液体中微机器人的运动机理与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用于微小管道的微机器人一直是微机械电子技术的一个研究热点。它主要包括工业管道微机器人和医用人体管道微机器人。管道微机器人能够在微小的工业管道内从事检测和维护作业,可以进入人类无法进入的狭窄空间或危险区域,如航天飞机、导弹、核动力工厂等微细管道内从事电缆布线,管道的检查维护。但是,微管道机器人多是利用摩擦机理运动,存在易损坏管道内壁等缺陷。另外,由于管道内壁情况复杂,机器人的运动也难以控制。因此,基于这一问题人们探索着新的解决方法。
     本论文从模拟自然界生物运动仿生学的角度出发,主要借鉴鱼类和鞭毛原生动物的推进机理,致力于研究与设计在液体中运动的微机器人。随着本研究的进一步深入,它能为进入人体内,从事体内检查、定点投药和从事局部手术的医疗微机器人的研究提供研究基础。本论文得到国家自然科学基金项目“泳动微机器人的机理、机构和控制”(项目资助号:69885002)、广东省自然科学基金项目“液体中泳动微机器人的研究”(项目资助号:980402)和广东省教育厅基金项目“基于流体自身能量的微管道机器人研究”(项目资助号:010043)的资助,主要对液体中微机器人的国内外研究现状和主要研究问题、鱼类推进机理、液体中微机器人的设计与运动机理、低雷诺数粘性液体中仿鞭毛推进微机器人研究等方面进行了大量的理论与实验研究。本论文主要工作和有关的创造性成果如下:
     首先,本文在大量阅读国内外文献的基础上,国内首次对液体中运动微机器人的研究现状和主要研究问题进行了深入分析,为国内对液体中运动微机器人的进一步的研究与实现奠定了坚实的基础。
     本文分析了鱼类推进模式和推进机理。主要阐述了鱼类推进模式的分类及特点、鱼的形态描述及受力分析,并重点论述了鱼类波状推进机制,并对当前仿生鱼型水下机器人的研究现状、基本特性和应用前景进行了分析。上述内容的研究对液体运动微机器人的研究具有重要的借鉴和指导意义。
     本文在综合国内外鱼类游动文献中的有关研究成果的基础上,分析了鱼类游动过程中鱼体和尾鳍运动,建立了月牙尾推进模式稳态游动的运动学模型。利用尾鳍和摆翼运动特征的相似性,建立了摆翼运动模型,同时利用Matlab软件进行了摆翼的运动仿真,并重点探讨了摆动—平动相位差对摆翼运动的影响。仿真结果验证了数学模型的正确性和可靠性。然后,基于鱼类肌肉水动力学的研究,对摆翼所产生的推进力进行了分析。
    
     广东工业大学工学博上学位论文
     本文阐述了柔性铰链和差式微位移放大机构的基本设计原理,分析了机构中
    位移损失的原因。基于差动杠杆原理和柔性铰链结合起来设计了液体中运动微机
    器人的主体机构,并利用有限元法对主体结构的放大性能进行了仿真,所研制的
    放大机构具有较好的放大效果。采用片状柔性铰链成功地解决了由于机构中的位
    移干涉造成的机构内部反力太大的问题。
     本文设计了PZT驱动的液体中微机器人的控制装置,在液体中进行了微机器
    人的初步实验。实验结果表明:(1)液体中微机器人的主体结构设计是合理的;
     (2)通过改变电源频率可控制微机器人的泳动速度。()通过改变施加在两个
    压电元件上的驱动电源频率C和G,可控制液体中运动微机器人运动方向。
     最后,本文以原生动物(如细菌等)、精子运动为原型,在探讨鞭毛推进的生
    物和流体力学机制的基础上,提出了一种低雷诺数粘性流体中仿鞭毛摆动推进的
    微机器人原型,并对其运动学进行了研究,同时对微机器人所受粘性力的简化计
    算公式进行了推导。
The study on micro-pipe robot is a,research spot in MEMS. It mainly includes industry micro-pipe robot and medical body micro-pipe robot. Micro-pipe robot can be used to deal with inspection and maintenance in the industry micro-pipe in which, such as space aircraft, missile, nuclear power factory due to its narrow or dangerous region for the people no way. to enter. The above micro-pipe mostly scathes inner pipe wall based on its friction locomotion mechanism. In addition, the micro robot is difficult to be controllable in the complicated shape of inner pipe wall. So the relative researcher make great efforts to explore new method.
