超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的功能材料,超磁致伸缩薄膜具有强磁致伸缩效应、高机电耦合系数、较高的响应速度、非接触式驱动及良好的结构性能等优点而倍受关注,在微传感器和微驱动器等领域显示出良好的应用前景。超磁致伸缩薄膜的静动态磁机耦合特性及模型是采用超磁致伸缩薄膜设计开发微器件的重要基础。但由于薄膜的磁机耦合关系具有强的非线性和滞回性,使得薄膜的特性建模十分困难。目前所建立的静态磁机耦合模型存在参数过多、计算复杂等问题,而动态磁机耦合模型的研究尚未见报道。以上这些问题严重阻碍了超磁致伸缩薄膜及其器件的发展。本论文以这种新型的功能材料为基础,以该类材料的静动态磁机耦合特性及模型为研究对象,同时应用超磁致伸缩薄膜拟研制一种能在液体微管道内泳动的微型机器人,为超磁致伸缩薄膜的静动态磁机耦合特性及其微传感器和微执行器的研究提供一个新的途径和思路。
     本论文从薄膜磁致伸缩现象的产生机理出发,分析论述了超磁致伸缩薄膜的磁致伸缩特性。同时,较为系统地分析研究了材料成分、薄膜内应力和热处理等因素对超磁致伸缩薄膜低磁场下磁致伸缩性能的影响规律。在此基础上,采用射频磁控溅射法,研制出了铽镝铁-聚酰亚胺-钐铁和铽镝铁-铜-钐铁两种双层超磁致伸缩薄膜,该薄膜具有较好的表面质量和较小的滞回性。采用赫姆霍茨线圈作为超磁致伸缩薄膜的驱动线圈,并结合激光微位移传感器作为位移量的检测单元,构成一个超磁致伸缩薄膜静动态磁机耦合特性的实验系统。对驱动线圈产生的磁场进行了有限元分析和实验研究,结果表明:驱动线圈产生磁场强度的大小和均匀度都满足了薄膜的驱动要求。
     针对超磁致伸缩薄膜的磁机耦合特性“力非线性”的特点,从唯象的角度和工程应用的角度分析了超磁致伸缩薄膜低磁场下的巨磁特性、软磁特性和预应力状态下的滞回特性。提出了一个低磁场下超磁致伸缩薄膜非线性耦合模型。该模型包括改进的瑞利模型和“蝴蝶曲线”模型。采用研制出的双层超磁致伸缩薄膜实验数据验证了所提出的模型。结果显示:模型可较好的预测超磁致伸缩薄膜低磁场磁极化回线和磁致伸缩回线,特别是描述应变回线的“蝴蝶曲线”模型,可较精确地预测超磁致伸缩薄膜低磁场下磁致伸缩回线。利用前人研制出的超磁致伸缩薄膜的实验结果同样验证了模型的正确性。
     针对超磁致伸缩薄膜的几何非线性变形特性,对研制出的聚酰亚胺基片和铜基片超磁致伸缩薄膜悬臂梁进行实验研究,发现其端部偏移量分别达到其厚度的2倍和0.5倍。同时,结合非线性弹性理论,建立了双层超磁致伸缩薄膜的几何非线性变形模型。采用所研制出的双层超磁致伸缩薄膜悬臂梁变形的试验结果验证了模型的合理性。低磁场下超磁致伸缩薄膜非线性耦合模型和几何非线性变形模型为有效地研制准静态超磁致伸缩薄膜微器件提供了重要的理论依据。
     在交变的磁场中,超磁致伸缩薄膜会展现出更强的非线性特性。根据哈密顿原理,采用分离变量法和摄动法建立了超磁致伸缩薄膜非线性振动模型。将超磁致伸缩薄膜超谐波共振的实验结果与所提出的模型进行了分析比较,结果表明:非线性振动模型可较好地解释双层超磁致伸缩薄膜的主共振和超谐波共振现象。同时,对双层超磁致伸缩薄膜的驱动特性进行系统的研究,发现两种双层超磁致伸缩薄膜具有十阶超谐波共振的特性,给出并分析了直流偏置磁场和交流磁场对超磁致伸缩薄膜共振频率、振动幅值的影响规律。超磁致伸缩薄膜的非线性振动模型和动态特性的实验研究结论可提高动态超磁致伸缩薄膜微器件的设计效率和控制精度。
     最后,探索性地将超磁致伸缩薄膜应用于微型泳动机器人的设计研究,设计研制出了一个能在液体微管道内游动的微型机器人。当超磁致伸缩薄膜的驱动频率为5阶超谐波共振频率时,微机器人实现了向前游动。根据流体动力学原理,建立了微型泳动机器人的动力学模型。针对液体粘度、机器人本体的质量和刚度、超磁致伸缩薄膜尾鳍的质量和刚度对泳动性能的影响进行了试验研究。采用聚酰亚胺基双层超磁致伸缩薄膜制作的微型机器人在汽油中的最大泳动速度可达2.86mm/s。
As a new functional material, giant magnetostrictive thin film (GMF) exhibits vastpotential in the field of microactuator and microsensor, which can benefit from the largeMagnetostrictive strains, high energy density, short response time, non-contact driving, andrelatively simple integration. The static and dynamic characteristics and models ofmagnetomechanical coupling of GMF are the basis for developing and designing GMF microdevices. However, it is very difficult to model the characteristics of GMF, due to thenonlinearity and hysteresis of the magnetomechanical coupling relations. The static model ofGMF proposed by researchers with much variables and complex computation can notdescribe the hysteresis characteristic of GMF, and the dynamic characteristic model of GMFis not presented now, which hinder the development of GMF and its devices. Therefore, basedon this new functional material, in this paper, a new way is provided to study themagnetomechanical coupling relations of GMF and microactuator and microsensor, withsome new principles and methods.
