TGF-β信号通路基因多态性与原发性高血压的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     当今,心脑血管疾病已经成为世界大多数发达国家乃至发展中国家(如中国)居民的首位死因。而血压升高是脑卒中和冠心病发病的首要独立危险因素,因此,预防和控制高血压是预防心脑血管病的主要措施。近半个世纪来,由于我国经济发展,人民生活改善和生活节奏加快带来的一系列不健康生活方式,我国人群高血压患病率上升很快。尤其值得关注的是,年轻人群和农村人群的高血压患病率迅速增加。目前,高血压已成为危害中国人群健康的严重公共卫生问题。因此,开展高血压发病机制和人群防控的研究具有十分重要的意义。
     成人高血压中绝大多数是原发性高血压(Essential hypertension,EH)。EH是一种复杂的多基因疾病,环境因素与遗传因素都对疾病的发生起到了重要的作用。遗传因素通过多个微效基因(Minor-effect genes)及其和环境因素共同作用而导致血压升高。目前,广泛采用基于人群的关联研究来探索遗传标志与高血压这一类常见复杂性状(Complex trait)疾病的关系。
     动脉结构与功能改变是原发性高血压的重要病理基础。血管壁弹性降低/失活、血管内皮损伤相关的周围阻力增加和动脉血管重塑,与血压持续升高及某些器官损害密切相关,但具体作用机制目前尚未明确。
     为了探讨血管发育和重塑与EH发生的关系,本研究通过对参与血管发育和维持血管形态的生物信息学分析,确定了参与转化生长因子β(Transforminggrowth factor-β,TGF-β)信号通路的几个关键功能候选基因,包括血管弹性微纤维膜——原微纤维蛋白(FBN1)基因、弹性纤维胞外基质组件(EMILIN1)基因、抑制TGF-β前体(proTGF-β)水解的转化酶FURIN基因、血管发育和重塑过程中控制TGF-β释放的凝血酶敏感素1结构域包含体1(THSD1)基因、编码TGF-β1的TGFB1基因和TGF-β1受体(TGFBR1)基因。应用tagSNP选择和功能预测分析相结合的方法,从覆盖功能候选基因区域的人类遗传变异的重要标志——单核苷酸多态性(Single nucleotide polymorphism,SNP)中选择有代表性的SNPs,通过以人群为基础的两阶段关联研究筛选高血压易感SNPs,并分析了可能存在的基因-基因和基因-环境交互作用,研究结果将有助于揭示中国人EH发病机制及其特点,并为EH的药物基因组学研究以及人群防制提供理论依据。
     研究对象与方法
     1、所有研究对象的DNA样本和临床资料均来自亚洲国际心血管疾病协作研究(International collaborative study of cardiovascular disease in Asia,InterASIA)的中国部分。本研究从四阶段分层抽样调查获得的中国北方四个省市:北京、吉林、山东、陕西的35-74岁无亲缘关系人群中选择了1317名收缩压(Systolic bloodpressure,SBP)≥150mmHg和/或舒张压(Diastolic blood pressure,DBP)≥95mmHg或正在服用降压药物的高血压患者,和1269名年龄、性别匹配的正常对照(SBP<140mmHg且DBP<90mmHg)作为研究对象。
     我们设计了两阶段关联研究,即第一阶段采用相对小的样本用于筛选,第二阶段对第一阶段筛选出来的阳性关联的位点继续进行研究。为了增加检测出病例和对照人群高血压易感等位基因频率差异的能力,我们选择了503例血压水平为SBP≥160mmHg和/或DBP≥100mmHg的高血压患者和490例年龄、性别匹配的正常对照(SBP<140mmHg且DBP<90mmHg)作为第一阶段研究对象。第二阶段样本包括了814名高血压病例和779名年龄和性别匹配的正常对照。为提高研究效能,最后采用两阶段研究人群的联合样本进行验证分析。
     采用基于连锁不平衡分析的标签SNP(tagging SNP,tagSNP)选择和生物信息学的功能预测分析相结合的策略,对覆盖6个功能候选基因及其上下游区域的23个有代表性的SNPs进行基因分型。
     首先分析单个SNP位点的等位基因和基因型与高血压的关联,然后分析多位点构建的单体型(Haplotype)和双体型(Diplotype)与高血压之间的关系。
     2、本研究应用目前较为常用的多元适应性回归样条(Multivariate adaptiveregression splines,MARS)方法和在多因子降维法(Multifactor-dimensionalityreduction)基础上发展的广义多因子降维法(Generalized multifactordimensionality reduction,GMDR),分析潜在的基因-基因及基因-环境交互作用,然后进一步应用Logistic回归模型对分析的结果进行重复分析。
     研究结果
     1、第一阶段的关联研究初步筛选出8个与高血压显著相关的SNPs(P<0.05),分别为EMILIN1基因rs3754734和rs2011616,FURIN基因rs4932178,TGFB1基因rs12980942,TGFBR1基因rs12346650、rs1888223以及FBN1基因rs140598和rs6493333。
     进一步对这8个SNPs在两阶段研究人群样本中进行联合分析,发现有3个多态位点与高血压的关联得到了重复验证。携带FURIN基因rs4932178的TT(vs.CC+CT)突变基因型个体的高血压患病风险显著增加,OR(95%可信区间)为2.543(1.324-4.886);携带TGFBR1基因rs12346650的A(vs.G)等位基因个体的高血压患病风险显著增加,具有加性作用,OR为1.473(1.315-1.650),而FBN1基因rs140598 G(vs.C)等位基因携带者高血压患病风险相对较低,也具有加性作用,OR值为0.827(0.703-0.973)。