    From the view of bionics to imitate biology motion in the nature, This dissertation is devoted to study and design micro mobile robot in liquid by the help of propulsion mechanism of fish and flagella protozoa. It is believed that it can bring the important inspiration for the future medical micro robot which can be embedded into inner organ of human for inspection, drug spot deliverance and local body surgery. Supported by supported by the Nation Nature Science Foundation of Mechanism, Structure and Control Study on Swimming Micro Robot in Liquid (Item No.69885002) and Guangdong Province Science Foundation of Research on Swimming Micro Robot in Liquid (Item No. 980402) and Guangdong Province Education Department Foundation of Research on Micro Pipe Robot driven by liquid Self Energy(Item No. 010043), this dissertation mainly deals with much theoretical and ,including research situation and the main issue of micro mobile robot in liquid, fish propulsion mechanism, design and locomotion mechanism, and flagellum-like propulsion swimming micro robot in low Reynolds number viscous liquid. The main contents and related original achievements are as follows:
    First, this dissertation deeply analyzes the research situation and the main issue of micro mobile robot in liquid on the basis of a lot of the domestic and foreign documents to be referred. So great benefit will be brought the civil scholars which are interested to engage in their further research for it.
    This dissertation discusses fish propulsion mode and mechanism. Fish undulatory mechanism is deeply investigated, besides the kind and specialty of fish swimming mode, fish morphologic description and force-acting analysis. In addition, the
    
    
    
    dissertation reviews the current situation, fundamental characterization and application forehead for underwater biomimetic robot, So the above contents bring great reference for micro mobile robot in liquid.
    This dissertation sets up the kinematics model on the basis of the biomimetic study of lunate-tail propulsion steady swimming fish and of the analysis of fish body motion and caudal fin motion. Further, driving fin motion model is setup and simulated using Matlab, the relation of phase difference between feathering and heaving motion to caudal fin is deeply analyzed. Simulation shows that the proposed model is correct and reliable. Then, based on the study of fish muscle hydrodynamics motion, the propulsion force produced by driving fin is analyzed.
    This dissertation explains the fundamental design principle of flexure hinge and differential micro-displacement magnification structure, and investigates the reason for the structure displacement loss. The main mechanism is designed based on differential lever theory and flexure hinge, its magnification performance is simulated using finite element method (FEM). The simulation result shows that the main mechanism owes good magnification performance. The utilization of strip flexure hinges successfully solve the problem that the interior anti- force is too large in the mechanism.
    Preliminary experimental research is carried out using the designed control device driving the micro robot in liquid. Experimental research shows that, the designed main mechanism is reasonable; swimming velocity varies with the frequency exerted on; steering motion can by realized by changing the frequency f, and f2 of control power which exerts on two PZ
