微结构环交联型聚膦腈材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究提出了一种全新的制备聚合物纳米管的原位模板法,并通过此方法制备了环交联型聚(环三膦腈-co-4,4’-二羟基二苯砜)[poly(cyclotriphosphazene-co-4,4’-sulfonyldiphonel), PZS]纳米管。原位模板法是利用六氯环三膦腈(HCCP)与4,4’-二羟基二苯砜(BPS)在交联缩合反应中原位产生的三乙胺盐酸盐(TEACl)晶体为模板,在超声振荡作用下用一步反应制得PZS纳米管。制备和后处理过程简单,易于工业化生产。核磁跟踪测试表明,HCCP和BPS进行的是双分子亲核取代反应(S_N2),三乙胺(TEA)在反应中不仅作为缚酸剂,而且还起着活化BPS、促进亲核进攻的作用。通过改变反应条件可以控制PZS纳米管的内径在5-10 nm或10-20 nm,长度在1-2μm或者5μm以上,以及PZS纳米管的端口的开口或者闭口结构。PZS纳米管是高度交联的环交联型分子结构。
     TEM分析证实了PZS纳米管形成过程:随着反应的进行,高度交联的PZS和TEACl晶体从反应溶液中析出,析出的PZS纳米颗粒粘附在TEACl纳米微晶的表面形成核壳结构,最后水洗除去模板TEACl晶体获得PZS纳米管。通过薄层毛细渗透技术测量了PZS纳米管和TEACl微晶体的表面能,运用联立粘合理论进行计算,结果表明PZS能够很好的浸润TEACl晶体,PZS能够在TEACl晶体上自发铺展,粘附功高达88.33 mJ/m~2,是管状纳米结构形成的原始推动力。
     PZS纳米管具有优异的热稳定性,N2下热分解温度达550 oC,加热至900 oC时仍有55
A novel in situ template approach to polymer nanotubes was developed, via which cyclomatrix-type poly(cyclotriphosphazene-co-4,4’-sulfonyldiphonel) (PZS) nanotubes were prepared. Under ultrasonic condition, triethylammonium chloride (TEACl) crystals were formed to act as in situ templates during the polycondensation between hexachlorocyclotriphosphazene (HCCP) and 4,4’-sulfonyldiphenol (BPS). The preparation of PZS nanotubes was simple and easy to scale up, so did the post treatment. 1H NMR monitor of the polycondensation showed that TEA acted as not only acid-acceptor but also catalyst to activate BPS for nucleophilic substitution. And condensation between HCCP and BPS followed a bimolecular nucleophilic substitution (S_N2) pattern. The dimensions of PZS nanotubes could be controlled in a diameter range of 5-10 nm or 10-20 nm, lengths of 1-2μm or more than 5μm, tips of open-ends and close-ends by varying reaction conditions. PZS nanotubes had a molecular structure of highly cross-linked cyclo-matrix.
     TEM analysis confirmed the formation process of PZS nanotubes: during the polycondensation, highly cross-linked PZS nano-particles and TEACl nano-crystals were first precipitated out of the reaction medium, PZS nano-particles then adhered onto the surfaces of TEACl nano-crystals to form core-shell structures, finally, after removal of the TEACl templates
引文
[1] Tenne R. Angew Chem Int Ed, 2003, 42, 5124. [2 ] Patake G R, Krumeich F,Nesper R. Angew Chem Int Ed,2002, 41, 2446.
    [3] Morales A M,L iebr CM. Science, 1998, 21, 208.
    [4] Iijima S. Nature, 1999, 354, 56.
    [5] Chen J, Li S L, Tao Z L, Gao F, Chem. Commun. 2003, 980.
    [6] B C Satishkumar, A Govindaraj, M Nath, C N R. Rao, J. Mater. Chem. 2000, 10, 2115.
    [7] Y R Hacohen, E Grunbaum, R Tenne, J Sloan, J L Hutchison, Nature 1998, 395, 337.
    [7] F L Deepak, A Govindaraj and C N R. Rao, J. Nanosci.Nanotechnol., 2001, 1, 303.
    [8] M Remskar, Z Skraba, P Stadelmann, F Levy, Adv. Mater. 2000, 12, 814.
    [9] O Stephan, P M Ajayan, C Colliex, P Redlich, J M Lambert, P Bernier, P Lefin, Science 1994, 266, 1683.