     单体型与双体型分析结果表明,与TGFBR1基因的G-W单体型作比较,A-G和A-W单体型携带者高血压患病风险显著增加,OR(95%CI)分别为1.269(1.095-1.470)和1.550(1.299-1.856);G-G单体型携带者高血压患病风险明显降低,OR为0.112(0.094-0.134)。与双体型Hap1(G-W)-Hap1(G-w)相比较,其它常见5种双体型Dip2(Hap1-Hap2)、Dip3(Hap1-Hap4)、Dip4(Hap2-Hap2)、Dip5(Hap3-Hap3)和Dip6(Hap2-Hap3)均具有显著的危险作用,经过Bonferroni校正后,P值均有显著性意义(P<0.003)。与FBN1基因C-C单体型相比较,单体型G-C对于EH具有保护作用,OR=0.823(Bonferroni校正后,P<0.0125);与Hap(C-C)-Hap(C-C)双体型相比,Hap(G-C)-Hap(G-C)双体型具有保护作用,OR=0.619(0.436-0.880)。
     2、应用MARS对不同模型的交互作用进行分析发现,Model 1中,TGFBR1基因rs12346650与FBN1基因rs140598及吸烟之间的交互作用有显著意义,并且rs12346650具有显著的主效应;Model 2中,TGFBR1基因rs12346650除了具有主效应外,还与其它位点和环境因素之间存在显著的交互作用,而FURIN基因rs4932178具有独立的主效应;Model 3中,3个微效多态位点TGFBR1基因rs1888223、TGFB1基因rs12980942、FBN1基因rs649333和饮酒之间存在多阶交互作用。GMDR对Model 1和Model 2的分析结果与MARS基本一致,但在Model 3中没有发现有显著意义的交互作用。随后,对于3个模型中MARS分析显示有显著性的3个3阶交互作用rs12346650-rs140598-吸烟、rs12346650-rs140598-rs3754734和rs1888223-rs12980942-饮酒,采用Logistic回归进行了重复分析,结果显示两者具有较好的一致性。
     结论
     1、通过以基于人群的两阶段关联研究对TGF-β信号通路关键基因的23个有代表性SNPs进行分析,发现8个SNPs与原发性高血压显著相关;其中FURIN基因的rs4932178、TGFBR1基因的rs12346650和FBN1基因的rs140598在两阶段大样本人群中得到重复验证。结果提示TGF-β信号通路3个基因多态位点rs4932178、rs12346650和rs140598与中国北方汉族人群原发性高血压之间存在关联。
     2、通过不同分析方法探讨TGF-β信号通路多个基因与环境因素对原发性高血压的影响,结果一致显示:TGFBR1基因多态位点rs12346650对高血压危险性具有显著的主效应,并与TGF-β信号通路中其它关键基因FURIN、FBN1、EMLIN1和TGFB1以及环境因素之间存在着对高血压的交互作用。
Background and objectives
     Cardiovascular disease is the leading cause of death for adults in developed or developing countries, including China. Hypertension has been proved the primary and independent modifiable risk factor for stroke and coronary heart disease (CHD) so that controlling hypertension is one of the most effective ways to prevent cardiovascular disease.
     With changes in lifestyle (such as smoking, overdrinking and unhealthy diet, etc.) and the increase in life expectancy, the prevalence of hypertension has been increasing significantly in China in the past decades. Particularly, the prevalence of hypertension has also increased rapidly in younger people and the rural areas. These results underscore the urgent need to carry out active researches on the etiology and develop effective strategies to improve prevention, diagnosis, and treatment of hypertension.
     Hypertension among adults with no identifiable cause is essential hypertension (EH). EH arises as a complex quantitative trait that is affected by varying combinations of genetic and environmental factors. Probably, genetic factor influences the blood pressure through numerous minor-effect genes, and biological process of hypertension involves multiple physiological pathways with gene and environment factors. Recently, two-stage association study based community population is a cost effective approach for identifying complex disease genes in genetic studies and it has received much attention.
