微纳米结构铁氧化物的设计、制备和磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧化物作为一种无毒、无污染的绿色环保材料,在许多领域有着重要的应用。近年来,人们为了得到不同形状和性能的铁氧化物材料,发展了多种制备方法。本文利用草酸辅助法对在玻璃基底上利用磁控溅射制备的择优取向的纳米级铁膜进行热处理得到了奇异的铁氧化物纳米材料,并对其微观结构、生长机制和磁性能与制备条件的关系作了较为系统的研究。主要结果如下:
     在具有(110)择优取向的纳米级铁膜上滴加草酸,然后在大气中直接进行热处理,制备了多面体、片状、花状结构的铁氧化物材料。当温度低于300℃反应时,不易形成铁的氧化物;300-400℃时主要是Fe3O4;高于500℃时产物为α-Fe2O3。采用浸润草酸的方法,反应温度100-300℃,升温速率为10℃/min时,主要形成均匀有序的多面体结构;反应温度400-600℃,升温较慢时,片状产物形貌均匀。随着反应温度的升高,片状产物有变宽的趋势。铁膜越厚,越容易形成纵横比较大的棒状产物。
     利用扫描探针显微镜的液态模式,分别对滴加0.75M草酸和只滴加蒸馏水未经热处理样品的形貌进行了测试,发现铁膜表面的初始形貌明显不同。只滴加蒸馏水的样品表面形成的主要是形颗粒;而滴加草酸的铁膜表面形成的颗粒具有近菱形截面。因此证实了草酸在菱形截面多面体的形成中起着重要作用。认为低温下多面体和花状结构的形成为“成核——生长——聚集——自组装”过程,高温下片(丝)状产物的形成则遵循“扩散机制”。
     对材料的磁性进行研究后发现,随着反应温度的升高,矫顽力先增加后减小,在300℃时出现极大值;而饱和磁化强度则逐渐减小。平行膜面方向为易磁化方向。
As one of the green materials and environment-friendly materials, iron oxide is nontoxic and unpolluted. It is important in varies of fields. In recent years, many new techniques have been developed in order to synthesize iron oxide with different shapes and properties. In this study, fantastic submicron and nano-structured iron oxide has been synthesized through thermal treatment of the iron film assisted by oxalic acid. The iron film is (110) preferential prepared on glass substrate by magnetron sputtering. The experimental conditions leading to different morphologies and the possible growth mechanisms as well as the magnetic properties have been investigated in detail. The main results are listed as follows:
     Firstly, oxalic acid was dropped on the surface of iron nano film. After thermal treatment at temperatures between 100℃and 600℃under ambient conditions, micro- and nano-structured iron oxide with different morphologies, such as polyhedron, blade-like and ball-flower, were obtained. Iron oxide is hard to form under 300℃; Fe3O4 is formed between 300℃and 400℃;α-Fe2O3 is prevailing above 500℃. The most homogeneous distribution of surface morphology is obtained in the method of wetting instead of dropping oxalic acid. With the heating rate of 10℃/min, the samples consist of uniform micro-sized polyhedron as prevalent morphology at temperatures between 100℃and 300℃; While between 300 and 400℃, with a lower heating rate, the prevalent morphology is blade-like nanostructure and the blades become wider and thicker as the heating temperature increases. Thicker film tends to induce rod-like nanostructure with larger aspect ratio.
     In the contact mode of scanning probe microscope, the original morphologies of unannealed samples wetting with merely distilled water and with 0.75 M oxalic acid were obtained, respectively. The surface of the former is full of round granule while the latter is in the shape of rhomb. Thus, oxalic acid is demonstrated to be crucial for the formation of polyhedron with rhombic cross section. The polyhedron and ball-flower microstructure is formed in a process of“nucleation–upgrowth–conglomeration-self assembled”at low temperatures and blade-like nanostructure is formed in a diffusion process at high temperatures.
     The magnetic properties of iron oxide were also investigated. It is found that the coercivity increases at first and then decreases with the increasing heating temperature, a maximum shows up at 300℃, and the magnetization decreases gradually. The easy magnetization axis lies in the surface of film.
引文
[1]施利毅.纳米材料[M].上海:华东理工大学出版社, 2007: 5-8.