引文
1 赵淳生,陈启东.微型机械的特点、研究现状和应用,振动、测试与诊断,1998,18(1)8-13
    2 孙道恒,黄元庆,郑炜等.MEMS系统级仿真建模理论与方法的研究,厦门大学学报(自然科学版),2001,40(2):297-302
    3 温诗铸,李娜.微型机械与纳米机械学研究,中国机械工程,1996,7(2):17-21
    4 蔡鹤皋,孙立宁,安辉等.微型机械和微机器人的发展状况,仪器仪表学报,1995,16(1):38-41
    5 陈寅,林良明,高立明等.微机电系统在医疗领域中的应用,医疗卫生装备,1999,No.1:16-17
    6 马建旭,王立鼎,吴一辉,微电子机械系统在生物医学领域中的应用,光学精密工程,1996,4(1):1-6
    7 干东英,王立鼎.微型机械的现状与发展,机械工程学报,1994,30(2):1-7
    8 文集编辑组,微型机电系统研究文集,清华大学出版社,2000
    9 Takaharu Idogaki,Hitoshi Kanayama,Nobuyuki Ohya,Suzuki Hattori.Characteristics of Piezoelectric Locomotive Mechanism for an in-pipe Micro Inspection Machine,Proceedings of IEEE 6th International Symposium on Micro Machine and Human Science.1995:193-198
    10 Iwao Hayashi,Nobuyuki Iwatsuki,Shigeru Iiwashina.The running characteristics of a screw-principle microrobot in a small bent pipe,Proceedings of IEEE 6th International Symposium on Micro Machine and Human Science.1995:225-228
    11 Masaki Takahashi,Iwao Hayashi,Nobuyuki Iwatsuki.The development of an in-pipe robot applying the motion of an earthworm.Proceedings of IEEE 6th International Symposium on Micro Machine and Human Science.1994:35-40
    12 Shinji Aramaki,Kaneko S.,Arai K.,Takahashi Y.,Adachi H.,Yanagisawa K.,Tube Type Micro Manipulator Using Shpae Memory alloy(SMA),Proceedings of IEEE 6th International Symposium on Micro Machine and Human Science.1995:115-120
    
    
    13 龚振邦,微技术的发展与若干思考,97全国微系统研讨会论文集,1997
    14 李旻,章亚男,龚振邦.面向细小管道的微机器人发展现状,机床与液压,2000,No.6
    3-5
    15 Kawaguchi,Yoshida,Kurumatani,Kikuta,Yamada.Internal Pipe Inspection Robot.Proceedings of the 1995 IEEE International Conference on Robotics and Automation.1995:857-862
    16 Takahashi,Hayashi,Iwatsuki,Suzumori,Ohki.The Development of an in-pipe Microrobot Applying the Motion of an Earthworm,Proceedings of IEEE 5th International Symposium on Micro Machine and Human Science.1994:35-40
    17 Shigeo M,Kazuhiro A,Keisuke Y,Active Endoscope with SMA Coil Springs,Proceeding of the IEEE Micoro Electro Mechanical Systems(MEMS),1996:290-295
    18 Brett S,Joel B,Warren G,Development of a Robotic Endoscope,IEEE International Conference on Intelligent Robots and Systems,1995,2:162-171
    19 M.C.Carrozza,L.Lencioni,B.Magnani,P.Dario,Scuola Superiore,A Microrobot for Colonoscopy,Proceedings of IEEE 6th International Symposium on Micro Machine and Human Science.1996:26-33
    20 杨杰,中村仁彦,吴月华等.医用微型机器人——SMA内窥镜与SMA腹腔手术钳子,中国科技大学学报,1996,26(4):444-449
    21 马建旭,李明东,包志军等.仿蚯蚓蠕动微机器人及控制系统,上海交通大学学报,1999,33(7):855-861
    22 程良伦,微管道机器人及其智能控制系统的研究,中国科学院博士学位论文,1999
    23 孙麟治,孙萍,秦新捷等,细小管道爬行的微机器人,光学精密工程,1998,33(7):57-63
    24 罗怡,双压电薄膜细小管道机器人的研究,上海大学博士学位论文,2001
    25 钱晋武,章亚男,孙麟治等.螺旋驱动的细小管内移动机器人技术,光学精密工程,1999,7(4):41-45
    26 孙萍,陈建宇,孙麟治.双层柔性铰链微小夹持器,上海大学学报,1997,3(3):274-282
    27 Fukuda,Kawamoto,Arai,Matsuura.Mechanism and Swimming Experiment of Micro Robot in Water.Proceedings of the 1994 IEEE Conference on Robotics and Automation.1994:814-819
    
    
    28 Fukuda,Kawamoto,Arai,Matsuura.Steering Mechanism of Underwater Micro Mobile Robot.Proceedings of the 1995 IEEE Conference on Robotics and Automation.1995:363-368