     As the major basis in pathologic process of EH, large artery stiffening, peripheral resistance increasing caused by endothelial dysfunction and small artery remodeling have been proved the primary agent for blood pressure increase or even organ impairment. Researchers have focused on the molecular genetics of the pathology of artery stiffening and remodeling. However, the mechanism of human hypertension is still not fully understood. In animal study, proof indicated that Emilinl modulates TGF-βavailability in the pathogenesis of hypertension and links TGF-βmaturation to blood pressure homeostasis. This led us to further research the development and remodeling of artery in EH.
     With the purpose of exploring the relationship between development and remodeling of artery and EH, we collected and analyzed some biological data about the development and remodeling of blood vessel and selected several candidate genes, including FBN1, EMLIN1, FURIN, THSD1, TGFB1 and TGFBR1 gene, which proved being involved in the TGF-βsignal pathway. We applied a two-stage case-control study. We selected tagSNPs with consideration of predicted SNP (Single nucleotide polymorphisms) functions and obtained twenty three representative SNPs covered the candidate genes. Furthermore, we examined the relationship between the twenty three polymorphisms and EH in Chinese.
     Methods and Subjects
     Subjects
     All the studied subjects recruited from the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA in China), from which all the DNA samples and clinical data for participants were obtained. The local bioethical committee approved the protocol, and informed consent was obtained from each participant. InterASIA used a four-stage stratified sampling method to select a representative sample of the general population aged 35 to 74 years in China. We enrolled 1,317 unrelated hypertensive patients and 1,269 age and gender-matched unrelated normotensive from four northern field centers of InterASIA, namely Beijing, Jilin, Shandong, and Shanxi province. In this study, hypertensive were selected with systolic BP (SBP)≥150 mmHg, and/or diastolic BP (DBP)≥95 mmHg, or current use of antihypertensive medication, whereas subjects with a clinical history of secondary hypertension, coronary heart disease and diabetes were excluded. At the same time, healthy normotensives with SBP<140 mmHg and DBP<90 mmHg were selected from the same target study population as controls.
     Methods
     Part 1
     We conducted a two-stage association study and took total 2,586 unrelated subjects as the main study population in this study. 993 subjects were selected as stage 1 subsample containing 503 hypertensive patients (SBP≥160 mmHg and/or DBP≥100 mmHg) and 490 age- and gender-matched normotensive controls (SBP<140 mmHg and DBP<90 mmHg). The criterion for case selection of the subsample based on the hypothesis that individuals with higher BP were likely to be enriched for genetic susceptibility, which might increase the difference in frequency of susceptibility alleles between cases and controls to improve power. At stage 2, subsample included 814 cases with hypertension and 779 age- and gender-matched normotensives.
     Combinating SNP functional prediction analysis, We selected twenty three representative tagSNP from HapMap database of Han Chinese in Beijing, China (CHB) according to the linkage disequilibrium (LD) analyses of all SNPs, which covered the candidate gene, reasonable length upstream and downstream. All the SNPs were examined the association with EH.
     Part 2
     We applied three methods to explore gene-gene and gene-environment interactions for EH. First, we utilized multivariate adaptive regression splines (MARS) and generalized multifactor-dimensionality reduction (GMDR) to identify latent interactions involved in the TGF-βpathway gene polymorphisms associated with EH. Furthermore, we employed Logistic regression to test the interactions identified by MARS or GMDR in three different models.
     Results
     Part 1
     By single locus analysis, rs2011616 and rs3754734 of EMILIN1, rs4932178 of FURIN, rs12980942 of TGFB1, rs12346650 and rs1888223 of TGFBR1, and rs140598 and rs6493333 of FBN1 showed significant associations with EH (P<0.05) in stage 1 and we further genotyped the eight SNPs among remained sample. Joint analysis indicated that three SNPs presented significant association with EH. TT (vs. CC+CT) genotype of rs4932178 and allele A (vs.G) of rs12346650 increased the risk of EH significantly, odds ratios (ORs) were 2.543 (95% CI 1.324-4.886) and 1.473 (95% CI 1.315-1.650) respectively. G (vs.C) of rs140598 showed a protective effect on EH (OR=0.827 95% CI 0.703-0.973) after adjustment for conventional risk factors.
     Haplotypes of TGFBR1 gene were composed of rs12346650 and rs1888223. With the haplotype G-W used as reference, the adjusted ORs of haplotype A-G and haplotype A-W were 1.269 (95% CI: 1.095 to 1.470), 1.550 (1.299 to 1.856) respectively, and the OR of haplotype G-G was 0.112 (0.094 to 0.134). With the diplotype Hap1 (G-W)-Hap1 (G-W) used as reference, diplotype Dip2 (Hap1-Hap2), Dip3 (Hap1-Hap4), Dip4 (Hap2-Hap2), Dip5 (Hap3-Hap3) and Dip6 (Hap2-Hap3) were at higher risk for EH (after adjusted by Bonferroni correction, P<0.003). The haplotypes of FBN1 were composed of rs140598 and rs6493333. Haplotype C-C of FBN1 gene was used as reference and the adjusted OR of haplotype G-C was 0.823 (95% CI, 0.715 to 0.948). With diplotype Hap (C-C)-Hap (C-C) used as reference, the adjusted OR of diplotype Hap (G-C)-Hap (G-C) was 0.619 (95% CI, 0.436 to 0.880). Part 2
     First, MARS identified a significant interaction among smoking, rs140598 of FBN1 gene and rs12346650 of TGFBR1 gene, and rs12346650 presented a main effect for EH in model 1. In model 2, rs12346650 main effect showed in six out of seven significant interactions and rs140598 only appeared in five interactions whereas rs4932178 only presented an independent main effect. In model 3, three interactions were detected among drinking and four SNPs with latent minor effect.