    [10] Y D Li, J W Wang, Z X Deng, Y Y Wu, X M Sun, D P Yu, P D Yang, J. Am. Chem. Soc. 2001, 123, 9904; R K Zheng, Y Yang, Y Wang, J Wang, H L W Chan, C L Choy, C G Jin, X G Li, Chem. Commun. 2005, 1447.
    [11] Crowley T A, Ziegler K J ,Lyond D M, et al. Chem Mater,2003, 15, 3518.
    [12] T Shimizu, M Masuda, H Minamikawa, Chem. Rev. 2005, 105, 1401.
    [13] M M Bergshoef, G J Vancso, Adv. Mater., 1999, 11, 1362.
    [14] Seung Cho, and co.Chem. Mater., 2005,17, 4565
    [15] H Yan, M Inokuchi, M Kinoshita, N Toshima, Synt. Meta. 2005, 148, 93.
    [16] Hu Yan, Synth. Met, 2005, 148, 93
    [17] Manda B M, Conducting polymer nanocomposites with extremely low percolation thresho, Bull Mater Sci, 1998, 21, 161-1651.
    [18] S J Kwoun, R M Lec, Proceedings of the Annual IEEE International Frequency Control Symposium, 2000, 52.
    [19] X Wang, L A Samuelson, Materials Research Society Symposium Proceedings, 2002, 708, 403.
    [20] J A Matthews, G E Wnek, D G Simpson, G L Bowlin, Biomacromolecules, 2002, 3, 232.
    [21] Z M Huang, Y Z Zhang, S Ramakrishna, C T Lim, Polymer, 2004, 45: 5361.
    [22] E R Kenawy, G L Bowlin, K Manseld, J. Control. Release., 2002, 81, 57.
    [23] T B Bini, Nanotechnology 2004, 15, 1459.
    [24] J Gorss, Researchers Develop Bandages that Mimic Body’s Healing Process. http://www. e4engineering.com, 2003, 2, 11.
    [25] S J Kwoun, R M Lec, et al. Proceedings of the Annual IEEE International Frequency Control Symposium, 2000, 52.
    [26] H L Schreuder-Gibson, P. Gibson, ACS Symposium Series, 2006, 918, 121.
    [27] M Steinhart, J H Wendorff, A Greiner, et al. Science, 2002, 296, 1997.
    [28] V M Cepak, C R Martin, Chem. Mater., 1999, 11, 1363.
    [29] H Q Hou, J Zeng, A Reuning, et al. Macromoleculoes, 2002, 35, 2429.
    [30] B Michael, H Q Hou, I Michael, et al. Adv, Mater., 2000, 12, 637.
    [31] J H Ding, D L Gin, J. Polym. Prepr., 1999, 40, 738.
    [32] W Q Ga, W J Zhou, D L Gin, J. Chem. Mater., 2001, 13,1949
    [33]Meihua Jin and co. Adv. Mater. 2005 ,17,1977
    [34] 姚海霞,赵庆章,邓新华, 静电纺丝法制备超吸水纤维的研究, 纺织科学研究 2003, 4 , 1.
    [35] Helfrich W, and co. J. Phys. Rev. A 1988, 38, 3065.
    [36] Fuhrhop J-H, and co. Angew. Chem., Int. Ed. Engl. 1994, 33, 350.
    [37] Chung D S, and co. Proc. Natl. Acad. Sci. U.S.A. 1993, 90,1341.
    [38] Yamaguchi T, and co. J. Am. Chem. Soc. 2003, 125, 13934.
    [39] Fuhrhop J-H, and co. J. Am. Chem. Soc. 1991, 113, 7437.
    [40] G John, and co. Langmuir 2004,20, 2060.
    [41] S Kamiya, and co. Langmuir 2005, 21, 743.
    [42] S Komura, and co. Phys. Rev. Lett. 1998, 81, 473.
    [43] J Raez, I Manners, M A Winnik, J. Am. Chem. Soc. 2002, 124, 10381.
    [44] N Nandi, B Bagachi, J. Am. Chem. Soc. 1996, 118, 11208.
    [45] S Stewart, G Liu, Angew. Chem., Int. Ed. 2000, 39, 340.
    [46] J M Schnur, and co. Science 1994, 264, 945.
    [47] J A Massey, K N Power, I Manners, M A Winnik, J. Am. Chem. Soc. 1998,120, 9533.