    29 Borgen,M.,G.N.Washington,and G,Kinzel,Introducing the Carangithopter:A Small Piezoelectrically Actuated Swimming Vehicle,Adaptive Structures and Material Systems Symposium, ASME International Congress and Exposition,2000
    30 Fukuda,Hosokai,and Kikuchi,Distributed Type of Actuators by Shape Memory Alloy and its Application to Underwater Mobile Robotic Mechanism,Proceedings of the 1990 IEEE Conference on Robotics and Automation.1991:1316-1321
    31 http://pegasus.cc.ucf,edu/~cjr29177/mefir,html
    32 Guo Shuxiang,Fukuda,Kato,Oguro.Development of Underwater Microrobot Using ICPF Actuator,Proc.of the 1998 IEEE Conference on Robotics and Automation.1998:1829-1834
    33 Guo Shuxiang,Sugimoto K,Hata S,Jianliang Su,Oguro K.A new type of underwater fish-like microrobot,Proceedings.2000 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2000),2000:867-872
    34 Mojarrad,M,and Shahinpoor,M,Biomimetic Robotic Propulsion Using Polymeric Artificial Muscles,Proceeding of the 1997 IEEE international conference on Robotics and Automation.1997:2152-2157
    35 Shahinpoor M.,Bar-Cohen Y,.Xue T,Simpson J,Smith J.Some Experimental Results on Ion-Exchange Polymer-Metal Composites as Biomimetic Sensors and Actuators,Proc.SPIE Smart Materials and Structures Conference,1998:3324-3343
    36 Salehpoor K,Shahinpoor M,and Razani A.Role of Ion Transport In Dynamic Sensing and Actuation of Ionic Polymeric Platinum Composite Artificial Muscles,Proc.SPIE Smart Materials and Structures Conference,1998:3330-3338
    37 Bar-Cohen Y et al.Challenges to the Transition of IPMC Artificial Muscle Actuators to Practical Application,MRS Symposium on Electroactive Polymers,1999:13-20
    38 谭湘强,钟映春,杨宜民.IPMC人工肌肉致动器的特性及其应用,高技术通讯,2002,12(1):50-52
    39 姚康德,许美萱编.智能材料-21世纪的新材料,天津大学出版,1996:119-129
    
    
    40 Honda T,Arai KI,Ishiyama K.Micro Swimming Mechanisms Propelled by External Magnetic Fields.IEEE.IEEE Transactions on Magnetics,1996,32(5):5085-5087
    41 M.Sendoh,N.Ajiro,K.Ishiyama,M.Inoue,K.I.Arai,T.Hayase,J.Akedo,Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine,IEEE Trans.Magn.,1999,35:3688-3690
    42 M.Sendoh,N.Ajiro,K.Ishiyama,M.Inoue,T.Hayase,and K.I.Arai,Analysis of swimming properties and design of spiral type magnetic micromachine,J.Robotics and Mechatronics,2000,12:165-171
    43 M.Sendoh,N.Ajiro,K.Ishiyama,M.Inoue,T.Hayase,and K.I.Arai,Two-Dimensional Analysis of Properties OF Magnetic Micro-Machines by means of the Finite Volume Method,J.Mag.Soc.Jpn.,1999,23:1665-1668
    44 Kazushi Ishiyama,,Masahiko Sendoh,Aya Yamazaki,Mitsuteru Inoue,Ken Ichi Arai,Swimming of Magnetic Micro-Machines under a Very Wide-Range of Reynolds Number Conditions,IEEE Transactions on Magnetics,2001,37(4):2868-2870
    45 R.S.Fearing,Control of a Micro-Organism as a Prototype Micro-Robot,2nd Int.Symp.on Micromachines and Human Sciences,Nagoya,Japan,Oct.8-9,1991
    46 A.Itoh,Motion control of protozoa for bio MEMS,IEEE/ASME Trans.on Mechatronics,2000,5(2):181-188
    47 A.Itoh,Motion control of protozoa for bio MEMS,IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Atlanta,GA,USA,1999:27-32
    48 Edwin W.H.Jager,Olle Inganas,Ingemar Lundstr(?)m.Microrobots for Micrometer-Size Objects in Aqueous Media:Potential Tools for Single-Cell Manipulation,Science,2000,288:2335-2338