    [2] S. Xu, Y.Qin, C. Xu, Y.G. Wei, R.S. Yang and Z.L.Wang. Self-powered nanowire devices [J]. Nat. Nanotechnol., Published Online: 28 March 2010, 8pp.
    [3] J.E. Villegas, A. Sharoni, C.-P. Li, and I.K. Schuller. Anomalous, hysteretic, transverse magnetoresistance in superconducting thin films with magnetic vortex arrays [J]. Appl. Phys. Lett., 2009, 94: 252507-1-3.
    [4] L.S. Zhang, P.X. Zhang, Y. Fang. An investigation of the surface-enhanced Raman scattering effect from new substrates of several kinds of nanowire arrays [J]. J. Colloid Interface Sci., 2007, 311: 502-506.
    [5]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2005:7.
    [6] B. GrZeta, M. Ristic, I. Nowik, S.Music. Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate [J]. Alloys Compd., 2002, 334:304-306.
    [7] Z.X. Sun, F.W. Su, W. Forsling, P.O. Samskog. Surface characteristics of magnetite in aqueous suspension [J].Colloid Interface Sci., 1998, 197: 151-159.
    [8] E.J.W. Verwey. Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures [J]. Nature, 1939, 144: 327-328.
    [9] M. Bohra, S. Prasad, N.Venketaramani, N. Kumar, S.C.Sahoo, R.Krishnan. Magnetic properties of magnetite thin films close to the Verwey transition [J]. J. Magn. Magn. Mater., 2009, 321: 3738-3741.
    [10] D.J. Huang, H.-J. Lin, J. Okamoto, K.S. Chao, H.-T. Jeng, G.Y. Guo, C.-H. Hsu, C.-M. Huang, D.C. Ling, W.B. Wu, C.S. Yang, and C.T. Chen. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering [J]. Phys. Rev. Lett., 2006, 96: 096401-1-4.
    [11] Z. Tarnawski, A. Wiechec, M. Madej, D. Nowak, D. Owoc, G. Krol, Z. Kakol, L. Kolwicz-Chodak, A. Kozlowski and T. Dawid. Studies of the Verwey Transition in Magnetite [J]. Acta Phys. Pol., A, 2004, 106: 771-775.
    [12] H. Seo, M. Ogata, H. Fukuyama. Theory of the Verwey transition in Fe3O4 [J]. Physica B, 2003, 329-333: 932-933.
    [13] R. Prozorov, T.J. Williams, D.A. Bazylinski. Magnetic irreversibility and Verwey transition in nano-crystalline bacterial magnetite [J]. arXiv.org > cond-mat > arXiv: cond-mat/ 0703306v2, 2007: 11pp.
    [14] A.V. Smirnov, J.A. Tarduno. Magnetic field control of the low-temperature magnetic properties of stoichiometric and cation-deficient magnetite [J]. Earth. Planet. Sci. Lett., 2002, 194: 359-368.
    [15] A.i Kosterov. Magnetic hysteresis of pseudo-single-domain and multidomain magnetite below the Verwey transition [J]. Earth. Planet. Sci. Lett., 2001, 186: 245-253.
    [16] O¨zden, O¨zdemir. Coercive force of single crystals of magnetite at low temperatures [J]. Geophys. J. Int., 2000, 141: 351-356.
    [17]刘俊,雷跃荣,陈希明,董会宁,孙雷.尖晶石结构材料的最新研究进展[J].材料导报, 2008, 22(11): 26-29.
    [18]戴道生,钱昆明.《铁磁学》上册[M].北京:科学出版社, 2000: 208-211.
    [19] G. González, A. Sagarzazu, R. Villalba. Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD [J]. Mater.Res.Bull., 2000, 35: 2295-2308.
    [20] F.J. Morin. Magnetic Susceptibility ofα-Fe2O3 andα-Fe2O3 with Added Titanium [J].Phys. Rev. 1950, 78: 819-820.
    [21] S.A. Schetinkin, E. Wheeler, V.V. Kvardakov, M. Schlenker and J. Baruchel. Observation of the phase coexistence inα-Fe2O3 at the Morin transition by synchrotron radiation white beam section topography [J]. J. Phys. D: Appl. Phys., 2003, 36: A118-A121.