     According to the principle of magnetostriction, the magnetostrictive characteristic ofGMF is introduced, firstly. Then, the effects of material composition, internal stress andheating treatment on the magnetostrictive characteristic of GMF at low magnetic fields areanalyzed. Two kinds of bimorph GMF with good surface quality and small magnetizationhysteresis, TbDyFe-PI-SmFe and TbDyFe-Cu-SmFe, are developed by the magnetronsputtering method. Then, an experiment system for the static and dynamic characteristics ofGMF is established, which consists of a Helmholtz coil and a laser triangulation sensor. Themagnetic field amplitude and uniformity of coil are simulated by ANSYS software andtestified by experimental data. The results indicate that the magnetic field produced by thecoil match the need of magnetic field amplitude and uniformity for driving the GMF.
     For the "force nonlinearity" of magnetomechanical coupling characteristic of GMF,through analyzing the large magnetostriction, the soft magnetization and the hysteresis underthe prestress, a nonlinear coupling model of GMF at low magnetic fields, which is composedof the modified Rayleigh model and the "butterfly curve" model, is proposed. Experiments onTbDyFe-Polyimide(PI)-SmFe and TbDyFe-Cu-SmFe are conducted, respectively, to verifythe proposed model. Results indicate that the model curve coincides well with theexperimental results of the magnetic polarization and the magnetostriction forTbDyFe-PI-SmFe and TbDyFe-Cu-SmFe at low magnetic fields, especially well with the magnetostriction hysteresis. Besides, the proposed model is also in good conformity with thepublished experimental data of other GMFs.
     For the geometric nonlinear deformation of GMF, experiments on PI substrate GMF andCu substrate GMF cantilever are conformed, and the results show that the deflection ofcantilever end of is two times, and 0.5 times of these thickness, respectively. Meanwhile, withcombining the nonlinear elastic theory, a nonlinear deformation model and flexure lineequation of bimorph GMF is established. The rationality of deformation model is verified bythe bimorph GMF cantilever data. The nonlinear coupling model and nonlinear deformationmodel will provide a theoretical basis for fabricating effective quasi-static micro devices withGMF.
     Under quasi-static magnetic field, GMF exhibits the "force nonlinearity" and geometricnonlinearity, while, under the alternative magnetic field, GMF shows bigger nonlinearity.Thus, based on the Hamilton principle, by virtue of the method of separation of variables andthe perturbation method, the nonlinear vibration model is presented. Thereafter, thecomparison of the proposed model with the experimental data indicates that the nonlinearmodel can explain well the main resonance and super harmonic vibration. Then, the drivingproperty of bimorph GMF is measured and analyzed. The experimental data shows that twokinds of bimorph GMF exhibits tenth order superharmonic resonance. Moreover, the effect ofdirect current magnetic field and alternative magnetic field on the resonant frequency and thevibration amplitude is given and analyzed. The nonlinear vibration model and theexperimental conclusion of vibration characteristics can improve the design efficiency andcontrol precision of GMF devices.
     At last, GMF is employed to design a micro swimming robot for the first time. Accordingto the fish propulsion principle, a swimming micro robot in pipe is developed, whose caudalfin is fabricated by the GMF micro actuator. Experiments on the swimming characteristics ofthis micro robot show that this robot can swim in gasoline, when the driving frequency isclose to the fifth superharmonic resonant frequency of GMF beam. Moreover, the dynamicmodel of the swimming robot is given on the basis of fluid dynamics principle. The effects ofliquid viscosity, mass and rigidity of main body and of the GMF caudal fin on the swimmingperformance are studied with the experiments. The PI substrate GMF micro robot can swim ata maximum velocity of 2.86mm/s.
