基于可控锁止机构的伸缩式微管道机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家高技术研究发展计划(863计划)项目“基于单向机构的伸缩式微管道机器人”为依托,针对核反应堆蒸发器传热管道的自动检测,围绕管道机器人“微小型化、大牵引力、快速、双向运动”的目标,通过对国内外现有管道机器人的分析比较,吸收借鉴各种方案的优点,提出一种新的微管道机器人——基于可控锁止机构的伸缩式微小管道机器人。本文按照从设计、分析、优化到样机研制与试验的研究思路开展新型微小管道机器人的研究。全文研究工作主要包括:
     1)在分析基于锁止机构的伸缩式管道机器人推进机理的基础上,分析比较了运用于该类机器人的多种单向锁止机构方案,对其优缺点进行了阐述,结合课题实际需要提出了一种新的锁止机构——可控锁止机构,并对基于该机构的伸缩式微小管道机器人的运动机理进行了分析和论述。
     2)为了指导结构设计和优化,本文对凸轮自锁和扭簧对自锁的影响进行了分析,并通过建立凸轮曲面和可控锁止机构的数学模型,分析给出了凸轮曲面参数和可控锁止机构的换向所需满足的条件,并对管径的可适应范围进行了分析。
     3)对微小管道机器人的整体结构进行了详细设计,对可控锁止机构和驱动机构工作原理进行了详细阐述,及对所需参数的进行了详细分析计算。针对锁止机构的特点,主要对连杆参数和换向力的大小进行了详细分析计算,保证了换向的可靠性。为了使机器人获得较大的牵引力和速度,对驱动丝杠进行了参数选取和强度校核,并分析计算了传动机构的传输效率,给出了驱动电机的选取依据。
     4)成功研制了试验样机,较好的搭建了综合试验系统,针对锁止机构锁止方向可控的特点进行了验证试验,并对机器人进行了速度和牵引力的综合试验,最后对机器人进行了管径适应性试验和双向运动试验。经过试验,该试验样机能够平稳运行于内径为Φ17~20 mm的管道,且机器人能在速度10 mm/s的条件下拥有12 N的牵引力,具有0~90o爬坡能力,并能够双向运动,较好的达到了管道机器人“微小化、大牵引力、快速、双向运动”的设计要求。
On the ground of the program of Telescopic Micro In-pipe Robot Based on Unilateral Locking Mechanism supported by the Hi-Tech Research and Development Program (863) of china, the paper aims at the heat transfer pipelines for nuclear reactor evaporator and technological breakthrough of“micro-miniaturization, large traction, rapid speed and two-way locomotion”for in-pipe robot. By comparison of present in-pipe robots in and out of China and absorbing advantages, a new telescopic micro in-pipe robot based on controllable locking mechanism was presented. Following the flow of design, analysis, optimization and prototype development and test, the research of the new micro in-pipe robot was processed. The main work done in this paper is as follows:
     1) On the ground of the telescopic micro in-pipe robot’s boosting principle, which was based on locking mechanism, several one-way locking mechanism that could be applied to this sort of robots were compared, and their advantages and disadvantages were described. And Considering practical requirements, a new controllable locking mechanism is presented. Then kinetic principles of robot with this mechanism were analyzed.
     2) For instructing the design and optimization, the pinciple cam’s self-locking and the influence of torsional spring to self-locking was analyzed. And, by building the mathematical model of cam’s curve face and controllable locking mechanism, the requirements for the curve face’s parameters and changing locomotion directions should meet were presented. Then the diameter’s scale which the robot could be adaptable to was analyzed.
     3) The whole structure of this robot was designed in detail, the working principles of controllable locking mechanism and driving mechanism were described, and parameters needed were also calculated in detail. According to characters of locking mechanism, parameters of links and magnitude of commutating forces were calculated comprehensively, enabling the reliability of commutation. To ensure the robot own a large traction and speed, driving lead screw’s parameters were selected and strength was checked. Then the transmission efficiency of transmission structure was computed, offering choosing evidence for the driving motors.