    [22] J.R. Morales, J.E. Garay, M. Biasini, and W.P. Beyermann. Magnetic characterization of bulk nanostructured iron oxides [J]. Appl. Phys. Lett. 2008, 93: 022511-1-3.
    [23] S. Mitra, S. Das, S. Basu, P. Sahu, K. Mandal. Shape- and field-dependent Morin transitions in structuredα-Fe2O3 [J]. J. Magn. Magn. Mater., 2009, 321: 2925-2931.
    [24] J.R. Morales, S. Tanju, W.P. Beyermann, and J.E. Garay. Exchange bias in large three dimensional iron oxide nanocomposites [J]. Appl. Phys. Lett. 2010, 96: 013102-1-3.
    [25] Y. Ding, J.R. Morber, R.L. Snyder, and Z.L. Wang. Nanowire Structural Evolution from Fe3O4 toε-Fe2O3 [J]. Adv. Funct. Mater, 2007, 17: 1172-1178.
    [26] B. Mart?′nez, X. Obradors, Ll. Balcells, A. Rouanet, and C. Monty. Low Temperature Surface Spin-Glass Transition inγ-Fe2O3 Nanoparticles [J]. Phys. Rev. Lett., 1998, 80: 181-184.
    [27] F.T.Parker, M.W. Foster, D.T. Margulies, and A.E. Berkowitz. Spin canting, surface magnetization and finite-size effects in particles [J]. Phys. Rev. B, 1993, 47:7885-7891.
    [28] D.L. Leslie-Pelecky, R.D. Rieke. Magnetic properties of nanostructured materials [J]. Chem. Mater., 1996, 8: 1770-1783.
    [29] P.J.V. Zaag, P.J.H. Bloemen, J.M. Gaines, R.M. Wolf, P.A.A. van der Heijden, R.J.M. van de Veerdonk, W.J.M. De Jonge. On the con-struction of a Fe3O4-based all-oxide spin valve [J]. J. Magn. Magn. Mater., 2000, 211(1-3): 301-308.
    [30] S. Peng and S.H. Sun. Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles [J]. Angew. Chem. Int. Ed., 2007, 46: 4155-4158.
    [31] H. Yan, J.C. Zhang, C.X. You, Z.W. Song, B.W. Yu and Y. Shen. Surface modification of Fe3O4 nanoparticles and their magnetic properties [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(2):226-229.
    [32] T. Osaka, T. Hachisu, S. Takahama. Chemical Synthesis of Magnetic nanoparticles and their Applications to Recording Media & Biomedical Materials [J]. 214th ECS Meeting, 2008, Abstract 2592.
    [33] F.J. Owens. Ferromagnetic resonance of magnetic field oriented Fe3O4 nanoparticles in frozen ferrofluids [J]. J. Phys. Chem. Solids, 2003, 64: 2289-2292.
    [34]王毛兰,胡春华,罗新.磁流体的制备、性质及其应用[J].化学通报,2004,67:1-7.
    [35] L. Sakhnini, M. EI-Hilo. Time dependence of light transmission in nanoparticle ferrofluids [J]. J. Magn. Magn. Mater., .2010, 322: 1669-1672.
    [36] R.A. Frimpong, J. Dou, M. Pechan, J.Z. Hilt. Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation [J]. J. Magn. Magn. Mater., 2010, 322: 326-331.
    [37] S. Azarmi, W.H. Roa, R. Lobenberg. Targeted delivery of nanoparticles for the treatment of lung diseases [J]. Advanced Drug Delivery Reviews, 2008, 60: 863-875.
    [38] N. Zhao, M.Y. Gao. Magnetic Janus Particles Prepared by a Flame Synthetic Approach: Synthesis, Characterizations and Properties [J]. Adv. Mater., 2009, 21: 184-187.
    [39] C.G. Wang, J.J. Chen, T. Talavage, and J. Irudayaraj. Gold Nanorod/Fe3O4 Nanoparticle“Nano-Pearl-Necklaces”for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells [J]. Angew. Chem. Int. Ed., 2009, 48: 2759 -2763.
    [40]赵铁鹏,高德淑,雷钢铁,李朝晖.三维有序大孔α-Fe2O3的制备及电化学性能研究[J].化学学报, 2009, 67, 1957-1961.