     Subsequently, GMDR verified rs12346650 main effect in four interactions among rs4932178, rs140598, smoking and drinking in model 1. In model 2, Analogously, GMDR verified rs12346650 main effect in four interactions of rs4932178, rs140598, rs12980942, smoking and driking. However, there were no interactions identified by GMDR in model 3.
     Furthermore, Logistic regression tested three major 3-way interactions of rs12346650-rs140598-smoking, rs12346650-rs140598-rs3754734 and rs1888223 -rs12980942-drinking, which had been identified by MARS in the three models respectively, and achieved an explainable concordance with MARS.
     Conclusions
     Our findings indicated TGF-βpathway genes might harbor some susceptible variations to essential hypertension in north Han Chinese population. Three methods, GMDR, MARS and Logistic regression analyses identified consistently significant gene by gene and gene by environmental interactions that associated with hypertension and the findings provide further support for the possible contributions of TGF-βpathway genes to essential hypertension.
引文
1.He J,Gu D,Wu X,Reynolds K,Duan X,Yao C,Wang J,Chen CS,Chen J,Wildman RP,Klag MJ,Whelton PK.Major causes of death among men and women in China.N Engl J Med 2005;353(11):1124-34.
    2.中华人民共和国卫生部心血管病防治研究中心、高血压联盟(中国),《中国高血压防治指南》(2005修订版).2005.
    3.Gu D,Reynolds K,Wu X,Chen J,Duan X,Muntner P,Huang G,Reynolds RF,Su S,Whelton PK,He J.Prevalence,awareness,treatment,and control of hypertension in china.Hypertension 2002;40(6):920-7.
    4.李立明,饶克勤,孔灵芝,等.中国居民2002年营养与健康状况调查.中华流行病学杂志.2005;26(7):478-84.
    5.Staessen JA,Wang J,Bianchi G,Birkenhager WH.Essential hypertension.Lancet 2003;361(9369):1629-41.
    6.Lee DS,Massaro JM,Wang TJ,Kannel WB,Benjamin EJ,Kenchaiah S,Levy D,D'Agostino RB Sr,Vasan RS.Antecedent blood pressure,body mass index,and the risk of incident heart failure in later life.Hypertension 2007;50(5):869-76.
    7.Bhatti P,Church DM,Rutter JL,Struewing JP,Sigurdson AJ.Candidate single nucleotide polymorphism selection using publicly available tools:a guide for epidemiologists.Am J Epidemiol 2006;164(8):794-804.
    8.Rakugi H,Higaki J,Ogihara T.Hypertension and vascular remodeling.Nippon Ronen Igakkai Zasshi 2001;38(5):641-3.
    9.Schiffrin EL.Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment.Am J Hypertens 2004;17(12Pt 1):1192-200.
    10.Raman M,Cobb MH.TGF-beta regulation by Emilinl:new links in the etiology of hypertension.Cell 2006;124(5):893-5.
    11.Bray GA,Bellanger T.Epidemiology,trends,and morbidities of obesity and the metabolic syndrome.Endocrine 2006;29(1):109-17.
    12.Zacchigna L,Vecchione C,Notte A,Cordenonsi M,Dupont S,Maretto S,Cifelli G,Ferrari A,Maffei A,Fabbro C,Braghetta P,Marino G,Selvetella G,Aretini A,Colonnese C,Bettarini U,Russo G,Soligo S,Adorno M,Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilinl links TGF-beta maturation to blood pressure homeostasis. Cell 2006; 124(5):929-42.
    13. Gavish B. Correlating ambulatory blood pressure measurements with arterial stiffness: a conceptual inconsistency? Hypertension 2006; 48(6): 108-9.
    14. Mulvany MJ. Small artery remodeling and significance in the development of hypertension. News Physiol Sci 2002; 17:105-9.
    15. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation 2003; 108(18):2230-5.
    16. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol 2005; 3(1):55-61.
    17. Beck S, Le Good JA, Guzman M, Ben Haim N, Roy K, Beermann F, Constam DB. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat Cell Biol 2002; 4(12):981-5.
    18. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-beta activation. J Cell Sci 2003; 116(Pt 2):217-24.
    19. August P, Suthanthiran M. Transforming growth factor beta signaling, vascular remodeling, and hypertension. N Engl J Med 2006; 354(25):2721-3.