     4) The prototype was successfully developed, and a comprehensive test system was built. Aiming at the feature that locking direction could be controlled, tests were carried out. What’s more, tests about velocity and traction were carried out. Finally, robot’s adjustment to pipe’s diameters and two-way locomotion were also tested. Results demonstrated that this robot’s prototype can move steadily in pipe with diameter fromΦ17~20 mm, own a traction value of 12 N at the speed of 10 mm/s, climb slopes with degrees ranging from 0~90o, and carry a two-way movement. These all well meet the design of goals of“micro-miniature, large traction, rapid speed and two-way locomotion”for the in-pipe robot.
引文
[1]朱齐荣.核电厂机械设备及其设计[M].北京:原子能出版社, 1990.
    [2]甘建衡.秦山核电二期工程蒸汽发生器的设计特点[J].核动力工程, 1995, 16(1): 18-22.
    [3]李旻.细小工业管道群管束间狭窄空间检测机器人系统的研究[D].上海:上海大学, 2003.
    [4]杨宝初.我国核蒸汽发生器传热管在役检测现状[J].无损检测, 2000, 22(5): 215-218.
    [5]丁训慎,杨宝初.大亚湾核电站蒸汽发生器传热管的涡流检查[J].核动力工程, 1999, 20(5): 417-420.
    [6] 863计划MEMS技术发展战略研究专家组.“十五”863计划重大专项可行性研究报告[R],2001.
    [7]邓宗全,毕德学.管道机器人[J].机器人技术与应用, 1996, (6): 12-14.
    [8]周晓,张晓华,邓宗全等.管内作业机器人的发展与展望[J].机器人, 1998, 20(6): 471-478.
    [9]李旻,章亚男,陈方泉等.管内作业的微小型机器人[J].管道技术与设备, 2000, (4): 7-11.
    [10] Yoshihiro, Yamada. Inspection Pig System for Offshore Pipeline [R]. Nippon Kokan Technical Report. 1983, (99): 109-115.
    [11] Y. Yamada, Y. Uchida, T. Hosoe, et al. Inspection Pig System for Offshore Pipeline [R]. Nippon Kokan Technical Report. 1986, (111): 53-59.
    [12] E. Appleton, N. W. Stutchbury. Novel Brush Drive Robotic Tractor for Sewer and Water Main Inspection and Maintenance [J]. Industrial Robot, 2000, 27(5): 370-377.
    [13] J. Vertut, P. Marchal. Vehicles with Wheels and Legs, The In-Pipe Remote Inspection Vehicle & His Family. 3rd Symp. On Theory and Practice of Robot & Manipulators, 1978: 476-487.
    [14]刘大维,彭商贤,龚进峰.地下管道检测移动机器人的发展现状[J].吉林工业大学学报, 1998, 28(1): 109-112.
    [15] T. Shibata, T. Sasaya. Microwave Energy Supply System for In-Pipe Micromachine [C]. Int. Symposium on Micro-mechatronics & Human Science. 1998, 237-242.
    [16] K. Tsuruta, T. Sasaya. Control Circuit in an In-Pipe Wireless Micro Inspection Robot [C]. Int. Symposium on Micro-mechatronics & Human Science. 2000,59-64.
    [17]张永顺.管道机器人技术与微管道机器人[D].杭州:浙江大学, 2001.
    [18]姜生元.管内X射线探伤机器人技术及理论研究[D].哈尔滨:哈尔滨工业大学, 2001.
    [19]何斌.医用微型机器人动力学建模及其行为智能控制研究[D].杭州:浙江大学, 2001.
    [20]陈军.海底管道检测机器人技术的研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [21]罗怡.双压电薄膜细小管道机器人的研究[D].上海:上海大学, 2002.
    [22] http://www.sondex.com
    [23] Wireline Tractor Production Logging Wxperience in Australian Horizotal Well [P].SPE 51612:1998,10:12214
    [24]李鹏,马书根,李斌等.具有自适应能力管道机器人的设计与运动分析[J].机械工程学报, 2009, 45(1).