引文
[1] 千东范.微材料学与形状记忆合金薄膜.稀有金属,1995,19(03):211-217.
    [2] 谢海涛,斯永敏,杨德明等.超磁致伸缩薄膜材料及其应用.中国有色金属学报,2000,10(S1):266-270.
    [3] Quandt E, Seemann K. Fabrication and simulation of magnetostrictive thin-film actuators. Sensors and Actuators, A: Physical, 1995, 50(1-2): 105-109.
    [4] Quandt E. Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds, 1997, 258(1-2): 126-132.
    [5] Honda T, Arai K I, Yamaguchi M. Fabrication of magnetostrictive actuators using rare-earth (Tb,Sm)-Fe thin films (invited). Journal of Applied Physics, 1994, 76(10): 6994-6999.
    [6] Debray A, Ludwig A, Bourouina T et al. Application of a multilayered magnetostrictive film to a micromachined 2-D optical scanner. Journal of Microelectromechanical Systems, 2004, 13(2): 264-271.
    [7] 王海翔,孙萍.微机械和微机器人研究的最新进展.仪器仪表学报,2001,22(3S1):327-328.
    [8] Tan X, Zhong Y, Yang Y. Design and experiment of micro mobile robot in liquid. Proceedings of the 4th World Congress on Intelligent Control and Automation, Jun 10-14 2002, Shanghai, China, 2002: 1223-1225.
    [9] Fukuda T, Kawamoto A, Arai F et al. Mechanism and swimming experiment of micro mobile robot in water. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, May 8-13 1994, San Diego, CA, USA, 1994: 814-819.
    [10] Fukuda T, Kawamoto A, Arai F et al. Steering mechanism and swimming experiment of micro mobile robot in water. Proceedings of the 1995 IEEE Micro Electro Mechanical Systems Conference, Jan 29-Feb 2 1995, Amsterdam, Neth, 1995: 300-305.
    [11] Guo S, Fukuda T, Kato N et al. Development of underwater microrobot using ICPF actuator. Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Part 2 (of 4), May 16-20 1998, Leuven, Belgium, 1998: 1829-1834.
    [12] Guo S, Fukuda T, Asaka K. Fish-like underwater microrobot with 3 DOF. 2002 IEEE International Conference on Robotics and Automation, May 11-15 2002, Washington, DC, United States, 2002: 738-743.
    [13] Fukuda T, Hosokai H, Kikuchi I. Distributed type of actuators by shape memory alloy and its application to underwater mobile robotic mechanism. Proceedings of the 1990 IEEE International Conference on Robotics and Automation, May 13-18 1990, Cincinnati, OH, USA, 1990: 1316-1321.
    [14] Arai K I, Yamaguchi M, Honda T et al. Magnetically-driven self-moving microactuators. Smart Materials, Structures, and MEMS, Dec 11-14 1996, Bangalore, India, 1996: 562-567.
    [15] Honda T, Arai K I, Ishiyama K. Micro swimming mechanisms propelled by external magnetic fields. IEEE Transactions on Magnetics, 1996, 32(5 pt 2): 5085-5087.
    [16] honda T. Swimming Properties of a Bending-Type Magnetic Micro-Machine. Journal of Magnetic Society of Japan, 2001, 25(4-2): 1175-1178.
    [17] 王立鼎.中国MEMS的研究与开发进程.第5届海内外青年设计与制造科学会议,大连,2002.
    [18] 周兆英,叶雄英,唐飞等.微机电系统技术.电子产品世界,1999(05):19-21.
    [19] 程秀兰,蔡炳初,徐东等.形状记忆合金薄膜在微机电系统中的应用.功能材料,2002(06):594-597.
    [20] 谭茀娃,金如麟.展望21世纪微机电系统的发展.自然杂志,1999,21(02):98-100.
    [21] Body C, Reyne G, Meunier Get al. Application of magnetostrictive thin films for microdevices. 1EEE Transactions on Magnetics, 1997, 33(2 pt 2): 2163-2166.
    [22] 欧阳光耀,施引.磁致伸缩材料及其作动器设计.海军工程大学学报,1998,82(01):44-48.
    [23] 杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究:(博士学位论文).大连:大连理工大学,2001.
    [24] Clark A E. Magnetostrictive rare earth-Fe2 compounds. In: Voll W E P, ed. Ferromagnetic Materials. Amsterdam: North-Holldand Publishing Company, 1980: 531-538.
    [25] Fahlander M. New material for the conversion of electric energy to mechanical motion. Proceeding of the 10th International Workshop on Rare-Earth Magnets and their Applications, Japan, 1989: 289-302.
    [26] 朱厚卿.稀土超磁致伸缩材料的应用.应用声学,1998,17(05):3-10.
    [27] 伊豆博昭.超磁歪特集材料技衍.金属,1993,20(3):20-25.