    20. Goumans MJ, Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 2000; 44(3):253-65.
    21. Tang Y, Lee KS, Yang H, Logan DW, Wang S, McKinnon ML, Holt LJ, Condie A, Luu MT, Akhurst RJ. Epistatic interactions between modifier genes confer strain-specific redundancy for Tgfb1 in developmental angiogenesis. Genomics 2005; 85(1):60-70.
    22. Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J, Xiong X, Munger JS. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol 2007; 176(6):787-93.
    23. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352(6333):337-9.
    24. Hartner A, Schaefer L, Porst M, Cordasic N, Gabriel A, Klanke B, Reinhardt DP,Hilgers KF.Role of fibrillin-1 in hypertensive and diabetic glomerular disease.Am J Physiol Renal Physiol 2006;290(6):1329-36.
    25.Gu D,Reynolds K,Wu X,Chen J,Duan X,Reynolds RF,Whelton PK,He J.Prevalence of the metabolic syndrome and overweight among adults in China.Lancet 2005;365(9468):1398-405.
    26.Gu D,Wildman RP,Wu X,Reynolds K,Huang J,Chen CS,He J.Incidence and predictors of hypertension over 8 years among Chinese men and women.J Hypertens 2007;25(3):517-23.
    27.Zhao Q,Fan Z,He J,Chen S,Li H,Zhang P,Wang L,Hu D,Huang J,Qiang B,Gu D.Renalase gene is a novel susceptibility gene for essential hypertension:a two-stage association study in northern Han Chinese population.J Mol Med 2007;85(8):877-85.
    28.Muntner P,Gu D,Wu X,Duan X,Wenqi G,Whelton PK,He J.Factors associated with hypertension awareness,treatment,and control in a representative sample of the chinese population.Hypertension 2004;43(3):578-85.
    29.Perloff D,Grim C,Flack J,Frohlich ED,Hill M,McDonald M,Morgenstern BZ.Human blood pressure determination by sphygmomanometry.Circulation 1993;88(5 Pt 1):2460-70.
    30.Zuo Y,Zou G,Wang J,Zhao H,Liang H.Optimal two-stage design for case-control association analysis incorporating genotyping errors.Ann Hum Genet 2008;72(Pt 3):375-87.
    31.Ventura JJ,Kennedy NJ,Flavell RA,Davis RJ.JNK regulates autocrine expression of TGF-betal.Mol Cell 2004;15(2):269-78.
    32.Zanetti M,Braghetta P,Sabatelli P,Mura I,Doliana R,Colombatti A,Volpin D,Bonaldo P,Bressan GM.EMILIN-1 deficiency induces elastogenesis and vascular cell defects.Mol Cell Biol 2004;24(2):638-50.
    33.Russo LM,Osicka TM,Bonnet F,Jerums G,Comper WD.Albuminuria in hypertension is linked to altered lysosomal activity and TGF-betal expression.Hypertension 2002;39(2):281-6.
    34.Halushka MK,Fan JB,Bentley K,Hsie L,Shen N,Weder A,Cooper R,Lipshutz R,Chakravarti A.Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis.Nat Genet 1999;22(3):239-47.
    35.Guo SW,Thompson EA.Performing the exact test of Hardy-Weinberg proportion for multiple alleles.Biometrics 1992;48(2):361-72.
    36.Schaid DJ,Rowland CM,Tines DE,Jacobson RM,Poland GA.Score tests for association between traits and haplotypes when linkage phase is ambiguous.Am J Hum Genet 2002;70(2):425-34.
    37.Lake SL,Lyon H,Tantisira K,Silverman EK,Weiss ST,Laird NM,Schaid DJ.Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.Hum Hered 2003;55(1):56-65.
    38.Suthanthiran M,Li B,Song JO,Ding R,Sharma VK,Schwartz JE,August P.Transforming growth factor-beta 1 hyperexpression in African-American hypertensives:A novel mediator of hypertension and/or target organ damage.Proc Natl Acad Sci U S A 2000;97(7):3479-84.
    39.Thomas D,Xie R,Gebregziabher M.Two-Stage sampling designs for gene association studies.Genet Epidemiol 2004;27(4):401-14.
    40.Barrett JC,Fry B,Mailer J,Daly MJ.Haploview:analysis and visualization of LD and haplotype maps.Bioinformatics 2005;21(2):263-5.
    41.Bhatti P,Church DM,Rutter JL,Struewing JP,Sigurdson AJ.Candidate single nucleotide polymorphism selection using publicly available tools:a guide for epidemiologists.Am J Epidemiol 2006;164(8):794-804.
    1.Staessen JA,Wang J,Bianchi G,Birkenhager WH.Essential hypertension.Lancet 2003;361(9369):1629-41.
    2.Nelson MR,Kardia SL,Ferrell RE,Sing CF.A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation.Genome Res 2001;11(3):458-70.