    [41] H.B. Lu, L. Liao, J.C. Li, M. Shuai, and Y.L. Liu. Hematite nanochain networks: Simple synthesis, magnetic properties, and surface wettability [J]. Appl. Phys. Lett., 2008, 92: 093102-1-3.
    [42] A.M. Cao, L.L. Cao, and D. Gao. Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles [J]. Appl. Phys. Lett., 2007, 91: 034102-1-3.
    [43] L. Huo, W. Li, L. Lu, H. Cai, S. Xi, J. Wang, B. Zhao, Y. Shen, Z. Lu. Preparation, Structure, and Properties of Three-Dimensional Orderedα-Fe2O3 Nanoparticulate Film [J].Chem. Mater., 2000, 12: 790-794.
    [44] J. Xu, H.B. Yang, W.Y. Fu, et al. Preparation and properties of magnetite nanoparticles by sol-gel method [J]. J. Magn. Magn. Mater, 2007, 309: 307-311.
    [45] G.F. Goya. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling [J]. Solid State Commun., 2004, 130: 783-787.
    [46] J.H. Wu, S.P. Ko, H.L. Liu, et al. Sub-5 nm Fe3O4 nanocrystals via coprecipitation method [J]. Colloids and Surfaces A, 2008, 313: 268-272.
    [47] R. Fan, X.H. Chen, Z. Gui, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4 [J]. Mater. Res. Bull., 2001, 36: 497-502.
    [48] Z.J. Yan, D.S. Xue. Synthesis of ultrafine amorphous Fe–B alloy nanoparticles using anodic aluminum oxide templates [J]. J. Mater. Sci., 2008, 43: 771-774.
    [49] A. Kale, S. Gubbala, R.D.K. Misra. Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique [J]. J. Magn. Magn. Mater., 2004, 277: 350-358.
    [50] N. Zhao and M.Y. Gao. Magnetic Janus Particles Prepared by a Flame Synthetic Approach: Synthesis, Characterizations and Properties [J]. Adv. Mater., 2009, 21: 184-187.
    [51] X. Zeng, Z.Wang, Y. Liu, M. Ji.γ-Fe2O3 nanoparticles prepared by laser ablation of atiny wire [J]. Appl. Phys. A, 2005, 80: 581-584.
    [52]张俊豪,孔庆红,陆卫良,刘鹤.单分散四氧化三铁亚微的合成、表征及磁性研究[J].科学通报, 2009, 54: 1529-1533.
    [53]焦华,杨瑞丽,杨合情,陈迪春,宋玉哲,张建英,李丽,王林芳.单晶结构四氧化三铁纳米片的大面积生长[J].科学通报, 2007, 52: 1874-1878.
    [54]焦华,杨合情,王庆相,李丽,谢小莉. Fe3O4核桃形状颗粒和八面体微晶结构的可控合成与磁学性质[J].中国科学E辑:技术科学, 2008, 38: 1478-1486.
    [55]刘辉,朱梅英,魏雨.纳米金属氧化物粉体的液相制备和表征进展[J].微纳电子技术, 2004, 11: 17-23.
    [56]耿明鑫,刘福田.水热法制备Fe3 O4磁性纳米粒子[J].济南大学学报(自然科学版), 2009, 23: 141-144.
    [57] Y.B. Khollam, S.R. Dhage, H.S. Potdar, et al. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders [J]. Mater. Lett., 2002, 56: 571-577.
    [58] S.Y. Lian, Z.H. Kang, E.B. Wang, M. Jiang, C.W. Hu, L. Xu. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods [J]. Solid State Commun., 2003, 127: 605-608.
    [59] J. Wang, Z.M. Peng, Y.J. Huang, Q.W. Chen. Growth of magnetite nanorods along its easy-magnetization axis of [110] [J]. J. Cryst. Growth., 2004, 263: 616-619.
    [60] J. Wang, Q.W. Chen, C. Zeng, B.Y. Hou. Magnetie-Field-induced Growth of Single Crystaline Fe3O4 nanowires [J]. Adv. Mater., 2004, 16:137-140.