    [28] 王槐仁,张友纯,李张明.稀土超磁致伸缩材料及在地球物理领域的应用.物探装备,2003(02):73-76.
    [29] 稀土材料国家工程研究中心.蓬勃发展的稀土磁性材料.稀土信息,2002(8):7-11.
    [30] Grundy P J, Lord D G, Williams P I. Magnetostriction in TbDyFe thin films. Journal of Applied Physics, 1994, 76(10): 7003-7005.
    [31] Quandt E, Gerlach B, Seemann K. Preparation and applications of magnetostrictive thin films. Journal of Applied Physics, 1994, 76(10): 7000-7002.
    [32] Schatz F, Hirscher M, Schnell M et al. Magnetic anisotropy and giant magnetostriction of amorphous TbDyFe films. Journal of Applied Physics, 1994, 76(9): 5380-5382.
    [33] Forester D W, Vittoria C, Schelleng J et al. Magnetostriction of amorphous TbxFel-x thin films. 1978, 49(3): 1966-1968.
    [34] Mimura Y, Imamura N. Magnetic properties of amorphous Tb-Fe thin films prepared by rf sputtering. Applied Physics Letters, 1976, 28(12): 746-748.
    [35] Huang J, Prados C, Evetts J E et al. Giant magnetostriction of amorphous TbxFel-x(0.10<x<0.45) thin films and its correlation with perpendicular anisotropy. Physical Review D, 1995, 51 (4): 297-304.
    [36] Shima T, Yokoyama H, Fujimori H. Magnetostriction and magnetic properties of Sm-Fe-B and Tb-Fe-B thin films and multilayers. Journal of Alloys and Compounds, 1997, 258(1-2): 149-154.
    [37] Quandt E. Multitarget sputtering of high magnetostrictive Tb-Dy-Fe films. Journal of Applied Physics, 1994, 75(10 pt 2A): 5653-5655.
    [38] Lacey E T, Lord D G, Grundy P J. Sputtered films ofTbDyFe. IEEE Transactions on Magnetics, 1987, 24(2): 1713-1715.
    [39] Honda T, Arai K I, Yamaguchi M. Basic properties of magnetostrictive actuators using Tb-Fe and Sm-Fe thin films. IEICE Transactions on Electronics, 1997, E80-C(2): 232-238.
    [40] Prados C, Panagiotopoulus I, Hadjipanayis G C et al. High magnetostriction in low applied magnetic fields in amorphous Tb-Fe (hard)/Fe-B (soft) multilayers. IEEE Transactions on Magnetics, 1997, 33(5): 3712-3714.
    [41] Quandt E, Ludwig A, Mencik J et al. Giant magnetostrictive TbFe/Fe multilayers. Journal of Alloys and Compounds, 1997, 258(1-2): 133-137.
    [42] Boley M S, Shin W C, Rigsbee D K et al. Capacitance bridge measurements of magnetostriction. Journal of Applied Physics, 2002, 91(10): 8210-8212.
    [43] 万红,邱佚,谢海涛等.电容位移法精确测量磁性薄膜的磁致伸缩系数.功能材料,2002,33(03):262-266.
    [44] 蒋洪川,张文旭,张万里.薄膜磁致伸缩系数计算机辅助测试系统的设计.电子测量与仪器学报,2005,28(03):72-74.
    [45] 蒋洪川,张文旭,彭斌等.薄膜磁致伸缩系数测试系统的研究.压电与声光,2006,19(03):344-346.
    [46] Du Tremolet De Lacheisserie E, Peuzin J C. Magnetostriction and internal stresses in thin films: The cantilever method revisited. Journal of Magnetism and Magnetic Materials, 1994, 136(1-2): 189-196.
    [47] Guerrero V H, Wetherhold R C. Magnetostrictive bending of cantilever beams and plates. Journal of Applied Physics, 2003, 94(10): 6659-6666.
    [48] Van R E. Deflection of a substrate induced by an anisotropic thin-film stress. Journal of Applied Physics, 1994, 76(1): 584-586.
    [49] Dapino M J, Smith R C, Flatau A B. Structural magnetic strain model for magnetostrictive transducers. IEEE Transactions on Magnetics, 2000, 36(3): 545-556.
    [50] Body C, Reyne G, Meunier G. Nonlinear finite element modelling of magneto-mechanical phenomenon in giant magnetostrictive thin films. IEEE Transactions on Magnetics, 1997, 33(2 pt 2): 1620-1623.
    [51] Benbouzid M E, Body C, Reyne G et al. Finite element modelling of giant magnetostriction in thin films. IEEE Transactions on Magnetics, 1995, 31(6 pt 2): 3563-3565.
    [52] Si H, Cho C. Finite element modeling of magnetostriction for multilayered MEMS devices. Journal of Magnetism and Magnetic Materials, 2004, 270(1-2): 167-173.