    49 Ikeuchi K,Yoshinaka K,Hashimoto S,Tomita N.Locomotion of medical micro robot with spiral ribs using mucus,MHS'96.Proceedings of the Seventh International Symposium on Micro Machine and Human Science,New York,NY,USA,1996:217-222
    50 孙德义等,体内微机器人的驱动方式探讨:有线还是无线?,压电与声光,23(5)增刊,2001:343-346
    51 赵新,卢桂章,黄亚楼.在MEMS中引入VR技术,功能材料和器件学报,1996,2(3):177-181
    
    
    52 周晓,张晓华,邓宗全等.管内作业机器人的发展与展望,机器人,1998,20(6):471-478
    53 车录锋,徐志农,周晓军等.微型机械设计中某些理论问题的探讨,工程设计,1998(2):23-25
    54 童秉纲,庄礼贤,程健宇,鱼类波状摆动推进的流体力学研究,力学实践,1991,13(3):17-26
    55 童秉纲,鱼类波状泳动的推进机制,力学实践,2000,23(5):69-74
    56 刘军考,水下机器人新型仿鱼鳍推进器,机器人,2000,22(5):427-432
    57 D.Weihs and P.W.Webb,Optimization of locomotion,in Fish Biomechanics,P.W.Webb and D.Weihs,Eds.New York:Praeger,1983:339-371
    58 C.M.Breder,The locomotion of fishes,Zoologica,1926,4:159-256
    59 P.W.Webb,Form and Function in Fish Swimming,Scientific American.1984,251(1):58-68
    60 J.J.Videler,Fish Swimming.London,U.K.:Chapman & Hall,1993
    61 程健宇,庄礼贤,童秉纲,鱼类鳗鲡目模式推进的游动性能分析,水动力学研究与进展,1988,3(3):87-97
    62 程健宇,水生动物游动的流体动力学研究,中国科技大学博士论文,1988
    63 程健宇,庄礼贤,童秉纲,鱼类推进性能的数值计算,空气动力学学报,1991,9(1):94-103
    64 刘军考,仿鱼水下推进器理论与实验研究,哈尔滨工业大学博士论文,2001
    65 吴靖,鱼类摆动推进的双涡模型及实验研究,北京航空航天大学学报,1994,20(2):158-163
    66 哈西拉,仿生学,科学教育出版,1975
    67 C.C.Lindsey,Form,function and locomotory habits in fish,in Fish Physiology Vol.Ⅶ Locomotion,W.S.Hoar and D.J.Randall,Eds.New York:Academic,1978:1-100
    68 J.J.Magnuson,Locomotion by scombrid fishes:Hydromechanics,morphology and behavior,in Fish Physiology Vol.Ⅶ Locomotion,W.S.Hoar and D.J.Randall,Eds.New York:Academic,1978:239-313.
    69 P.W.Webb,The biology of fish swimming,in Mechanics and Physiology of Animal Swimming,L.Maddock,Q.Bone,and J.M.V.Rayner,Eds.Cambridge,U.K.:Cambridge Univ.,1994:45-62
    
    
    70 James Gray. Animal Locomotion. Weidenfeld and Nicolson, 1968
    71 G.I. Taylor, Analysis of the swimming of microscopic organisms, Proc. R. Soc. Lond. A, 1951,209:447-461
    72 G.I. Taylor, The action of waving cylindrical tails in propelling microscopic roganisms, Proc. Roy. Soc. Lond, A,1952,211: 225-239
    73 G.I. Taylor, Analysis of the swimming of long narrow animals, Proc. R. Soc. Lond. A, 1952,214:158-183
    74 Lighthill, M. J. Note on the Swimming of Slender Fish. Journal of Fluids Mechanics. 1960, 9:305-317
    75 Lighthill, M. J. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 1970,44: 265-301
    76 Lighthill, M. J. Large amplitude elongated-body theory of fish locomotion, Proc. R. Soc., Ser., B, 1971,179:125-38
    77 Lighthill, M. J. Mathematical theories of fish swimming. In Fisheries Mathematics, ed. J. H. Steele, London, New York and San Francisco: Academic Press, 1977: 131-144
    78 Lighthill, M. J. Mathematical biofluiddynamics. Philadelphia: Society for Industrial and Applied Mathematics, 1975
    79 Wu, T.Y. Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 1971a, 46: 521-544
    80 Newman, J. N. The force on a slender fish-like body. J. Fluid Mech. 1973, 58: 689-702
    81 Newman, J. N. and Wu, T. Y. A generalized slender-body theory for fish-like forms. J. Fluid Mech. 1973, 57: 673-693
    82 Newman, J. N. and Wu, T. Y. Hydromechanical aspects of fish swimming. In Swimming and Flying in Nature, Vol. 2 (ed. T. Y. Wu, C. J. Brokaw and C. Brennen), New York: Plenum Press, 1975: 615-634