    [61] S.Y. Lian, E.B. Wang, Z.H. Kang, Y.P. Bai, L. Gao, M. Jiang, C.W. Hu, L. Xu. Synthesis of magnetite nanorods and porous hematite nanorods [J]. Solid State Commun., 2004, 129: 485-490.
    [62] Q.T. Pan, K. Huang, S.B. Ni, F.Yang, S.M. Lin and D.Y. He. Synthesis ofα-Fe2O3 dendrites by a hydrothermal approach and their application in lithium-ion batteries [J]. J. Phys. D: Appl. Phys., 2009, 42: 015417 (5pp).
    [63]吕庆荣,方庆清,刘艳美,李雁,王伟娜,尹萍.水热法制备磁性Fe3O4针状纳米颗粒及亚微空心[J].安徽大学学报(自然科学版), 2009, 33: 66-69.
    [64]李冬梅,徐光亮,熊坤,丁宇.微波水热法制备超顺磁性Fe3O4纳米粒子[J].化工进展, 2008, 27: 1056-1060.
    [65] J.R. Morber, Y. Ding, M.S. Haluska, Y. Li, J. P. Liu, Z.L. Wang, and R.L. Snyder.PLD-Assisted VLS Growth of Aligned Ferrite Nanorods, Nanowires, and Nanobelts - Synthesis, and Properties [J]. J. Phys. Chem. B, 2006, 110: 21672-21679.
    [66] X.C. Dou, G.H. Li, and H.C. Lei. Kinetic versus Thermodynamic Control over Growth Process of Electrodeposited Bi/BiSb Superlattice Nanowires [J]. Nano Lett., 2008, 8(5): 1286-1290.
    [67] L.Y. Zhang, Y.F. Zhang. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters [J]. J. Magn. Magn. Mater., 2009, 321: L15-L20.
    [68] L.Y. Zhang, D.S. Xue, X.F. Xu, A.B. Gui and C.X. Gao. The fabrication and magnetic properties of nanowire-like iron oxide [J]. J. Phys.: Condens. Matter, 2004, 16: 4541-4548.
    [69]彭英才,赵新为.气-液-固法在半导体纳米线生长中的应用[J].功能材料与器件学报, 2008, 114: 864-870. [70 J.C. Hulteen and C.R. Martin. A general template-based method for the preparation of nanomaterials [J]. J. Mater. Chem., 1997, 7(7): 1075-1087.
    [71] S.Y. Chen, J. Feng, X.F. Guo, J.M. Hong, W.P. Ding, One-step wet chemistry for preparation of magnetite nanorods [J]. Mater. Lett., 2005, 59: 985-988.
    [72] L.H. Liu, H.T. Li, S.H. Fan, J.J. Gu, Y.P. Li, H.Y. Sun. Fabrication and magnetic properties of Ni–Zn nanowire arrays [J]. J. Magn. Magn. Mater., 2009, 321: 3511-3514.
    [73] R. Yang, C.H. Sui, J. Gong, L.Y. Qu. Silver nanowires prepared by modified AAO template method [J]. Mater. Lett., 2007, 61: 900-903.
    [74]姚素薇,陆平,张卫国.硅基AAO模板法制备纳米阵列研究进展[J].化工进展, 2007, 26: 1088-1092.
    [75]吴卫林,毕红,孙俊.磁性氧化铁纳米线的制备和表征[J].中国科技论文在线, 2008, 3(3): 214-218.
    [76]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2000: 421-431.
    [77]金原粲著,杨希光译.《薄膜的基本技术》[M].北京:科学出版社,1982.
    [78] C. Clavero, A. Cebollada, G. Armelles, O. Fruchart. Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(1 1 1) trilayers [J]. J. Magn. Magn. Mater., 2010, 322: 647-652.
    [79] H. Yan, M. Zhang, H. Yan. Electrical transport, magnetic properties of the half -metallic Fe3O4-based Schottky diode [J]. J. Magn. Magn. Mater. 2009, 321: 2340-2344.
    [80] A. Meldrum, L.A. Boatner, C.W. White. Nanocomposites formed by ion implantation: Recent developments and future opportunities [J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, 178: 7-16.
    [81] S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, V.I. Kleshch, J. Sainio, E.D. Obraztsova, S.N. Bokova, A.N. Obraztsov and E.I. Kauppinen. A novel method for metal oxide nanowire synthesis [J]. Nanotechnology, 2009, 20: 165603-1-8.