    [53] Chen H, Yang Q, Liu Set al. Element-free Galerkin modeling of giant magnetostrictive thin films. IEEE Transactions on Magnetics, 2005, 41(5): 1512-1515.
    [54] Yang Q, Chert H, Liu S et al. Dynamic modeling of a magnetic system constructed with giant magnetostrictive thin film using element-free Galerkin method. IEEE Transactions on Magnetics, 2006, 42(4): 939-942.
    [55] Guerrero V H, Wetherhold R C. Strain and stress calculation in bulk magnetostrictive materials and thin films. Journal of Magnetism and Magnetic Materials, 2004, 271(2-3): 190-206.
    [56] Bourouina T, Gamier A, Fujita H. Effect of direct current bias field and alternating current excitation field on vibration amplitudes and resonance frequencies of a magnetostrictively actuated bimorph microresonator. Journal of Applied Physics, 2002, 91(1): 112-120.
    [57] Tiercelin N, Pernod P, Preobrazhensky V et al. Non-linear actuation of cantilevers using giant magnetostrictive thin films. Ultrasonics, 2000, 38(1-8): 64-66.
    [58] Honda T, Arai K I, Yamaguchi M. Fabrication of actuators using magnetostrictive thin films. Proceedings of the IEEE Micro Electro Mechanical Systems, 1994: 51-56.
    [59] Okazaki T, Okanisi N, Miura Y et al. Bimorph-type magnetostrictive actuator/sensor thin films. 2005 Materials Research Society Fall Meeting, Nov 28-Dec 1 2005, Boston, MA, United States, 2006: 87-92.
    [60] 万红,李再轲,邱轶等.TbDyFe超磁致伸缩薄膜的低场磁敏特性.中国有色金属学报,2004,14(1):37-41.
    [61] 周白杨,邓光华,林庆彬.试片取向与IBS沉积TbDy-Fe膜应力及磁伸性能.真空科学与技术学报,2005,25(4):268-270.
    [62] 彭俊华,周白杨,邓光华等.磁控溅射SmFe2GMF的工艺及膜性能研究.福州大学学报:自然科学版,2003,31(6):690-694.
    [63] 吕凤军,斯永敏,傅国如.TbDyFe-FeNi多层膜/光纤磁传感器特性研究.功能材料与器件学报,2006,12(02):159-162.
    [64] Quandt E, Seemann K. Fabrication of giant magnetostrictive thin film actuators. Proceedings of the 1995 IEEE Micro Electro Mechanical Systems Conference, Jan 29-Feb 2 1995, Amsterdam, Neth, 1995: 273-277.
    [65] Lim S H, Choi Y S, Han S H et al. Magnetostriction of Sm-Fe and Sm-Fe-B thin films fabricated by RF magnetron sputtering. Journal of Magnetism and Magnetic Materials, 1998, 189(1): 1-7.
    [66] Seong Y H, Kim K S, Yu S C et al. Magnetization behavior of giant magnetostrictive amorphous Sm-Fe thin films. IEEE Transactions on Magnetics, 1999, 35(5 pt 2): 3808-3810.
    [67] Honda T, Hayashi Y, yamaguchi M et al. Fabrication of Thin-Film Actuators Using Magnetostriction. Journal of Magnetics Society of Japan, 1994, 18(2): 477-480.
    [68] Honda T, Arai K I. Driving Principles for Magnetic Thin-Film Cantilevers. Journal of Magnetics Society of Japan, 1997, 21(4-2): 817-820.
    [69] Moon S, Kang H K, Lim S H et al. Fabrication of cantilever type fiber optical switch using giant magnetostrictive thin film. Proceedings of the 1999 IEEE International Magnetics Conference 'Digest of Intermag 99', Kyongju, South Korea, 1999: 0-5.
    [70] Bourouina T, Garnier A, Fujita H. Magnetostrictive microactuators and application to two-dimensional optical scanners. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2002, 41(3 A): 1608-1613.
    [71] Torii Y, Wakiwaka H, Kiyomiya T et al. Tb-Fe-Co giant magnetostrictive thin film and its application to force sensor. Journal of Magnetism and Magnetic Materials, 2005, 290-291 PART 2: 861-864.
    [72] Meng Z, Zhang X, Dong F et al. Experimental research on all polarization maintaining fibre magnetostrictive sensor. Journal of Optics A: Pure and Applied Optics, 2005, 7(6): 352-355.
    [73] 张学亮,倪明,孟洲等.磁致伸缩材料被覆保偏光纤磁场传感研究.压电与声光,2006,28(04):384-389.
    [74] 刘吉延,斯永敏,李智忠等.采用超磁致伸缩薄膜的光纤磁场传感器.半导体光电,2004,25(03):238-241.
