甲酰亚胺类杀菌剂如扑海因、速克灵、乙烯菌核利、菌核净等在本世纪开始用于油菜菌核病防治。针对江苏省防治油菜菌核病的用药情况,本文监测了油菜菌核病菌对多菌灵、菌核净的抗药性,并研究比较了抗性菌株和敏感菌株的菌丝生长量、产菌核能力、致病力等生物学性状。结果表明抗多菌灵的油菜菌核病菌在自然界已经形成优势群体,导致多菌灵失去使用价值;通过油菜菌核病菌对菌核净的抗药性监测,首次发现江苏已经出现抗药性菌株,存在菌核净抗性风险;筛选出对菌核病菌具有极高抗菌活性的新型杀菌剂啶酰菌胺,并建立了油菜菌核病菌对该药剂的敏感性基线。
     2006~2008年从江苏省采集分离1786个油菜菌核病菌菌株,以5μg/mL和100μg/mL为区分剂量,监测油菜菌核病菌对多菌灵的抗药性。监测结果表明其对多菌灵的抗性频率为29.5%。不同地区抗性频率不同,抗性范围为3.1%~54.9%。抗性菌株和敏感菌株在菌丝生长、产菌核能力和致病力方面没有显著性差异,说明田间抗性菌株和敏感菌株在田间具有相似的寄主适合度。
     测定2006~2008年分离的1786个菌株对菌核净的敏感性。其中大部分对菌核净是敏感的,只有2007年从盐城地区和常州地区采集的5个菌株能够在5μg/mL正常生长,抗性倍数是敏感菌株的10倍。通过药剂驯化方法从10个出发菌株获得25个抗性突变体,抗性倍数为198~484,这些突变体的抗性水平可以认为是极高抗的菌株。因此推断油菜菌核病对菌核净的抗药性机制至少应该有两类:一类是田间发现的低抗菌株,另一类是实验室诱导的极高抗菌株。菌核净对其它的二甲酰亚胺类杀菌剂如扑海因、速克灵等有明显的正交互抗药性。田间抗性菌株和实验室诱导抗性菌株,与亲本菌株比较,菌丝生长减慢,菌核干重下降,致病力没有明显差异。所测定的实验室诱导菌株在含有2%、4%、6%、8%(w/v) NaCl的PDA培养基上的生长速率都比亲本菌株慢,田间抗性菌株和敏感菌株生长速率则没有显著差异。
     120个核盘菌(Sclerotinia sclerotiorum)菌株分别采自江苏南通、盐城、泰州、扬州、宿迁、镇江、苏州等地。采用菌丝生长速率法在PDA培养基上测定各菌株对啶酰菌胺的敏感性,测定结果表明,自然界野生敏感菌株对啶酰菌胺的敏感性存在差异,120个核盘菌对啶酰菌胺的EC50值变化范围是0.028~0.408μg/mL,平均EC50为0.170±0.085μg/mL,最低抑制浓度(MIC)≤20μg/mL。表明该杀菌剂对核盘菌的菌丝生长有较强的的抑制活性。通过测定啶酰菌胺、多菌灵和菌核净的敏感性,结果表明:这三类药剂没有交互抗药性。
Sclerotinia sclerotiorum (Lib.) de Bary is a cosmopolitan fungal pathogen which attacks more than 400 species of higher plants, Sclerotinia stem rot continues to impose serious limitations on oilseed rape production all over the world, application of fungicides is the principal tool in most oilseed rape crops for managing Sclerotinia stem rot. A benzimidazole fungicide, carbendazim (MBC), was widely used to control this disease routinely during the 1980s in China, but wide spread control failures attributed to development of MBC resistance in S. sclerotiorum were reported in 2001 and 2002.The dicarboximide fungicides (e.g., iprodione, procymidone, vinclozolin, dimethachlon) have also been used for control of plant diseases incited by S. sclerotiorum, S. homoeocarpa and S. minor for 5 to 6 years. We detected the resistance of Sclerotinia sclerotiorum to carbendazim and dimethachlon, compared the mycelial growth, sclerotial production and pathogenicity, and determinded the cross-resistance patterns. The results indicated the wide spread of MBC resistance and occurrence of dimethachlon insensitivity in S. sclerotiorum in the oilseed rape crops of Jiangsu Province. The baseline sensitivity to boscalid was established, and the results showed that boscalid exhibited excellent activity against S. sclerotiorum and might became a new fungicide for the control of Sclerotinia stem rot.