    [82] R.N. Liu, H.Q. Yang, R.G. Zhang, H.X. Dong, X.B Chen., L. Li, L.H. Zhang, J.H. Ma and H.R. Zheng. In-situ growth and photoluminescence ofβ-Ga2O3 cone-like nanowires on the surface of Ga substrates [J]. Sci China Ser E-Tech Sci, 2009, 52(6):1712-1721.
    [83] J.B.K. Law, C.B. Boothroyd, J.T.L. Thong. Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing [J]. J. Cryst. Growth, 2008, 310: 2485-2492.
    [84] J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan. CuO nanowires synthesized by thermal oxidation route [J]. J. Alloys Compd., 2008, 454: 268-273.
    [85] A. Kumar, A.K. Srivastava, P. Tiwari and R.V. Nandedkar. The effect of growth parameters on the aspect ratio and number density of CuO nanorods [J]. J. Phys.: Condens. Matter, 2004, 16: 8531-8543.
    [86] M.F. Chioncel, C. Díaz-Guerra and J. Piqueras. Shape-controlled synthesis and cathodoluminescence properties of elongatedα-Fe2O3 nanostructures [J]. J. Appl. Phys., 2008, 104: 124311-1-8.
    [87] Q. Han, Y.Y. Xu, Y.Y. Fu, H. Zhang, R.M. Wang, T.M. Wang, Z.Y. Chen. Defects and growing mechanisms ofα-Fe2O3 nanowires [J].Chem. Phys. Lett., 2006,431:100-103.
    [88] Y.Y. Fu, J. Chen, H. Zhang. Synthesis of Fe2O3 nanowires by oxidation of iron [J]. Chem. Phys. Lett., 2001, 350: 491-494.
    [89] Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A.V. Narlikar, H. Zhang. Synthesis of large arrays of alignedα-Fe2O3 nanowires [J]. Chem. Phys. Lett., 2003, 379: 373-379.
    [90] Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang. Magnetic properties ofα-Fe2O3 nanowires [J]. Chem. Phys. Lett., 2005, 410: 36-38.
    [91] H. Srivastava, P. Tiwari, A.K. Srivastava, and R.V. Nandedkar. Growth and characterization ofα-Fe2O3 nanowires [J]. J. Appl. Phys., 2007, 102: 054303-1-5.
    [92] P. Hiralal, H.E. Unalan, K.G. UWijayantha, A. Kursumovic, D. Jefferson, J.L. MacManus-Driscoll and G.A. J Amaratunga. Growth and process conditions of aligned and patternable films of iron (III) oxide nanowires by thermal oxidation of iron [J]. Nanotechnology, 2008, 19: 455608-1-7.
    [93] A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L.I. Nasibulina, J. Sainio, and E.I. Kauppinen. Simple and Rapid Synthesis ofα-Fe2O3 Nanowires Under Ambient Conditions [J]. Nano Res, 2009, 2: 373-379.9
    [94] W.W. Zhou, K.B. Tang, S.Y. Zeng and Y.X. Qi. Room temperature synthesis of rod-like FeC2O4·2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition [J]. Nanotechnology, 2008, 19: 065602-1-9.
    [95] M. Sorescu, R.A.Brand, D.Mihaila-Tarabassanu, L. Diamandescu. The crucial role of particle morphology in the magnetic properties of haematite [J]. J. Appl. Phys., 1999, 85(8): 5546-5548.
    [96]焦华,杨合情.Fe3O4纳米棒和Fe2O3纳米线的热氧化制备与表征[J].中国科学B辑:化学, 2009, 39: 39-45.
    [97]海阔,唐东升,袁华军,彭跃华,罗志华,刘红霞,陈亚琦,余芳,羊亿.大面积α-Fe2O3纳米线及纳米带阵列的制备研究[J].物理学报, 2009, 58: 1120-1125.
    [98]卞清,张明,徐云玲.晶体X射线衍射实验的数据分析模式[J].物理实验,2007,27:3-5.
    [99]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社, 2003:38-42.
    [100] P. Scherrer and N. G?ttinger. Bestimmung der grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen [J]. Math Phys., 1918, 2: 98-100.