    [48] J A Massey, K Temple, L Cao, Y Rharbi, J Raez, M A Winnik, I Manners, J. Am. Chem. Soc., 2000, 122, 11577.
    [49] I Manners, Science, 2001, 294, 1664.
    [50] Y Ni, R Rulkens, I Manners, J. Am. Chem. Soc., 1996, 118, 4102.
    [51] L Cao, I Manners, M A Winnik, Macromolecules, 2002, 35, 8258.
    [52] J Raez, I Manners, M AWinnik, Langmuir, 2002, 18, 7229
    [53] J Raez, J P Tomba, I Manners, M AWinnik, J. Am. Chem. Soc., 2003,125, 9546.
    [54] J Raez, I Manners, M. A.Winnik, J. Am. Chem. Soc., 2002, 124, 10381.
    [55] Martin C R, Science, 1994, 266, 1961.
    [56] Almawiawi D, Coombs N, Moskovits M, J. Appl. Phys., 1991, 70, 4421.
    [57] Klein J D, Chem. Mater., 1993, 5, 902.
    [58] Wu C G, Bein T., Science, 1994, 264, 1757.
    [59] Beck J S, J. Am. Chem. Soc., 1992, 114, 10834.
    [60] Ozin G A, Adv. Mater., 1992, 4, 612.
    [61] Steinhart M, Wendorff J H, Greiner A, et al. Science, 2002, 296, 1997.
    [62] Cepak V M, Martin C R, Chem. Mater., 1999, 11, 1363.
    [63] Kim K, Jin J, Nano Lett., 2001, 1, 631.
    [64] Parthasarathy R V, Martin C R, Nature, 1994, 369, 298.
    [65] Kim K, Jin J, Nano Lett., 2001, 1, 631.
    [66] Joo J, Park K T, Kim B H, et al. Synthetic Metals, 2003, 7, 135.
    [67] Ryan A J, et al. The 16th annual conference of the polymer process society (PPS-16), Shanghai, China, 2000, 6, 6.
    [68] Hou H Q, Zeng J, Reuning A, et al. Macromoleculoes, 2002, 35, 2429.
    [69] Huang C B, Chen S L, Lai C L, et al. Nanotechnology, 2006, 17, 1558.
    [70] Zeng J, Sun Z, Hou H, Dersch R, Wickel H, Wendorff J H, Greiner A., ACS Symposium Series, 2006, 918, 163.
    [71] Michael B, Hou H Q, Michael I, et al. Adv. Mater., 2000, 12, 637.
    [72] Formhals A, US Patent 2160962, 1939.
    [73] 赵胜利, 黄勇, 纤维素科学与技术, 2002, 10, 53.
    [74] Bharadwaj R K, Berry R J, Farmer B. L., Polymer, 2000, 41, 7209.
    [75] Allcock H R, Kugel R L, Inorganic Chemistry 1966, 5, 1716.
    [76] Shui-Yu Lu, Ian Hamerton, Prog. Polym. Sci. 2002, 27, 1661.
    [77] Taylor J P, Allcock H R, Polymer Preprints (Am. Chem. Soc. Div. Polym. Chem.), 1999, 40, 910.
    [78] Allcock H R, Taylor J P, Polymer Engineering & Science, 2000, 40, 1177.
    [79] Allcock H R, Hofmann M A, Wood R M, Macromolecules 2001, 34, 6915.
    [80] Allcock H R, Fulle T J, Macromolecules, 1980, 13, 1338.
    [81] Laurencin C T, Koh H j, Neenax T X, et al, 1987, 21, 1231.
    [82] Alexander K A, Payne L G, Allcock H R, et al, Journal of Applied Polymer science, 1994, 53, 1573.
    [83] Song S C, Sohn Y S, Journal of controlled release, 1998, 52, 161.
    [84] Schacht E, Vandorpe J, Dejardin S, et al, Biotechnology and Bioengineering, 1996, 52, 102.
    [85] Laurencin C T, Koh H j, Neenax T X, et al, Journal of Biomedical Materials, 1987, 21, 1231.
    [86] Schacht E, Vandorpe J, Dejardin S, et al, Biotechnology and Bioengineering, 1996, 52, 102.
    [87] Lee S B, Song S C, Jin J I, Sohn Y S, Macromolecules, 1999, 32, 7820.