    [75] 吕凤军,斯永敏,傅国如.TbDyFe-FeNi多层膜/光纤磁传感器特性研究.功能材料与器件学报,2006,12(02):159-162.
    [76] 吕凤军,斯永敏,傅国如等.TbDyFe-FeNi多层膜/光纤磁传感器磁敏性能实验研究.半导体光电,2006,27(04):419-422.
    [77] 温诗铸,丁建宁.微型机械设计基础研究.机械工程学报,2000,36(07):39-42.
    [78] 谭湘强,钟映春,杨宜民.液体中泳动微机器人的现状与分析.机器人,2001,23(05):467-470.
    [79] 付国强,梅涛,孔德义等.微型机器人外场驱动技术的研究现状与发展.光学精密工程,2003,11(04):333-337.
    [80] Fukuda T, Kawamoto A, Arai F et al. Steering mechanism of underwater micro mobile robot. Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Part 1 (of 3), May 21-27 1995, Nagoya, Jpn, 1995: 363-368.
    [81] 钟映春,谭湘强,杨宜民.泳动微机器人主体机构的设计研究.机床与液压,2001,23(06):18-19.
    [82] 钟映春,谭湘强,杨宜民.泳动微机器人主体机构放大性能研究.机械工程师,2002(01):63-65.
    [83] Guo S, Fukuda T, Oguro K. Development of an artificial fish microrobot. International Symposium on Micromechatronics and Human Science (MHS'99) 'Towards the New Century', Nov 23-Nov 26 1999, Nagoya, Jpn, 1999: 135-140.
    [84] Guo S, Fukuda T, Asaka K. A new type of fish-like underwater microrobot. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141.
    [85] Guo S, Kato N, Fukuda T et al. Fish-microrobot using ICPF actuator. Proceedings of the 1998 5th International Workshop on Advanced Motion Control, AMC, Jun 29-Jul 1 1998, Coimbra, Portugal, 1998: 592-597.
    [86] Guo S, Okuda Y, Asaka K. A novel type of underwater micro biped robot with multi DOF. Proceedings- 2004 IEEE International Conference on Robotics and Automation, Apr 26-May 1 2004, New Orleans, LA, United States, 2004: 4881-4886.
    [87] Guo S, Okuda Y, Asaka K. Hybrid type of underwater Micro Biped Robot with walking and swimming motions. IEEE International Conference on Mechatronics and Automation, ICMA 2005, Jul 29-Aug 1 2005, Niagara Falls, ON, Canada, 2005: 1604-1609.
    [88] 周银生,贺惠农,顾大强等.医用微型机器人无损伤体内驱动方法.科学通报,1999,44(20):2210-2213.
    [89] 何斌,岳继光,周群等.新型医用微型机器人运行环境研究.中国机械工程,2005,16(24):2234-2238.
    [90] 梁亮,夏卿坤,张刚林等.医用微型机器人螺纹参数的研究.机械科学与技术,2005,24(11):1374-1376.
    [91] Mojarrad M, Shahinpoor M. Biomimetic robotic propulsion using polymeric artificial muscles. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, ICRA. Part 3 (of 4), Apr 20-25 1997, Albuquerque, NM, USA, 1997: 2152-2157.
    [92] Saotome H, Okubo T, Ikeda Y. A novel actuator with Nd-Fe-B magnets swimming in parallel to the magnetic field. 2002 International Magnetics Conference (Intermag 2002), Apr. 28-May 2 2002, Amsterdam, Netherlands, 2002:3009-3011.
    [93] Guo S X ,y Sasaki Y F. A Fin Type of Microrobot in Pipe. International Symposium on Micromechatronics and Human Science, 2002: 93-98.
    [94] Ishiyama K, Sendoh M, Yamazaki A et al. Swimming micro-machine driven by magnetic torque. Sensors and Actuators, A: Physical, 2001, 91(1-2): 141-144.
    [95] Ishiyama K, Sendoh M, Yamazaki A et al. Swimming of magnetic micro-machines under a very wide-range of Reynolds number conditions. 8th Joint Magnetism and Magnetic Materials -International Magnetic Conference- (MMM-Intermag), Jan 7-11 2001, San Antonio, TX, 2001: 2868-2870.
    [96] Ishiyama K, Sendoh M, Arai K I. Magnetic micromachines for medical applications. Journal of Magnetism and Magnetic Materials, 2002, 242-2450): 41-46.
    [97] Sendoh M, Ishiyama K, Arai K I. Direction and individual control of magnetic micromachine. 2002 International Magnetics Conference (Intermag 2002), Apr 28-May 2 2002, Amsterdam, Netherlands, 2002: 3356-3358.