    3.Mechanic LE,Luke BT,Goodman JE,Chanock SJ,Harris CC.Polymorphism Interaction Analysis(PIA):a method for investigating complex gene-gene interactions.BMC Bioinformatics 2008;9:146.
    4.Briollais L,Wang Y,Rajendram I,Onay V,Shi E,Knight J,Ozcelik H.Methodological issues in detecting gene-gene interactions in breast cancer susceptibility:a population-based study in Ontario.BMC Med 2007;5:22.
    5.Coffey CS,Hebert PR,Ritchie MD,Krumholz HM,Gaziano JM,Ridker PM,Brown NJ,Vaughan DE,Moore JH.An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction:the importance of model validation.BMC Bioinformatics 2004;5:49.
    6.Mei H,Cuccaro ML,Martin ER.Multi factor dimensionality reduction-phenomics:a novel method to capture genetic heterogeneity with use of phenotypic variables.Am J Hum Genet 2007;81(6):1251-61.
    7.Mei H,Ma D,Ashley-Koch A,Martin ER.Extension of multifactor dimensionality reduction for identifying multilocus effects in the GAW14simulated data.BMC Genet 2005;6 Suppl 1:S145.
    8.Lou XY,Chen GB,Yan L,Ma JZ,Zhu J,Elston RC,Li MD.A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence.Am J Hum Genet 2007;80(6):1125-37.
    9.Ritchie MD,Hahn LW,Roodi N,Bailey LR,Dupont WD,Parl FF,Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.Am J Hum Genet 2001;69(1):138-47.
    10.Ritchie MD,Hahn LW,Moore JH.Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error,missing data,phenocopy,and genetic heterogeneity.Genet Epidemiol 2003;24(2):150-7.
    11.Cook NR,Zee RY,Ridker PM.Tree and spline based association analysis of gene-gene interaction models for ischemic stroke.Stat Med 2004;23(9):1439-53.
    12.Moore JH,Gilbert JC,Tsai CT,Chiang FT,Holden T,Barney N,White BC.A flexible computational framework for detecting,characterizing,and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.J Theor Biol 2006;241(2):252-61.
    13.Hosmer DW LS.Applied Logistic Regression(2nd edition).2000;John Wiley & Sons,New York.
    14.Steyerberg EW,Harrell FE,Jr.,Borsboom GJ,Eijkemans MJ,Vergouwe Y,Habbema JD.Internal validation of predictive models:efficiency of some procedures for logistic regression analysis.J Clin Epidemiol 2001;54(8):774-81.
    1. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilinl links TGF-beta maturation to blood pressure homeostasis. Cell 2006; 124(5):929-42.
    2. Mohan Kumar SM, King A, Shin AC, Sirivelu MP, MohanKumar PS, Fink GD. Developmental programming of cardiovascular disorders: focus on hypertension. Rev Endocr Metab Disord 2007; 8(2): 115-25.
    3. Raman M, Cobb MH. TGF-beta regulation by Emilinl: new links in the etiology of hypertension. Cell 2006; 124(5):893-5.
    4. Ariff B, Zambanini A, Vamadeva S, Barratt D, Xu Y, Sever P, Stanton A, Hughes A, Thom S. Candesartan- and atenolol-based treatments induce different patterns of carotid artery and left ventricular remodeling in hypertension. Stroke 2006; 37(9):2381-4.
    5. Kaplan DB, Kwon CC, Marin ML, Hollier LH. Endovascular repair of abdominal aortic aneurysms in patients with congenital renal vascular anomalies. J Vasc Surg 1999; 30(3):407-15.
    6. London GM, Marchais SJ, Guerin AP, Pannier B. Arterial stiffness: pathophysiology and clinical impact. Clin Exp Hypertens 2004; 26(7-8):689-99.
    7. Ivanovic-Krstic B, Kalimanovska-Ostric D, Svetkovic-Matic D, Nikcevic D, Simic D, Stevic S, Sujeranovic D. Aortic wall distensibility and the structure and function of the left ventricle in aged persons with isolated systolic hypertension. Srp Arh Celok Lek 1999; 127(1-2):10-5.
    8. Giannattasio C, Mancia G. Arterial distensibility in humans. Modulating mechanisms, alterations in diseases and effects of treatment. J Hypertens 2002;20(10):1889-99.
    9. London GM, Guerin AP, Pannier B, Marchais SJ, Safar ME. Large artery structure and function in hypertension and end-stage renal disease. J Hypertens 1998; 16(12 Pt 2):1931-8.
    10. Roman MJ, Ganau A, Saba PS, Pini R, Pickering TG, Devereux RB. Impact of arterial stiffening on left ventricular structure. Hypertension 2000; 36(4):489-94.
    11. Augier T, Charpiot P, Chareyre C, Remusat M, Rolland PH, Garcon D. Medial elastic structure alterations in atherosclerotic arteries in minipigs: plaque proximity and arterial site specificity. Matrix Biol 1997; 15(7):455-67.