    [25]刘强,王树立,赵书华,陈宏.油气储运行业管道机器人发展现状与展望[J].管道技术与设备,2006,6:24-26.
    [26] E. Rome, J. Hertzberg, F. Kirchner, et al. Towards Autonomous Sewer Robots: the MAKRO Project [J]. Urban Water, 1999, 1: 57-70.
    [27]李明东,奚汉达,储金荻等.一种正方体型管内仿生蠕动机器人[J].上海交通大学学报, 2001, 35(1): 64-67.
    [28]李明东.形状记忆合金驱动器及在微小型移动机器人中的应用研究[D].上海:上海交通大学, 2001.
    [29] A. Zagler, F. Pfeiffer.“MORITZ”a Pipe Crawler for Tube Junctions [C]. IEEE Int. Conf. on Robotics & Automation, Taipei, Taiwan, 2003: 2954-2959.
    [30] K. Suzumori, T. Miyagawa, M. Kimura, et al. Micro Inspection Robot for 1-in Pipes [J]. IEEE/ASME Transactions on Mechatronics, 1999, 3(4): 286-292.
    [31] I. Hayashi, N. Iwatsuki, K. Morikawa, et al. An In-Pipe Operation Microrobot Driven Based on the Principle of Screw-Development of a Prototype for Running in Long and Bent Pipes [C]. IEEE Int. Symposium on Micromechatronics & Human Science, 1997: 125-129.
    [32] I. Hayashi, N. Iwatsuki, S. Iwashina. The Running Characteristics of a Screw-Principle Micro Robot in a Small Bent Pipe [C]. IEEE the 6th Int. Symposium on Micro Machine & Human Science, 1995: 225-228.
    [33] K. Suzumori, T. Miyagawa, M. Kimura, et al. Micro Inspection Robot for 1-in Pipes [J]. IEEE/ASME Transactions on Mechatronics, 1999, 3(4): 286-292.
    [34] C. Anthierens, C. Libersa, M. Touaibia, et al. Micro Robots Dedicated to Small Diameter Canalization Exploration [C]. Proc. IEEE/RSJ Int. Conf. on IntelligentRobots & Systems, Takamatsu, Japan, 2000: 480-485.
    [35] Lim, H. Park, J. An, et al. One Pneumatic Line Based Inchworm-like Micro Robot for Half-inch Pipe Inspection [J]. Mechatronics, 2008, 18: 315-322.
    [36] T.Idogaki, H,Kanayama, N.Ohya, et al. Characteristics of Piezeoelectric Locomotive Mechanism for an In-Pipe Micro Inspection Machine [C]. IEEE Proceedings of Sixth International Symposium on Micro Machine and Human Science, 1995: 193-198.
    [37] Wamamoto S.Fukushima H.A Study of a Pipe Inside Mover with Elastic Bristles [ C]. Transaction of the ISME, 1988, 54(506): 2471-2472.
    [38] Lim, H. Park, J. An, et al. One Pneumatic Line Based Inchworm-like Micro Robot for Half-inch Pipe Inspection [J]. Mechatronics, 2008, 18: 315-322.
    [39]孙麟治,孙萍,秦新捷等.细小管道内爬行的微机器人[J].光学精密工程, 1998, 6(5): 57-63.
    [40]罗怡.双压电薄膜细小管道机器人的研究[D].上海:上海大学, 2002.
    [41]刘品宽.基于双压电膜驱动的管内移动微小型机器人系统的研究[D].哈尔滨:哈尔滨工业大学, 2003.
    [42]王殿君,李润平,黄光明.管道机器人的研究进展[J].机床与液压, 2008, 36(4): 185-187.
    [43]徐从启,解旭辉,戴一帆.新型微小管道机器人驱动特性分析[J].国防科技大学学报. 2010, 32(1): 152-158.
    [44]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社, 2003.
    [45]刘飞,徐宗俊.机床主传动系统能量传输数学模型[J].重庆大学学报, 1990, 13(2): 8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700