    [98] Sato F, Jojo M, Matsuki H et al. The operation of a magnetic micromachine for hyperthermia and its exothermic characteristic. 2002 International Magnetics Conference (Intermag 2002), Apr 28-May 2 2002, Amsterdam, Netherlands, 2002: 3362-3364.
    [99] Sendoh M, Ishiyama K, Arai K I et al. Fabrication of magnetic micromachine for local hyperthermia. 2002 International Magnetics Conference (Intermag 2002), Apr 28-May 2 2002, Amsterdam, Netherlands, 2002: 3359-3361.
    [100] Mei T, Chen Y, Fu G et al. Wireless drive and control of a swimming microrobot. 2002 IEEE International Conference on Robotics and Automation, May 11-15 2002, Washington, DC, United States, 2002: 1131-1l36.
    [101] 梅涛,孔德义,张培强等.微电子机械系统的力学特性与尺度效应.机械强度,2001,23(04):373-379.
    [102] Fukuda T, Hosokai H, Ohyama H et al. Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables. Proceedings. 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. IEEE, 1991: 210-215.
    [103] Tsuruta K, Sasaya T, Shibata T et al. Control circuit in an in-pipe wireless micro inspection robot. Proceedings of the 2000 International Symposium on Micromechatronics and Human Science, Oct 22-25 2000, United States, 2000: 59-64.
    [104] Shibata T, Sasaya T, Kawahara N. Development of in-pipe microrobot using microwave energy transmission. Electronics and Communications in Japan, Part Ⅱ: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 2001, 84(11): 1-8.
    [105] Nishikawa H, Sasaya T, Shibata T et al. In-pipe wireless micro locomotive system. International Symposium on Micromechatronics and Human Science (MHS'99) 'Towards the New Century', Nov 23-Nov 26 1999, Nagoya, Jpn, 1999: 141-147.
    [106] Kawahara N, Shibata T, Sasaya T. In-pipe wireless micro robot. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3834: 166-171.
    [107] Shibata T, Sasaya T, Kawahara N. Microwave energy supply system for in-pipe micromachine. Proceedings of the 1998 9th International Symposium on Micromechatronics and Human Science, MHS, Nov 25-28 1998, Nagoya, Jpn, 1998: 237-242.
    [108] 程良伦,杨宜民.一种新型管道内微机器人的研究。机器人,1999,21(04):249-255.
    [109] Hayashi T. Research and development of micromechanisms. Ultrasonics, 2000, 38(1-8): 6-14.
    [110] Du Tremolet De Lacheisserie E. Magnetostriction: Theory and Applications of Magnetoelasticity. Boca Raton: CRC Press, 1993.
    [111] 钟文定.铁磁学(中册).北京:科学出版社,2000.
    [112] 姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003.
    [113] 周福洪.水声换能器及基阵.北京:国防工业出版社,1984.
    [114] Choudhary P, Meydan T. A novel accelerometer design using the inverse magnetostrictive effect. Sensors and Actuators A, 1997, 59(4): 51-55.
    [115] 赵英俊,杨克冲,杨叔子.非晶态合金传感器技术与应用.武汉:华中理工大学出版社.1998.
    [116] Honda T, Hayashi Y, Arai K I et al. Magnetostriction of sputtered Sm-Fe thin films. IEEE Transactions on Magnetics, 1993, 29(6 pt 1): 3126-3128.
    [117] 万红,李再轲,邱轶等.TbDyFe超磁致伸缩薄膜的低场磁敏特性.中国有色金属学报,2004,14(01):37-41.
    [118] 万红,斯永敏,谢海涛等.NdFeB薄膜制备及对TbFe薄膜磁致伸缩性能的影响.金属功能材料,2001,8(03):13-16.
    [119] 卢志红,周白杨,邓光华等.工艺参数对Sm-Fe超磁致伸缩薄膜沉积速率的影响.稀土,2004,25(03):9-12.
    [120] Inoue M, Fujii T, Gibbs M R J. Improvement of low field magnetostriction of amorphous TbFe sputtered films by thermal annealing. IEEE Transactions on Magnetics, 1996, 32(5): 4758-4760.
    [121] Williams P I, Lord D G, Grundy P J. Magnetostriction in polycrystalline sputter-deposited TbDyFe films. Journal of Applied Physics, 1994, 75(10 pt 1): 5257-5261.
    [122] 雷银照.轴对称线圈磁场计算.北京:中国计量出版社,1991.
    [123] 《电线电缆手册》编委会组编.电线电缆手册.北京:机械工业出版社,2001.
    [124] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999.
    [125] 唐兴伦等.ANSYS工程应用教程.北京:中国铁道出版社,2003.
    [126] Ried K, Schnell M, Schatz F et al. Crystallization behaviour and magnetic properties of magnetostrictive TbDyFe films. Physica Status Solidi (A) Applied Research, 1998, 167(1): 195-208.