     The MBC resistance in S. sclerotiorum populations was widely spread throughout Jiangsu Province with the resistance frequency 29.5% among the 1786 collected isolates during the growing seasons of oilseed rapes between 2006 and 2008. The resistance frequencies were different among sampled cities, ranging from 3.1%-54.9%. The field MBC-resistant isolates showed comparable mycelial growth, sclerotial production and pathogenicity to the wild-type sensitive isolates, which suggested that the field MBC-resistant isolates might have sufficient parasitic fitness to compete with the field sensitive isolates in the field.
     Fungal populations were collected throughout Jiangsu Province between 2006 and 2008 in order to determine their sensitivity to dimethachlon. A total of 1786 single-sclerotium isolates of S. sclerotiorum were collected and most of the isolates were considered sensitive to dimethachlon. Five isolates collected in Yancheng and Changzhou showed normal growth at 5μg/ml dimethachlon with the resistance factor≈10 compared to the sensitive isolates. Through in vitro selection for resistance to the fungicide,25 dimethachlon-resistant mutants were derived from 10 wild-type isolates of S. sclerotiorum. The resistance factors for the isolates ranged from 198 to 484, and the isolates were considered highly resistant to dimethachlon. Therefore, at least two different mechanisms of resistance seem to be involved:one that may provide a moderate resistance (insensitivity) and a second that may give a high resistance level under laboratory conditions. There was positive cross-resistance between dimethachlon and other dicarboximide fungicides, such as iprodione and procymidone in these S. sclerotiorum isolates. The field dimethachlon-insensitive and the laboratory-induced dimethachlon-resistant isolates appeared to have mycelial growth, sclerotial production and pathogenicity to comparable their wild-type parental isolates. Also, results of osmotic tests showed that there were no significant difference in mycelial radial growth between the field dimethachlon-sensitive and field dimethachlon-insensitive isolates on potato dextrose agar (PDA) plates amended with 2,4,6, or 8%(w/v) NaCl, but the laboratory-induced dimethachlon-resistant isolates grew significantly slower than their wild-type sensitive parents under all concentrations of NaCl.
     120 isolates of Sclerotinia sclerotiorum were isolated from oilseed samples from Nantong, Yancheng, Taizhou, Yangzhou, Suqian, Zhenjiang and Suzhou of Jiangsu Province, where boscalid had never been used before. The sensitivities to boscalid were determined by the method of mycelial growth test on PDA medium. The results that the sensitivity of wild-type population in the nature against boscalid exhibit a certain extend diversity and the EC50 values of the compound inhibiting growth of S. sclerotiorum was ranged from 0.028~0.408μg/mL and with the mean value of 0.170±0.085μg/mL. The MIC were and 0.712±0.255μg/mL, respectively. It showed that boscalid inhibited strongly mycelial growth of S. sclerotiorum. Though the sensitivity of carbendazim, dimethachlon and boscalid, it showed that there was no cross resistance between these fungicides.
引文
[1]Abawi G S, Grogan R G. Epidemiology of diseases caused by Sclerotinia species [J]. Phytopathology,1979,69:899-904.
    [2]Alberoni G, Collina M, Pancaldi D, et al. Resistance to dicarboximide fungicides in Stemphylium vesicarium of Italian pear orchards [J]. European Journal of Plant Pathology,2005,113:211-219
    [3]Avenot H F, Michailides T J. Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California [J]. Plant Disease,2007,91:1345-1350
    [4]Avenot H F, Sellam A, Karaoglanidis G, et al. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with boscalid resistance in Alternaria alternate from California pistachio[J]. Phytopathology,2008,98:736-742
    [5]Bardin S D, Huang H C. Research on biology and control of sclerotinia diseases in Canada. Canadian Journal of Plant Pathology,2001,23:88-98
    [6]Beever R E, Brien H M R. A survey of resistance to the dicarboximide fungicides in Botrytis cinerea [J]. New Zealand Journal of Agricultural Research.1983,26:391-400
    [7]Biggs A R. Mycelial growth, sporulation, and virulence to apple fruit of Alternaria alternata isolates resistant to iprodione [J]. Plant Disease,1994,78:732-735
    [8]Brenneman T B, Phippsp M, Stipes R J. Selerotinia blight of peanut:relation between in vitro resistance and field emeacy of diearboximide fungicides [J]. Phytopatlogy,1987,77(7):1028-1032
    [9]Boland G J, Hall R. Index of plant hosts of Sclerotinia sclerotiorum [J]. Canadian Journal of Plant Pathology,1994,16:93-108
    [10]Bolton D M, Thomma P H J B, Nelson D B. Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen [J]. Molecular Plant Pathology,2006,7(1):1-16
    [11]Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Netherlands Journal of Plant Pathology,1971, 77:83-90
    [12]Brent K J, Fungicide Resistance in Crop Pathogens, How Can it be Managed [M]. Brussels UK: FRAC,1995.39pp
    [13]Brent K.J., Monitoring for fungicide resistance. In:C.J. Delp, Editor, Fungicide Resistance in North America, APS Press, St. Paul, MN, USA.1988.