    [88] Lemmouchi Y, Schacht E, Dejardin S, Journal of Bioactive and Compatible Polymers, 1998, 13, 4.
    [89] Stewart F F, Harrup M K, Lash R P, Tsang M N, Polymer International, 2000, 49, 57.
    [90] Meneme G, Altue G, Reactive and Functional plymers, 2002, 52, 71.
    [91] Archel M A, Allcock H R, et al, Biomaterials, 2002, 23, 1667.
    [92] Ibim S E M, M S Kwon, Laurencin C T, et al, Biomaterials, 1997, 18, 1565.
    [93] Blonsky P M, Shriver D F, Austin P E and Allcock H R, Solid State Ionics, 1986, 18-19, 258.
    [94] Vincent C, Polymer electrolytes, Chemistry in Britain, 1989, 4, 391.
    [95] Nazri G A, Meibuhr S G, Journal of the Electrochemistry Society, 1989,136,2450.
    [96] Del Río C, Martín-álvarez P J, Acosta J L, Journal of Applied Polymer Science, 1998, 70, 2181.
    [97] Abraham K M, Alamgir M, Chemistry of Materials, 1991, 3, 339.
    [98] Allcock H R, Prange R, Macromolecules 2001, 34, 6858.
    [99] Allcock H R, Napierala M E, et al, Macromolecules, 1996, 29, 1951.
    [100] Allcock H R, Primrose A P, et al, Chemistry of materials, 1999, 11, 1243.
    [101] Allcock H R, Sunderland N J, Macromolecules 2001, 34, 3069.
    [102] Stone M L, Gresham G L, Polson L A, Analytica Chimica ACTA, 2000, 407, 311.
    [103] Nagai K, Freeman B D, Cannon A, et al, Journal of membrane science, 2000, 172, 167.
    [104] Reed C A, Taylor J P, Guigley K S, et al, Journal of Polymer Science & Engineering, 2000, 40, 465.
    [105] Allcock H R, Ramakrishna R, Olshavsky M A, Macromolecules 1998, 31, 5206.
    [106] Allcock H R Cameron C G Haw J F Macromolecules 1996, 29, 233.
    [107] Rojo G, Martin G, Agullo-Lopez F, Carriedo GA, Alonso F J G, Martinez J I F, Chemistry of materials 2000, 12, 3603.
    [108] Rojo G, Martin G, Agullo-Lopez F, Carriedo GA, Alonso F J G, Martinez J I F, Synthetic Metals 2000, 115, 241.
    [109] Reed C S, Kevor S T, Paul W, et al, Chemistry of Materials, 1996, 8, 440.
    [110] Olshavsky M A and Allcock H R, Chemistry of Materials, 1997, 9, 1367.
    [111] Neilson R H, Neilson P W, Chemical reviews, 1988, 88, 541.
    [112] Van De Grampel J C, Organophosphorus Chemistry, 2000, 30, 255.
    [113] Allcock H R, Kugel R L, Inorganic Chemistry 1966, 5, 1716.
    [114] Allcock H R, Ring-opening polymerization in phosphazene chemistry, Ring-opening polymerization, mechanism, catalysis, structure, utility, Edited by Daniel J Brunelle, 1993, 217.
    [115] Honeyman C H, Manners I, Morrissey C T, Allcock H R, Journal of the American Chemical Society, 1995, 117, 7035.
    [116] Allcock H R, Science, 1992, 255, 1106.
    [117] Jaeder R De, Gleria M, Progress in polymer science, 1998, 23, 179.
    [118] Van De Grampel J C, Organophosphorus Chemistry, 1999, 29, 269.
    [119] Sennett M S, Hagauer G L, Singler R E, Davies G, Macromolecules, 1986, 19, 959.
    [120] Allcock H R, Reeves S D, de Denus C R, Crane C A, Macromolecules, 2001, 34, 748.
    [121] Halluin G D, Jaeger R D, Chambrette J P, Potin P, Macromolecules, 1992, 25, 1254.
    [122] Tajima Y, Geil P H, Biomaterials, Medical Devices, and Artificial Organs, 1980, 8, 95.
    [123] Burkoth A K, Burdick J, Anseth K S, Journal of Biomedical Materials Research, 2000, 51, 352.
    [124] Lee J, Macosko C W, Urry D W, Biomacromolecules, 2001, 2, 170.
    [125] Anderson J P, Cappello J, Martin D C, Biopolymers, 1994, 34, 1049.