    [127] 肖纪美,朱逢吾.材料能量学.上海:上海科学技术出版社,1999.
    [128] Kloos G. On the thermodynamic framework for the description of reversible magnetomechanical and magnetocaloric phenomena. Journal of Magnetism and Magnetic Materials, 1997, 172(3): 247-253.
    [129] Cullity B D. Introduction to Magnetic Materials. Massachusetts: Addison-Wesley Publishing Company, 1972.
    [130] Zhang W X, Peng B, Jiang H C et al. Influence of film thickness on deformation of a free magnetostrictive film-substrate system. Journal of Magnetism and Magnetic Materials, 2002, 247(1): 111-116.
    [131] Voltairas P A, Fotiadis D I, Massalas C V. Magnetization reversal in thin ferromagnetic films under mechanical stress. International Journal of Engineering Science, 2000, 38(8): 903-919.
    [132] Kumar J S, Ganesan N, Swarnamani S et al. Active control of beam with magnetostrictive layer. Computers and Structures, 2003, 81(13): 1375-1382.
    [133] Kumar J S, Ganesan N, Swarnamani S et al. Active control of simply supported plates with a magnetostrictive layer. Smart Materials and Structures, 2004, 13(3): 487-492.
    [134] 奥汉德利RC著.周永洽译.现代磁性材料原理和应用.北京:化学工业出版社,2002.
    [135] 刘正兴,孙雁,王国庆.计算固体力学.上海:上海交通大学出版社,2000.
    [136] 李卓球,董文堂.非线性弹性理论基础.北京:科学出版社,2004.
    [137] 王福吉.正负超磁致伸缩复合薄膜静动态特性及控制关键技术:(博士学位论文).大连:大连理工大学,2005.
    [138] 廖绍彬.铁磁学(下册).北京:科学出版社,1988.
    [139] Samir A E. A theoretical and experimental study of nonlinear dynamics ob buckled beams: [dissertation]. Blacksburg: Virginia polytechnic institute and state university, 2002.
    [140] Dym C L, Shames I H. 固体软科学变分法.北京:中国铁道出版社,1984.
    [141] Nayfeh A H, Mook D T. Nolinear oscillations. New York: HON WILEY & SONS, Inc., 1979.
    [142] Nayfeh A H. Introduction to Perturbation Techniques. New York: A wiley-interscience Publication. John Wiley & Sons, Inc, 1981.
    [143] Thomsen J J. Vibrations and stability. Berlin: Springer, 2003.
    [144] Nayfeh A H, Pai P F. Linear and nonlinear structural mechanics. Hoboken: A JOHN WILEY & SONS,INC., 2004.
    [145] Li H, Preidikman S, Balachandran B et al. Nonlinear free and forced oscillations of piezoelectric microresonators. Journal of Micromechanics and Microengineering, 2006, 16(2): 356-367.
    [146] Abdel-rahman E M, Nayfeh A H, Younis M I. Dynamics of an electrically actuated resonant microsensor. Proceedings of International Conference on MEMS, NANO and Smart Systems, Banff, 2003: 188-196.
    [147] Thomsen J J. Vibrations and stability. Berlin: Springer, 2003.
    [148] 方同,薛璞.振动理论及应用.西安:西安工业大学出版社,2000.
    [149] 褚亦清,李翠英.非线性振动分析.北京:北京理工大学出版社,1996.
    [150] 张永顺,刘巍,贾振元等.外场驱动无缆微机器人的仿生游动特性.机械工程学报,2005,41(10):51-56.
    [151] 陶祖莱.生物流体力学.北京:科学出版社,1984.
    [152] Webb P W. Form and function in fish swimming. Scientific American, 1984, 251(1): 58-68.
    [153] Sfakiotakis M, Lane D M, Davies J B. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
    [154] W R M. Water flow about a swimming fish: [Master's thesis]. Los Angeles: University of California, Los Angeles-UCLA, 1959.
    [155] Mojarrad M, Shahinpoor M. Biomimetic robotic propulsion using polymeric artificial muscles. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, ICRA. Part 3 (of 4), Apr 20-25 1997, Albuquerque, NM, USA, 1997: 2152-2157.
    [156] Blake R W. On ostraciiform locomotion. Journal of the Marine Biological Association of the United Kingdom, 1977, 57(4): 1047-1055.
    [157] Blake R W. Mechanics of ostraciiform propulsion. Canadian Journal of Zoology, 1981, 59(6): 1067-1071.
    [158] Weihs D, Webb P W. Optimization of locomotion. In: Weihs D, Webb P W,ed. Fish Biomechanics. New York: Praeger, 1983:339-371.
    [159] 罗惕乾.流体力学.北京:机械工业出版社,1999.
    [160] <电气工程师手册>第二版编辑委员会.电气工程师手册(第二版).北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700