    [14]Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin [J]. Annual Review of Biochemistry,1985,54:331-365
    [15]Christian T, Christopher J W, Jolanta J B, et al. Suppression of Sclerotinia sclerotiorum apothecial by the soil bacterium Serratia plymuthica:identification of a chlorinated macrolide as one of the causal agents [J]. Soil Biology and Biochemistry,2001,33:1817-1826
    [16]Clemons G P, Sisler H D. Localization of the site of action of a fungitoxic benomyl derivative [J]. Pesticide Biochemistry and Physiology,1971:132-143
    [17]Cui W, Beever S L, Parkes S L, et al. Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana(Botrytis cinerea) in response to dicarboximide fungicide usage [J]. Phytopathology,2004,94:1129-1135
    [18]Cui W, Beever S L, Parkes S L, et al. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana(Botrytis cinerea) [J]. Fungal Genetics and Biology, 2002,.36:187-198
    [19]Dai F M, Xu T, Wolf G A, et al. Physiological and molecular features of the pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert [J]. Journal of Integrative Plant Biology, 2006,48 (1):44-52
    [20]Davidse L C. Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans [J]. Pesticide Biochemistry and Physiology,1973,3:317-325
    [21]Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Annual Review of Phytopathology,1986,24:43-65
    [22]FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides [J]. FAO Plant Protection Bulletin,1982,30 (2):30-36
    [23]Faretra F, Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicide in Botryotinia fuckeliana(Botrytis cinerea) [J]. Mycological research,1991,95:943-951
    [24]Faretra F, Pollastro S. Isolation, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to the phyenylpyrrole fungicide CGA 173506 [J]. Mycological research,1993,97:620-624
    [25]Fujimura M, Mode of action of diethofencarb to benzimidazole-resistance strains in Neurospora crassa [J]. Journal of Pesticide Science,1994,19(4):333-334
    [26]Hammerschlag R S, Sisler H D. Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae [J]. Pesticide Biochemistry and Physiology,1973,3:142-154
    [27]Howard R J, Aist J R. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O [J]. Protoplasm,1977,92:195-210
    [28]Hu X J, Roberts D P, Jiang M L, et al. Decreased incidence of disease caused by Sclerotinia
    sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100 [J]. Applied Microbiology and Biotechnology,2005,68:802-807
    [29]Huang R, Levy Y. Characterization of iprodione-resistant isolates of Alternaria brassicicola [J]. Plant Diseases,1995,79:828-833
    [30]Hubbard J C, Subbarao K V, Koike S T. Development and significance of dicarboximide resistance in Sclerotinia minor isolates from commercial lettuce fields in California [J]. Plant Diseases,1997, 81:148-153
    [31]Ian B D, Khor H Y, Don G H. Dicarboximide resistance in field isolate of Alternaria alternatais mediated by a mutation in a two-component histidin kinase gene [J]. Fungal Genetics and Biology, 2004,41:102-108
    [32]Iacomi-Vasilescu B, Avenot H, Bataille-Simoneau N, et al. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles [J]. Crop Protection,2004,23(6): 481-488
    [33]James J S, Eva J P, Ming T. Mechanism of fungicide resistance in phytopathogenic fungi [J]. Environmental Biotechnology,1996,7:348-355
    [34]Jo Y K, Niver A L, Rimelspach J W, et al. Fungicide sensitivity of Sclerotinia homoeocarpa from golf courses in Ohio [J]. Plant Diseases,2006,90:807-813
    [35]Jones A L, Shabi E, Ehret G R. Genetics of negatively correlated cross-resistance to a N-phenylcarbamate in benomyl-resistant Venturia inaequalis [J]. Canadian Journal of Plant Pathology,1987,9:195-199
    [36]Jung M K, Oakly B R. Identification of an amino acid substitution in benA, β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensity [J]. Cell Motility and the Cytoskeleton,1990,17(2):87-94
    [37]Jung M K. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motility and Cytoskeleton,1992,22:170-174
    [38]Katan T. Resistance to 3,5-dichlorophenyl-N-cyclicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea on protected crops [J]. Plant pathology,1982,31:133-141