    83 Cheng J-Y, Zhuang L-X., Tong B-G., Swimming performance analysis for anguilliform propulsion, Journal of Hydrodynamics, 1989, 4: 89-102
    84 J. H. Long, Jr., W. Shepherd, and R. G. Root, Manueuverability and reversible propulsion: How eel-like fish swim forward and backward us-ing travelling body waves, Proc. Special Session on Bio-Engineering Research Related to Autonomous Underwater Vehicles, 10th Int. Symp. Unmanned Untethered
    
    Submersible Technology, NH, Sept. 1997: 118-134
    85 Wu, T. Y. Swimming of Waving Plate. Journal of Fluids Mechanics, 1961, 10: 321-344
    86 Wu, T.Y. Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech. 1971, 46: 545-568
    87 Jianyu Cheng, Lixian Zhuang, Binggang Tong. Analysis of Swimming three-dimensional waving plates. Journal of Fluids Mechanics, 1991, 232: 341-355
    88 Chopra, M. G. Hydromechanics of lunate-tail swimming propulsion. J. Fluid Mech. 1974, 64: 375-391
    89 Chopra, M. G. Large amplitude lunate-tail theory of fish locomotion. J. Fluid Mech. 1976,74:161-182
    90 Archer, R. D., Sapuppo, J. and Betteridge, D. S.. Propulsion characteristics of flapping wings. Aeronaut. J., 1979, 84:355-371
    91 Cheng, H. K. and Murillo, L. Lunate-tail swimming propulsion as a problem of curved lifting line in unsteady flow. Part 1. Asymptotic theory. J. Fluid Mech. 1984, 143:327-350
    92 Ahmadi, A. R., Widnall, S. E. Energetics and optimum motion of oscillatinglifting surfaces of finite span. J. Fluid Mech. 1986,162: 261-282
    93 Chopra, M. G., Kambe, T. Hydromechanics of lunate-tail swimming propulsion. Part 2. J. Fluid Mech. 1977, 79: 49-69
    94 Lan, C. E. The unsteady quasi-vortex-lattice method with applications to animal propulsion. J. Fluid Mech. 1979, 93: 747-765
    95 Ahmadi A.R., Widnall S.E, Unsteady Lifting-line Theory as a Singular Perturbation Problem, J. Fluid Mech., 1985,vol. 153: 59-81
    96 Lighthill, M. J. Hydrodynamics of aquatic animal propulsion. Ann. Rev. Fluid Mech. 1969,1:413-446
    97 Yates, G. T. Hydromechanics of body and caudal fin propulsion. In Fish Biomechanics (ed. P. W. Webb and D. Weihs), New York: Praeger, 1983: 177-213
    98 Yates, G. T. Optimum pitching axes of flapping wing propulsion. J. Theor. Biol. 1986, 120: 255-276
    99 R. Gopalkrishnan, M. S. Triantafyllou, G. S. Triantafyllou, and D. Barrett, Active vorticity control in a shear ow using a apping foil, J. Fluid Mech., 1994, 274: 1-
    
    21
    100 N.Kato and M.Fumshima,Pectoral fin model for manuever of underwater vehicles,Proc.IEEE AUV Symp.,1996:49-56
    101 N.Kato and T.Inaba,Hovering performance of fish robot with apparatus of pectoral fin motion,Proc.10th Int.Symp.Unmanned Untethered Submersible Technology,NH,Sept.1997:177-188
    102 M.W.Westneat and J.A.Walker,Applied aspects of mechani-cal design,behavior,and performance of pectoral fin swimming in fishes,Proc.Special Session on Bio-Engineering Research Related to Autonomous Underwater Vehicles,10th Intern.Symp.Unmanned Untethered Submersible Technology,NH,Sept.1997:153-165
    103 A.C.Gibb,B.C.Jayne,and G.V.Lauder,Kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus,J.Exp.Biol.,1994,189:133-161
    104 G.V.Lauder and B.C.Jayne,Pectoral fin locomotion in fishes—Testing drag-based midels using 3-dimensional kinematics,Amer.Zool.,1996,36:567-581