    12. Weber R, Stergiopulos N, Brunner HR, Hayoz D. Contributions of vascular tone and structure to elastic properties of a medium-sized artery. Hypertension 1996; 27(3 Pt 2):816-22.
    13. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens 2004; 17(12Pt 1): 1192-200.
    14. Faury G, Pezet M, Knutsen RH, Boyle WA, Heximer SP, McLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Li DY, Starcher B, Mecham RP. Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 2003; 112(9):1419-28.
    15. Girerd X, Mourad JJ, Boutouyrie P, Benetos A, Laurent S, Safar M. Effects of aging on arterial function in man. Presse Med 1992; 21(26): 1204-9.
    16. Ferraro A, Palombo C, Distante A, L'Abbate A. Arterial hypertension and arteries of large caliber. G Ital Cardiol 1993; 23(9):921-32.
    17. Marchais SJ, Guerin AP, Pannier B, Delavaud G, London GM. Arterial compliance and blood pressure. Drugs 1993; 46(Suppl 2):82-7.
    18. Alva F, Samaniego V, Gonzalez V, Moguel R, Meaney E. Structural and dynamic changes in the elastic arteries due to arterial hypertension and hypercholesterolemia. Clin Cardiol 1993; 16(8):614-8.
    19. Gavish B. Correlating ambulatory blood pressure measurements with arterial stiffness: a conceptual inconsistency? Hypertension 2006; 48(6): 108-9.
    20. Paillole C, Lerallut JF, Merillon JP, Dahan M, Cohen-Solal A, Himbert D, Gourgon R. Properties of arteries, cardiac function and structure in chronic hypertension. Arch Mal Coeur Vaiss 1991; 84 (3):49-56.
    21. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation 2003; 108(18):2230-5.
    22. Struijker-Boudier HA, Rosei AE, Bruneval P, Camici PG, Christ F, Henrion D, Levy BI, Pries A, Vanoverschelde JL. Evaluation of the microcirculation in hypertension and cardiovascular disease. Eur Heart J 2007; 28(23):2834-40.
    23. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension 2006; 48(6):1012-7.
    24. Mulvany MJ. Small artery remodeling and significance in the development of hypertension. News Physiol Sci 2002; 17:105-9.
    25. Heerkens EH, Shaw L, Ryding A, Brooker G, Mullins JJ, Austin C, Ohanian V, Heagerty AM. Alpha V integrins are necessary for eutrophic inward remodeling of small arteries in hypertension. Hypertension 2006; 47(2):281-7.
    26. Delas Heras N, Ruiz-Ortega M, Miana M, Ruperez M, Sanz-Rosa D, Aragoncillo P, Mezzano S, Cachofeiro V, Egido J, Lahera V. Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. J Hypertens 2007; 25(3):629-38.
    27. Bobik A. The structural basis of hypertension: vascular remodelling, rarefaction and angiogenesis/arteriogenesis. J Hypertens 2005; 23(8):1473-5.
    28. Ledingham JM, Laverty R. Effect of simvastatin given alone and in combination with valsartan or enalapril on blood pressure and the structure of mesenteric resistance arteries and the basilar artery in the genetically hypertensive rat model. Clin Exp Pharmacol Physiol 2005; 32(2):76-85.
    29. Yang L, Gao YJ, Lee RM. Quinapril effects on resistance artery structure and function in hypertension. Naunyn Schmiedebergs Arch Pharmacol 2004; 370(6):444-51.
    30. Gilbert JS. Sex, salt, and senescence: sorting out mechanisms of the developmental origins of hypertension. Hypertension 2008; 51(4):997-9.
    31. Jachec W, Foremny A, Domal-Kwiatkowska D, Smolik S, Tomasik A, Mazurek U, Wodniecki J. Expression of TGF-beta1 and its receptor genes (TbetaR I, TbetaR II, and TbetaR III-betaglycan) in peripheral blood leucocytes in patients with idiopathic pulmonary arterial hypertension and Eisenmenger's syndrome. Int J Mol Med 2008; 21(1):99-107.
    32. Zaiman AL, Podowski M, Medicherla S, Gordy K, Xu F, Zhen L, Shimoda LA, Neptune E, Higgins L, Murphy A, Chakravarty S, Protter A, Sehgal PB, Champion HC, Tuder RM. Role of the TGF-beta/Alk5 signaling pathway in monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med 2008; 177(8):896-905.
    33. Feihl F, Liaudet L, Levy BI, Waeber B. Hypertension and microvascular remodelling. Cardiovasc Res 2008; 78(2):274-85.
    34. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001; 19(5):921-30.
    35. Heerkens EH, Izzard AS, Heagerty AM. Integrins, vascular remodeling, and hypertension. Hypertension 2007; 49(1): 1-4.
    36. Massague JG, Gomis R. The logic of TGF signaling. FEBS Lett. 2006; 580(12): 2811-20.
    37. Feng XHD, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 659-93
    38. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342(18): 1350-8
    39. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D'Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12(6):642-9.