    [126] Yokoyama M, Nakahashi T, Nishimura T, et al, Journal of Biomedical Materials Research, 1986, 20, 867.
    [127] Sander A J, Li B, Bieniarz C, Harris F W, Synthesis and characterization of polyanhydride copolymers for controlled drug delivery, American Chemical Society, Polymer Priprints, Division of Polymer Chemistry, 1999, 40, 888.
    [128] Merkli A, Tabatabay C, Gurny R, Heller J, Progress in Polymer Science, 1998, 23, 563.
    [129] Nagarsekar A, Crissman J, Cappello J, et al, Biomacromolecules, 2003, 4, 602.
    [130] Allcock H R, Kugel R L, Journal of the American Chemical Society, 1965, 87, 4216.
    [131] Umit Tunca, Ali Erdogmus, Gurkan Hizal, Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39, 2993–2997.
    [132] Allcock H R, Kugel R L, Inorgawic Chemistry, 1966, 5, 1016
    [133] Allcock H R, Kellam E C, Hofmann M A, Macromolecules 2001, 34, 5140-5146
    [134] Dona Mathew, C P Reghunadhan Nair, KN Ninan, Polym Int 2000, 49, 48-56
    [135] Giacomo Facchin, Luigi Guarino, Michele Modesti, Francesco Minto, and Mario Gleria, Journal of Inorganic and Organometallic Polymers, 1999, 9, 133.
    [136] Teng Zhang, Qing Cai, De-Zhen Wu, Ri-Guang Jin, Journal of Applied Polymer Science, 2005, 95, 880–889.
    [137] Lakshmi S. Nair, Subhabrata Bhattacharyya, Jared D. Bender, Yaser E. Greish, Paul W. Brown, Harry R. Allcock, and Cato T. Laurencin, Biomacromolecules 2004, 5, 2212-2220.
    [138] Alexander K A, Payne L G, Allcock H R, et al, Journal of Applied Polymer science, 1994, 53, 1573-8.
    [139] Alexander K A, Chen J P, Payne L G, Biomaterials, 1998, 19, 109-15.
    [140] Veronese F M, Marsilio F, Caliceti P, et al, Journal of Controlled release, 1998, 52, 227-37.
    [141] Cohen S, Bano M C, Cima L G, et al, Clinical Materials, 1993, 13(1-4), 3-10.
    [142] Laurencin C T, Elamin S F, Ibim S E, et al, 1996, 30, 133-8.
    [143] Anurima Singh, Lee Steely, and Harry R. Allcock, Langmuir 2005, 21, 11604-11607
    [144] J. Vandorpe, E. Schacht, S. Dunn, A. Hawley, S. Stolnik,S.S. Davis, M.C. Garnett, M.C. Davies and L. Ilium, Biomoterinls, 1997, 18, 1147.
    [145] Rabin Bissessur, David Gallanta, Ralf Brüning, Solid State Ionics 2003, 158, 205.
    [146] Sundarraj Sudhakar, Alan Sellinger, Macromol. Rapid Commun. 2006, 27, 247.
    [147]Carlos Diaz, Maria Luisa, Valenzuela, Macromolecules 2006, 39, 103.
    [1] S. Iijima, Nature 1991, 354, 56.
    [2] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
    [3] A. Kolmakov, M. Moskovits, Ann. Rev. Mater. Res. 2004, 34, 151.
    [4] Z. Y. Tang, N. A. Kotov, Adv. Mater. 2005, 17, 951.
    [5] N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso, Nano Lett. 2005, 5, 1343.
    [6] X. Y. Gao, H. Matsui, Adv. Mater. 2005, 17, 2037.
    [7] D. Tománek, Curr. Appl. Phys. 2002, 2, 47.
    [8] X. Y. Zhang, S. K. Manohar, J. Am. Chem. Soc. 2005, 127, 14156.
    [9] S. I. Cho, D. H. Choi, S. H. Kim, S. B. Lee, Chem. Mater. 2005, 17, 4564.
    [10] M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li, L. Jiang, Adv. Mater. 2005, 17, 1977.
    [11] Y. Cui, C. Tao, S. P. Zheng, Q. He, S. F. Ai, J. B. Li, Macromol. Rapid Commun. 2005, 26, 1552.
    [12] J. Zhang, Y. Guo, J. Z. Xu, X. S. Fang, H. K. Xie, D. L. Shi, P. He, W. van Ooij, J. Appl. Phys. Lett. 2005, 86, 131501.