    [39]Kato T. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi. Fungicide resistance in North America. Minnesota:APS Press, 1988,40
    [40]Kawchuk L M, Hutcgison L J, Vergaegh C A, et al. Isolation of the β-tubulin gene and characterization of thiabendazole resistancein Gibberella pulicaris [J]. Canadian journal of plant pathology,2002,24:233-238
    [41]Kendall S, Hollomon D W, Ishii H, et al. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis [J]. Pesticide Science,1993,40:175-181
    [42]Keon J P R, White G A, Hargreaves J A. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis [J]. Current Genetics,1991,19(6):475-481
    [43]Koeneaade H, Jones A L. Resistance to benomyl conferred by mutions in codon 198 or 200 in the beta-tubulin gene of neurospora crassa and sensitivity to diethofencarb conferred by codon 198 [J]. Photopathology,1993,83:850-854
    [44]Kunkel W. Antimitotische Aktivitat von Methylbenzimidazol-2-ylcarbamat (MBC). I. Licht-1, elektronenmikroskopische und physiologische Untersuchungen an keimenden Konidien von Aspergillus nidulans. Zeitschrift fur Allgemeine Mikrobiologie,1980,20: 113-112
    [45]Leroux P, Fritz R, Debieu D, et al. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea [J]. Pest Management Science,2002,58:876-888
    [46]Letham D B, Huett D O, Trimboli D S. Biology and control of Sclerotinia sclerotiorum in cauliflower and tomato crops in coastal NewSouth Wales [J]. Plant Disease Reporter,1976,60: 286-289
    [47]Lorenz G. Discarboximide fungicides:History of resistance development and monitoring methods. Fungicide resistance in North America. APS Press, St Paul, Minnesota.1988,10 (2):45-47
    [48]Lu G. Engineering Sclerotinia sclerotiorum resistance in oilseed crops [J]. African Journal of Biotechnology,2003,2:509-516
    [49]Ma, Z.H, Lei, Y., Luo, Y., and Michailides, J. T. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pestic. Biochem. Phys.2007.88:300-306.
    [50]Ma Z H, Michailides J T. Characterization of iprodione-resistant Alternaria isolates from pistachio in California [J]. Pesticide Biochemistry and Physiology,2004,80:75-84
    [51]Ma Z H, Michailides J T. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005, 24:853-863
    [52]Ma H X, Feng X J, Chen Y, et al. Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China [J]. Plant Disease,2009, (in press).
    [53]Matheron M E, Porchas M. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and
    vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop [J]. Plant Disease,2004,88:665-668
    [54]Matsson M, Ackrell B A C, Cochran B, et al. Carboxin, resistance in Paracoccus denitrificans conferred by a mutationin the membrane-anchor domain of succinate quinone reductase (complex Ⅱ) [J]. Archives of Microbiology,1998,170:27-37
    [55]Matsson M, Hederstedt L, The carboxin-binding site on Paracoccus denitrificans succinate:quinine reductase identified by mutations [J]. Journal of Bioenergetics and Biomembranes,2001,33: 99-105
    [56]Mueller D S, Dorrance A E, Derksen R C, et al. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean [J]. Plant Disease,2002,86:26-31
    [57]Nakata A, Snao S, Hashimoto S, et al. Negatively correlated cross-resistant to N-phenyl-formamidoximes in benzimidazole-resistant phytopathogenic fungi [J]. Annals of the Phytopathological Society of Japan,1987,53:659-662
    [58]Orth A B, Sfarra A, Pell E J, et al. Characterization and genetic analysis of laboratory mutants of Ustilago maydis resistantto dicarboximide and aromatic hydrocarbon fungicides [J]. Phytopathology,1994,84,1210-1214
    [59]Orth A B, Rzhetskaya M, Pell E J, et al. A serine (threonine) protein kinase confers fungicide resistance in the phytopathogenic fungus Ustilago maydis [J]. Applied and Environment Microbiology,1995,61,2341-2345
    [60]Pieckenstain F L, Garriz A, Chornomaz E M, et al. The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum [J]. Antonie van Leeuwenhoek,2001,80:245-253
    [61]Pommer E H, Lorenz G. Dicarboximide fungicides. In:Lyr, H. (ed.) Modern Selective Fungicides-Properties, Applications, Mechanisms of Action, Gustav Fischer. New York.1995 2nd edn,99-118.