    105 童秉纲,描述鱼类波状游动的流体力学模型及其应用,自然杂志,1998,20(1):1-7
    106 生物流体力学,人民教育出版社,1984
    107 Sfakiotakis M,Lane DM,Davies JBC.Review of fish swimming modes for aquatic locomotion.IEEE Journal of Oceanic Engineering,1999,24(2):237-252
    108 J.Gray,Studies in animal locomotion.Ⅵ.The propulsive powers of the dolphin,J.Exp.Biol.,1936,13:192-199
    109 Hoyt,J.W.Hydrodynamic drag reduction due to fish slimes.In Swimming and Flying in Nature,vol.2(ed.T.Wu,C.Brokaw and C.Brennen),New York,Plenum Press,1975:653-672
    110 Daniel,T.L.Fish mucus:in situ measurements of polymer drag reduction.Biol.Bull.,1981,160:376-382
    111 林良明,仿生机械学,上海交通大学出版社,1989
    112 迟冬祥,颜国正.仿生机器人的研究现状及其未来发展,机器人,2001,23(5):477-480
    113 M.S.Triantafyllou,G.S.Triantafyllou,An efficient swimming machine,Sci.Amer.,1995,272:40-46
    114 http://www.people.com.cn/GB/junshi/61/20010404/432590.html
    
    
    115 http://media.ccidnet.com/media/ciw/1023/d0801.htm
    116 http://www.kepu.com.cn/gb/technology/robot/advance/adv310.html
    117 薛实福,李庆祥.精密仪器设计,北京:清华大学出版社,1991
    118 Sadayuki Takahashi.Internal electrode piezoelectric ceramic actuator.Ferro-electrics,1983,50:181-190
    119 吴博达,李军,杨志刚等.具有柔性铰链的差式微位移放大机构,压电与声光,1999,21(2):96-99
    120 钟映春,谭湘强,杨宜民.泳动微机器人主体机构的设计与研究,压电与声光,2001,23(5)增刊:220-222
    121 雷晓燕,有限元法,北京:中国铁道出版社,2000
    122 卓家寿,弹性力学中的有限元,北京:高等教育出版社,1987
    123 张大伦,李宗容主编;同济大学材料力学教研室编材料力学,上海:同济大学出版社,1987
    124 丁皓江,何福保.弹性和塑性力学中的有限单元法,北京:机械工业出版社,1981
    125 习宝琳主编.材料力学,武汉:华中理工大学出版社,1989
    126 苏翼林,材料力学,天津:高等教育出版社,1984
    127 王炳武,胥谓.MatLab 5.3实用教程,北京:中国水利水电出版社,2000
    128 薛定字,控制系统计算机辅助设计—MATLAB语言及其应用,清华大学出版社,1998
    129 杨宜民编著,新型驱动器及其应用,机械工业出版社,1997
    130 吴一辉,纳米分辨率压电式微定位系统的研究,中国科学院博士学位论文,1996
    131 Apex Power Integrated Circuits,Vol.8.:C159-166,2001
    132 G.K.巴切勒,流体动力学引论,科学出版社,1997
    133 张也影,流体力学,高等教育出版社,1992
    134 章梓雄,董曾男.粘性流体力学,清华大学出版社,1998
    135 兰姆,理论流体动力学,科学出版社,1990
    136 邢景棠,周盛,崔尔杰.流固耦合力学概述,力学进展,1997,27(1):19-38
    137 王辉,岑章志,杜庆华.粘性流体中弹性板振动的有限元耦合问题,固体力学学报,1998,19(2):95-102
    138 岑业文,纤毛或鞭毛的运动机制,广西师范学报(自然科学版),1997,14
    
    (3) : 60-62
    139 Hancock G.J., The self propulsion of sea-urchin spermatzoa. J.Exp. Biol.,1955, 32: 802-814
    140 Lighthill M.J. , Flagellar Hydrodynamics: the John Von Neumann Lecture,SIAM Rev. ,1975,18:161-229
    141 Higdon J.J.L,A Hydrodynamic analysis of flagellar propulsion, J.Fluid Mech., 1979, 90:686-671
    142 Myerscough M.R., Swan M.A., A model for swimming unipolar spirilla, J. Theor. Biol., 1989,139:201-218
    143 Chwang,A. T. Wu T. Y., A note on the helical movement of micro-organisms. Proc. Roy. Soc. Lond., 1971, B178: 327-346
    144 Chwang, A. T., Wu T. Y., Winet, H. Locomotion of spirilla . Bio. J., 1972, 12: 1549-1561
    145 Shreiner K.E., The helix as a propeller of microorgnisms. J.Biomech. 1971,4:73-83
    146 Youngren G.K., Acrivos A. ,Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech., 1975, 69:377-503
    147 Phan-Thien N, Tran-Cong T, Ramia M: A boundary element analysis of flagellar propulsion. J. Fluid Mech. 1987,184: 533-549
    148 Ramia M., Numerical model for the locomotion of spirilla, Biophys. J. , 1991, 60:1057-1078
    149 Ramia M., Tullokc D., Phan-Thien N., The role hydrodynamic in teraction in the locmotion of microorganisms. Biophys. J. 1993,65:755-778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700