    [13] M. J. Mulvihill, B. L. Rupert, R. R. He, A. Hochbaum, J. Arnold, P. D. Yang, J. Am. Chem. Soc. 2005, 127, 16040.
    [14] Z. C. Wang, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2004, 126, 15954.
    [15] S. Hecht, A. Khan, Angew. Chem. Int. Ed. 2003, 42, 6021.
    [16] T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev. 2005, 105, 1401.
    [17] M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. G?sele, Science 2002, 296, 1997.
    [18] M. Steinhart, R. B. Wehrspohn, Ulrich G?sele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
    [19] B. Ding, J. Gong, J. Kim, S. Shiratori, Nanotechnology 2005, 16, 785.
    [20] R. K. Zheng, Y. Yang, Y. Wang, J. Wang, H. L. W. Chan, C. L. Choy, C. G. Jin, X. G. Li, Chem. Commun. 2005, 1447.
    [21] I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, J. Am. Chem. Soc. 2004, 126, 5376.
    [22] J. Jang, H. Yoon, Langmuir, 2005, 21, 11484.
    [23] Y. E. Greish, J. D. Bender, S. Lakshmi, P. W. Brown, H. R. Allcock, C. T. Laurencin, Biomaterials 2005, 26, 1.
    [24] J. K. Kim, U. S. Toti, R. Song, Y. S. Sohn, Bioorg. Med. Chem. Lett. 2005, 15, 3576.
    [25] C. J. Orme, F. F. Stewart, J. Membr. Sci. 2005, 253, 243.
    [26] E. Morales, J. L. Acosta, Solid State Ion. 1997, 96, 99.
    [27] H. R. Allcock, M. F. Welker, M. Parvez, Chem. Mater. 1992, 4, 296.
    [28] M. Guglielmi, G. Brusatin, G. Facchin, M. Gleria, Appl. Organometallic Chem. 1999, 13, 339.
    [29] Andrei V. Churakov, Judith A. K. Howard, Acta Cryst. 2004, C60, o557.
    [30] Wang YZ, Yi B, Wu B, Yang B, Liu Y, J. Appl. Polym. Sci. 2003, 89, 882.
    [31] Toshimi Shimizu, Mitsutoshi Masuda, Hiroyuki Minamikawa, Chem. Rev. 2005, 105, 1401.
    [32] Jaeder R De, Gleria M, Progress in polymer science, 1998, 23, 179.
    [33] S. Hayashi, K. Hayamizu, Bull. Chem. Soc. Jpn. 1989, 62, 2429.
    [34] Allcock HR, Wood RM, Journal Of Polymer Science Part B-Polymer Physics, 2006 44, 2358.
    [35] H. R. Allcock, Chemical Revlews, 1972, 72, 315.
    [36] Neruchev YA, Bolotnikov MF, Zotov VV, High Temperature, 2005, 43, 266.
    [37] B. Yang, S. Kamiya, K. Yoshida, T. Shimizu, Chem. Commun. 2004, 500.
    [38] B. Yang, S. Kamiya, Y. Shimizu, N. Koshizaki, T. Shimizu, Chem. Mater. 2004, 16, 2826.
    [39] Greiner A, Wendorff JH, Yarin AL, Zussman E, Applied Microbioligy and Biotechnology 2006, 71, 387.
    [40] S. Wu, in Polymer blends, Vol. 1, (Eds: D. R Paul, S. Newman), Academic Press, New York, 1978.
    [41] E. G. Shafrin, in Polymer Hand book, 2nd ed., (Eds: J. Brandrup, E. H. Immergut), Wiley-Interscience, New York, 1975.
    [42] S. Wu, in Polymer Interfaces and Adhesion, Marcel Dekker, New York, 1982.
    [43] M. C. H. Lee, Adhesive Chemistry Development and Trends, L. H. Lee, Ed., Plenum, New York, 1985, 93.
    [44] M. C. H. Lee, J. Appl. Polym. Sci. 1987, 33, 2479.
    [45] Costanzo P M, Wu W, Giese R F Jr, Van Oss CJ., Langmuir, 1995, 11, 1827.
    [46] Giese R F, Constanzo P M, Van Oss CJ., J Phys Chem Miner, 1991, 17, 611.