    [62]Purdy L H. Sclerotinia sclerotiorum:history, disease, and symptomatology, host range, geographic distribution, and impact [J]. Phytopathology,1979,69:875-880
    [63]Ramesh M A, Laidlaw R D, Durrenberger F, et al. The cAMP signal transduction pathway mediates resistance to dicarboximide and aromatic hydrocarbon fungicides in Ustilago maydis [J]. Fungal Genetics and Biology,2001,32:183-193
    [64]Raposo R, Gomez V, Urrutia T, et al. Fitness of Botrytis cinerea associated with dicarboximide resistance [J]. Phytopathology,2000,90:1246-1249
    [65]Sarma B K, Ameer B S, Singh D P, et al. Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer arietinum) from sclerotinia stem rot [J]. Crop Protection,2007, 26:1042-1048
    [66]Schroeder W T, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Disease Reporter,1969,53:271-275
    [67]Sheir-Neiss G, Nardi R V, Gealt M A, et al. Tubulin like protein from Aspergillus nidulans [J]. Biochemical and Biophysical Research Communicarions,1976,69:285-290
    [68]Sheir-Neiss G. Identification of a gene for β-tubulin gene in Aspergillus nidulus [J]. Cell,1978,15: 639-647
    [69]Sisler H D. Dicarboximide fungicides:mechanisms of action and resistance. Fungicides resistance in North America. C.J.Delp,ed.American Phytopathological Society, St. Paul, MN.55
    [70]Smith F D, Phipps P M, Stipes R J. Agar plate, soil plate, and field evaluation of fluazinam and other fungicides for control of sclerotinia minor on peanut [J]. Plant Disease,1991,75:1138-1143
    [71]Smith F D, Phipps P M, Stipes R J, et al. Significance of insensitivity of Sclerotinia minor to iprodione in control of sclerotinia blight of peanut [J]. Plant Disease,1995,79:517-523
    [72]Steel C C, Nair N G. The physiological basis of resistance to the dicarboximide fungicide iprodione in Botrytis cinerea [J]. Pesticide biochemistry and physiology,1993,47:60-68
    [73]Stammler G, Speakeman J. Microtiter method to test the sensitivity of Botrytis cinerea to boscalid [J]. Journal of Phytopathology-Phytopathologische Zeitschrift,2006,154:508-510
    [74]Staub T. Fungicide resistance:Practical experience with antiresistance strategies and the role of integrated use [J]. Annual Review of Phytopathology,1991,29:421-442
    [75]Stover R H. Extranuclear inherited tolerance to benomyl in Mycosphaerella fijiensis var. difformis [J], Transactions of the British Mycological Society,1977,68(1):122
    [76]Suty A, Stenzel K. Iprovalicarb-sensitivity of Phytophthora infestans and Plasmopara viticola: determination of baseline sensitivity and assessment of the risk of resistance [J]. Pflanzenschutz-Nachr. Bayer 1999,52:71-82
    [77]Sylvester-Bradley R, Donald C M. A code for stages of development in oilseed rape(Brassica napus L.) [J], Aspects of Applied Biology,1984,6:399-419