    [101] H.P. Klug and L. E. Alexander. X-Ray Diffraction Procedures[M]. New York, John Wiley, 1974.
    [102] P. Dutta, A. Manivannan, and M. S. Seehra. Magnetic properties of nearly defect-free maghemite nanocrystals [J]. Phys. Rev. B, 2004, 70: 174428-1-7 .
    [103]丘利,胡玉和.X射线衍射技术及设备[M].北京:冶金工业出版社,2001, 188.
    [104]张锐,现代材料分析方法[M].北京:化学工业出版社,2007: 171-180, 185.
    [105] G. Binnig, C.F. Quate, Ch. Gerber. Atomic force microscope [J]. Phys. Rev. Lett.,1986, 56: 930-933.
    [106]朱守星,丁建宁,蔡兰,杨继昌.基于AFM纳米加工机理和方法的研究进展[J].江苏大学学报(自然科学版), 2002, 23(3): 8-13.
    [107]孙志,秦水介.AFM在不同参数下实现阳极氧化纳米加工[J].半导体技术, 2006, 31: 751-753.
    [108] Y.H. Ding, P. Zhang, Y.Q. Qu, Y.Jiang, J.N. Huang, W.J. Yan, G. Liu. AFM characterization and electrochemical property of Ag nanowires by modified AAO template method [J]. J. Alloys Compd., 2008, 466: 479-482.
    [109]张峰,唐琳,徐洪杰,何建华.一种高效、简便原子力显微镜液体中原位实验方法[J].现代仪器, 2006, 2: 57-58.
    [110]杨谦,孙润广.红细胞膜弹性特性的AFM力曲线测量[J].中国科C辑:生命科学, 2008, 38(11): 1013-1027.
    [111] H.S. Nalwa. Magnetic Nannostructures[M]. USA: American Scientific Publisher, 2002: 68-89.
    [112] T. Wang, Y. Fu, Y. Hasegawa, T. Washiya, T. Saito, H. Ishio, S. Li, F. S. Oshima, H. Itoh, K. Nishio, K. Masuda, H. In-field magnetic force microscope study of dipolar interaction in an ideally ordered Co nanorod array fabricated using nanoimprint lithography [J]. Appl. Phys. Lett., 2008, 19: 192504-1-3.
    [113] J. Chang. Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe [J]. J. Appl. Phys., 2006, 100: 104304-1-7.
    [114] S. Jain, Y. Ren, and A.O. Adeyeye. Configurational anisotropy and control of magnetic vortex chirality in arrays of circular Ni80Fe20 nanoscale dots [J]. Phys. Rev. B, 2009, 80: 132401-1-4.
    [115] T. Okunoa, K. Shigetoa, T. Onob, K. Mibua, T. Shinjo. MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field [J]. J. Magn. Magn. Mater., 2002, 240: 1-6.
    [116] E.C. Passaman, C. Larica, C. Marques, A.Y. Takeuchi, J.R. Proveti and E. Favre-Nicolin. Large vertical loop shifts in mechanically synthesized (Mn,Fe)2O3?t nanograins [J]. J. Magn. Magn. Mater., 2007, 314: 21-29.
    [117]李志林.材料物理[M].北京:化学工业出版社, 2009: 167-168.
    [118]吴其胜,蔡安兰,杨亚群.材料物理性能[M].上海:华东理工大学出版社, 2006: 192-195.
    [119]肖春涛,赵俊慧,杨正.溅射铁膜的结构和磁性能[J].磁性材料及器件, 1995, 26: 53-56.
    [120] X.Y. Chen, Z.J. Zhang, X.X. Li, C.W. Shi. Hollow magnetite spheres: Synthesis, Characterization and magnetic properties [J]. Chem. Phys. Lett., 2006, 422: 294-298.
    [121] R.S. Wagner, W.C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth [J]. Appl. Phys. Lett., 1964, 4: 89-90.
    [122] Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang. Molten Gallium as A Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires [J]. J. Am. Chem. Soc., 2002, 124: 1817-1822.
    [123] D.A. Voss, E.P. Butler, and T.E. Mitchell. The Growth of Hematite Blades during the High Temperature Oxidation of Iron [J]. Metall. Trans. A, 1982, 13A: 929-935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700