    [47] Z. G. Cui, B. P. Binks, J. H. Clint, Langmuir 2005, 21, 8319.
    [48] Qian D, Dickey E C, Andrews R, Appl. Phys.Lett., 2000, 76, 2868.
    [49] De Rosa C, Auriemma F, Progress In Polymer Science, 2006, 31, 145.
    [50] Xie X L, Aloys K, Zhou X P, J. Thermal Analysis and Calorimeter, 2003, 74 , 317.
    [1] Zong XH, Bien H, Chung CY, Yin LH, Fang DF, Hsiao BS, Chu B and Entcheva E, Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005, 26, 5330–5338.
    [2] Hubbell JA, Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotechnol. 2003, 14, 551–558.
    [3] Luu YK, Kim K, Hsiao BS, Chu B and Hadjiargyrou M, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J. Control. Release. 2003, 89, 341–353.
    [4] Zong XH, Ran SF, Fang DF, Hsiao BS and Chu B, Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 2003, 44, 4959–4967.
    [5] Matthews JA, Wnek GE, Simpson DG and Bowlin GL, Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232–238.
    [6] Yuan WZ, Zhu L, Huang XB, Zheng SX and Tang XZ, Synthesis, characterization and degradation of hexa-armed star-shaped poly(l-lactide)s and poly(d,l-lactide)s initiated with hydroxyl-terminated cyclotriphosphazene. Polym. Degrad. Stabil. 2005, 87, 503-509.
    [7] Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR and Laurencin CT, Fabrication and Optimization of Methylphenoxy Substituted Polyphosphazene Nanofibers for Biomedical Applications. Biomacromolecules 2004, 5, 2212-2220.
    [8] Acemoglu M, Chemistry of polymer biodegradation and implications on parenteral drug delivery. Int. J. Pharm. 2004, 277, 133-139.
    [9] Kim JK, Toti US, Song R and Sohn YS, A macromolecular prodrug of doxorubicin conjugated to a biodegradable cyclotriphosphazene bearing a tetrapeptide Bioorg. Med. Chem. Lett. 2005, 15, 3576-3579.
    [10] Allcock HR, Pucher SR and Scopelianos AG, Poly[(amino acid ester)phosphazenes]: Synthesis, Crystallinity, and Hydrolytic Sensitivity in Solution and the Solid State. Macromolecules 1994, 27, 1071-1075.
    [11] Casper CL, Yamaguchi N and Kiick KL, Functionalizing Electrospun Fibers with Biologically Relevant Macromolecules. Biomacromolecules 2005, 6, 1998-2007.
    [12] Rosso F, Marino G and Giordano A, Smart materials as scaffolds for tissue engineering. J. Cell. Physiol. 2005, 203, 465-470.
    [13] Wnek GE, Carr ME, Simpson DG and Bowlin GL, Electrospinning of Nanofiber Fibrinogen Structures. Nano Lett. 2003, 3, 213-216.
    [14] Min BM, Lee G, Kim SH, Nam YS, Lee TS and Park WH, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004, 25, 1289-1297.
    [15] Shin M, Ishii O, Sueda T and Vacanti JP, Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 2004, 25, 3717-3723.
    [16] Xu CY, Inai R, Kotaki M and Ramakrishna S, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877-886 .
    [17] Khil MS, Cha DI, Kim HY, Kim I and Bhattarai N, Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. 2003, 67B, 675–679.
    [18] Lee YH, Lee JH and An IG, Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 2005, 26, 3165-3172 .
    [19] Zong XH, Ran S and Kim KS, Structure and Morphology Changes during in Vitro Degradation of Electrospun Poly(glycolide-co-lactide) Nanofiber Membrane. Biomacromolecules 2003, 4, 416-423.
    [20] Shimizu T, Masuda M and Minamikawa H, Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1443 .
    [21] Organo VG, Leontiev AV, Sgarlata V, Rasika Dias HV and Rudkevich DM, Supramolecular features of calixarene-based synthetic nanotubes. Angew. Chem. Int. Ed. 2005,44, 3043-3047 .
    [22] Kim YK, Mayer MF and Zimmerman SC, A New Route to Organic Nanotubes from Porphyrin Dendrimers. Angew. Chem. Int. Ed. 2003, 42, 1121-1126.
    [23] Hecht S and Khan A, Intramolecular Cross-Linking of Helical Folds: An Approach to Organic Nanotubes. Angew. Chem. Int. Ed. 2003, 42, 6021-6024.