    [78]Takeuchi T. Studies of the epidemiology of fungicide resistant gray mold strains [J]. Special Bulletin of the Chiba-Ken Agricultural Experiment Station,1987,14:1-75
    [79]Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Disease Reporter,1974,58:886-889
    [80]Yan Zhang, Randy L, Christian P, et al. Osmo regulation and fungicide resistance:the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue
    [J]. Applied and Environmental Microbiology,2002,61:532-538
    [81]Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with sclerotinia resistance in Brassica napus [J]. Plant Breeding,2003,122:19-23
    [82]Zhang C Q, Yuan S K, Sun H Y, et al. Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid [J]. Plant pathology,2007,56:646-653
    [83]李红霞.四种植物病原真菌对多菌灵的抗药性分子遗传机制及其检测技术的研究[D].南京:南京农业大学,2003
    [84]李红霞,周明国,陆悦健.应用PCR方法检测油菜菌核病菌对多菌灵的抗药性[J].菌物系统,2002,21(3):370-374
    [85]李红霞,陆悦健,周明国,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较研究[J].南京农业大学学报,2002,25(3):41-44
    [86]李红霞,陆悦健,周明国,等.油菜菌核病菌(Sclerotinia sclerotiorum)β-微管蛋白基因与多菌灵抗药性相关突变的研究[J].中国油料作物学报,2003,4:56-60
    [87]李应金,陈惠明,周琳,等.农药混配剂防治烟蚜和烟草赤星病试验[J].2003,10:45-47
    [88]李丽丽,黄早花,王圣玉.油菜菌核病病原生态条件研究[J].1986,1:75-78
    [89]罗宽,周必文.油菜的病害及防治[M].北京:中国商业出版社,1994:66-69
    [90]杨新美.油菜菌核病在我国寄主范围及生态特性的调查研究[J].植物病理学报,1959,5(2):111-122
    [91]潘以楼,刘福海,徐志平,等.油菜菌核病菌对多菌灵的抗药性及其治理初报[J].江苏农业科学,2000,3:39-40
    [92]潘以楼,吴汉章,杨敬辉,等.油菜菌核病菌(Sclerotinia sclerotiorum)抗多菌灵菌株的检测方法及其在江苏的分布[J].江苏农业学报,1998,14(3):159-163
    [93]潘以楼,汪智渊,吴汉章.油菜菌核病菌(Sclerotinia sclerotiorum)对多菌灵的抗药性及其稳定性[J].江苏农业学报,1997,13(1):32-35
    [94]潘以楼,汪智渊,吴汉章.油菜菌核病菌对多菌灵的抗药性[J].中国油料,1997,19(3):67-68
    [95]王振荣,高同春,胡宏云,等.油菜菌核病的防治适期[J].安徽农业科学,2002,30(3):333-334
    [96]石志琦,周明国,叶钟音,等.油菜菌核病菌对多菌灵的抗药性监测[J].江苏农业学报,2000,16(4) :226-229
    [97]石志琦,周明国,叶钟音.油菜菌核病菌对多菌灵、菌核净的抗药性菌株性质研究[J].中国油料作物学报,2000,22(4):54-57
    [98]董金皋.农业植物病理学(北方本)[M].北京:中国农业出版社,2001:183-185
    [99]陆致平,梅金泉,徐兆忠,等.新杀菌剂菌核光防治油菜菌核病的试验研究[J].植保技术与推广,1999,19(6):41-42
    [100]刘波,叶钟音,刘经芳,等.速克灵抗性灰霉病菌株性质的研究[J].植物保护学报,1992,19(4):297-302
    [101]陆悦健.稻麦镰孢菌(Fusarium spp)对苯并咪唑类杀菌剂抗药性分子机制研究(D)博士学位论文,南京农业大学学位论文,1999
    [102]周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2) :31-33
    [103]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41
    [104]张夕林,孙雪梅,张谷丰,等.油菜菌核病抗药性监测及综合治理技术的研究[J].农药科学与管理,2003,24(6):18-22
    [105]吴纯仁,刘后利.油菜菌核病的致病机制[J].植物病理学报,1991,21(2):135-140
    [106]油菜菌核病(M).北京:中国农业出版社,1975
    [107]中华人民共和国国家标准农药田间药效试验准则,GB/T17980.34-2000[S].北京:中国标准出版社,2000:144-147
    [108]赵伟.实时定量PCR技术在油菜菌核病菌对多菌灵抗药性监测中的应用研究[D].南京:南京农业大学,2005
    [109]贾晓华.番茄灰霉病菌和油菜菌核病菌对嘧霉胺的敏感性基线及番茄灰霉病菌抗药性研究[D].南京:南京农业大学,2004
    [110]孙国才,季明东,陆长缨,等.多菌灵与三唑酮复配对油菜菌核病的协同作用[J].江苏农业科学,2006(6):42-45
    [111]陈碧云,周乐聪,陆致平.绿色木霉发酵配方与防治油菜菌核病的研究[J].中国生物防治,2001,17(2):67-70
    [112]王婷,吴健胜,王金生.草酸降解菌的筛选及其对油菜菌核病的生物防治作用[J].南京农业大学学报,2001,24(4):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700