    40. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 1995;270(18):10618-24.
    41. Beck S, Le Good JA, Guzman M, Ben Haim N, Roy K, Beermann F, Constam DB. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat Cell Biol 2002; 4(12):981-5.
    42. Kanzaki T, Olofsson A, Morén A, Wernstedt C, Hellman U, Miyazono K, Claesson-Welsh L, Heldin CH. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell 1990; 61(6):1051-61.
    43. Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 1996; 15(2):245-53.
    44. Dallas SL, Park-Snyder S, Miyazono K, Twardzik D, Mundy GR, Bonewald LF. Characterization and autoregulation of latent transforming growth factor beta (TGF beta) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF beta-binding protein. J Biol Chem 1994; 269(9):6815-21.
    45. Unsold C, Hyyti(a|¨)inen M, Bruckner-Tuderman L, Keski-Oja J. Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 2001;114(Pt1):187-197.
    46. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 2003; 278(4):2750-7.
    47. Beck S, Le Good JA, Guzman M, Ben Haim N, Roy K, Beermann F, Constam DB. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat Cell Biol 2002; 4(12):981-5.
    48. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-beta activation. J Cell Sci 2003; 116(Pt 2):217-24.
    49. Nunes I, Gleizes PE, Metz CN, Rifkin DB. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 1997;136(5): 1151-63.
    50. Flaumenhaft R, Abe M, Sato Y, Miyazono K, Harpel J, Heldin CH, Rifkin DB. Role of the latent TGF-beta binding protein in the activation of latent TGF-beta by co-cultures of endothelial and smooth muscle cells. J Cell Biol 1993; 120(4):995-1002.
    51. Ge G, Greenspan DS. BMPl controls TGFbetal activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 2006;175(1): 111-20.
    52. Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 2005;280(9):7409-12.
    53. Dabovic B, Chen Y, Colarossi C, Obata H, Zambuto L, Perle MA, Rifkin DB. Bone abnormalities in latent TGF-[beta] binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-[beta] bioavailability. J Cell Biol 2002;156(2):227-32.
    54. Sterner-Kock A, Thorey IS, Koli K, Wempe F, Otte J, Bangsow T, Kuhlmeier K, Kirchner T, Jin S, Keski-Oja J, von Melchner H. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev 2002;16(17):2264-73.
    55. Zanetti M, Braghetta P, Sabatelli P, Mura I, Doliana R, Colombatti A, Volpin D, Bonaldo P, Bressan GM. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol 2004; 24(2):638-50.
    56. Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 2006; 281(12):8016-23.
    57. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 2004; 114(2):172-81.
    
    58. Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, Hynes RO. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998; 101(5):982-92
    
    59. Daniel C, Wiede J, Krutzsch HC, Ribeiro SM, Roberts DD, Murphy-Ullrich JE, Hugo C. Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int. 2004; 65(2):459-68.
    
    60. Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J, Xiong X, Munger JS.Absence of integrin-mediated TGFbetal activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol 2007; 176(6):787-93.
    
    61. Tang Y, Lee KS, Yang H, Logan DW, Wang S, McKinnon ML, Holt LJ,Condie A, Luu MT, Akhurst RJ. Epistatic interactions between modifier genes confer strain-specific redundancy for Tgfb1 in developmental angiogenesis. Genomics 2005;85(1):60-70.
    
    62. Mallet C, Vittet D, Feige JJ, Bailly S. TGFbetal induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model:respective contribution of ALK1 and ALK5. Stem Cells 2006; 24(11):2420-7
    
    63. Larsson J, Goumans MJ, Sj(o|¨)strand LJ, van Rooijen MA, Ward D, Levéen P,Xu X, ten Dijke P, Mummery CL, Karlsson S. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice.EMBO J. 2001; 20(7): 1663-73.
    
    64. Goumans MJ, Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 2000;44(3):253-65.
    
    65. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, L(o|¨)wik CW. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.Endocrinology 2002; 143(4):1545-53.
    66. Ma J, Wang Q, Fei T, Han JD, Chen YG MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 2007; (3):987-94.
    67. Bartram U, Molin DG, Wisse LJ, Mohamad A, Sanford LP, Doetschman T, Speer CP, Poelmann RE, Gittenberger-de Groot AC. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation. 2001 Jun 5;103(22):2745-52.
    68. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol 2005; 3 (1):55-61.
    69. August P, Suthanthiran M. Transforming growth factor beta signaling, vascular remodeling, and hypertension. N Engl J Med 2006; 354(25):2721-3.
    70. Hartner A, Schaefer L, Porst M, Cordasic N, Gabriel A, Klanke B, Reinhardt DP, Hilgers KF. Role of fibrillin-1 in hypertensive and diabetic glomerular disease. Am J Physiol Renal Physiol 2006; 290(6):F1329-36.
    71. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352(6333):337-9.
    72. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003; 33(3):407-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700