    [24] Huang JX, Virji S, Weiller BH and Kaner RB, Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J. Am. Chem. Soc. 2003, 125, 314-315.
    [1] R. Pool, Science 1990, 247, 1410.
    [2] P. Kohli, C. R. Martin, J. Drug Deliv. Sci. Technol. 2005, 15, 49.
    [3] P. Kohli, C. R. Martin, Curr. Pharm. Biotechnol. 2005, 6, 35.
    [4] J. Tabony, B. Tob, Nature 1990, 346, 448.
    [5] B. Yang, S. Kamiya, K. Yoshida, T. Shimizu, Chem. Commun. 2004, 500.
    [6] B. Yang, S. Kamiya, Y. Shimizu, N. Koshizaki, T. Shimizu, Chem. Mater. 2004, 16, 2826.
    [7] M. C. Veronica, C. R. Martin, Chem. Mater. 1999, 11, 1363.
    [8] S. F. Ai, G. Lu, Q. He, J. B. Li, J. Am. Chem. Soc. 2003, 125, 11140.
    [9] I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, J. Am. Chem. Soc. 2004, 126, 5376.
    [10] A. D. W. Carswell, E. A. O’Rear, B. P. Grady, J. Am. Chem. Soc. 2003, 125, 14793.
    [11] J. Jang, H. Yoon, Langmuir 2005, 21, 11484.
    [12] K. J. C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed. 2003, 42, 980.
    [13] P. V. Braun, P. Osenar, V. Tohver, S. B. Kennedy, S. I. Stupp, J. Am. Chem. Soc. 1999, 121, 7302.
    [14] F. Miyaji, S. A. Davis, J. P. H. Charmant, S. Mann, Chem.Mater. 1999, 11, 3021.
    [15] Jaeder R De, Gleria M, Progress in polymer science, 1998, 23, 179.
    [16] S. Hayashi, K. Hayamizu, Bull. Chem. Soc. Jpn. 1989, 62, 2429.
    [1] J. Forcada, R. Hidalgo-Alvarez, Curr. Org. Chem. 2005, 9, 1067.
    [2] H. Fudouz, Y. Xia, Adv. Mater. 2003, 15, 892.
    [3] C. F. Wilson, M. I. Wallace, K. Morishima, G. J. Simpson, R. N. Zare, Anal. Chem. 2002, 74, 5099.
    [4] T. Kim, J. Yoon, D. Lee, T. Park, Biomaterials 2006, 27, 152.
    [5] S. Shim, S. Yang, H. Choi, S. Choe, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 835.
    [6] S. Shim, S. Yang, H. Jung, S. Choe, Macromol. Res. 2004, 12, 233.
    [7] D. Lee, J. Kim, K. Suh, J. Mater. Sci. 2000, 35, 6181.
    [8] G. Ma, J. Fujiwara, Z. Su, S. Omi, J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 2588.
    [9] K. Li, H. D. H. St?ver, J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 3257.
    [10] S. Shim, S. Yang, S. Choe, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 3967.
    [11] J. S. Downey, G. McIsaac, R. Frank, H. D. H. St?ver, Macromolecules 2001, 34, 45.
    [12] E. C. C. Goh, H. D. H. St?ver, , Macromolecules 2002, 35, 9983.
    [13] W. Li, H. D. H. St?ver, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2899.
    [14] W. Li; K. Li, H. D. H. St?ver, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2295.
    [15] G. Ma, J. Fujiwara, Z. Su, S. Omi, J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 2588.
    [16] R. S. Frank, J. S. Downey, H. D. H. St?ver, J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 2223.
    [17] S. Yang, S. E. Shim, S. Choe, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1309.
    [18] S. Shim, S. Yang, H. Jung, H. Choi, S. Choe, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 835.
    [19] J. Jin, S. Yang, S. Shim, S. Choe, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5343.
    [20] Jaeder R De, Gleria M, Progress in polymer science, 1998, 23, 179.
    [21] S. Hayashi, K. Hayamizu, Bull. Chem. Soc. Jpn. 1989, 62, 2429.
    [22] Allsopp, M. W. Pure Appl Chem 1981, 53, 449.
    [23] St?ver H. D. H., Li K., Li W. H., U.S. Patent 5,599,889, 1997.
    [24] FitchR. M., J. Elastoplastics 1971, 3, 146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700