光学导波纳米线及其传感应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将光纤技术与纳米技术结合起来,实现尺寸更小、性能更佳、集成度更高的纳米光子学器件,是当前纳米光子学领域研究的一大热点。本论文着眼于光学纳米线的独特性质,研究制备新型纳米线,发现其新的物理现象和效应,并将其应用于新的微纳光子器件中,从而为解决科学和技术中的难题提供新的思路。
     在本工作的第一部分,研究了光学纳米线的导波光学特性。首先通过激发光光直接照射法和导波激发法两种作用方式的比较,发现导波激发法可以使光与纳米线的作用大大增强。然后研究了光在光学单纳米线里面传输时的一些独特的光学特性,如大范围的倏逝场调控能力,很高的空间分辨率,模式偏振的调控能力及异常波导色散和表面增强效应等特性,并指出这些特性在传感等领域中的潜在应用。
     本文第二部分研究了高分子纳米线及其气体传感应用。首先从高分子溶液中拉制出低损耗的高分子纳米线,并研究了其导波光学特性。然后研究了掺有荧光染料的纳米线的光学特性,发现导波激发能使纳米线的发光强度提高几个数量级。最后利用高分子纳米线搭建了光学气体传感器。在这个传感器中,利用一根拉锥微纳光纤通过倏逝波耦合将信号光输入高分子纳米线,并用另一根拉锥微纳光纤耦合输出,从而形成传输光信号变化的光学气体传感器。该传感器具有响应速度快、灵敏度高、小型化和结构简单等特点。如单根溴百里香酚蓝掺杂的PMMA纳米线可以检测到ppm量级的NH3,响应速度比传统薄膜传感器快1-2个数量级。另外,还使用双波长检测技术,在单根PANI/PS内米线上实现了氨气和湿度的选择性检测。
     在本文第三部分,通过纳米压印技术制备了高分子微纳光纤布拉格光栅。该制备方法简单高效,成本低,适宜于大批量生产。利用压印的PMMA光纤光栅进行了应变传感,发现比传统二氧化硅光纤光栅的灵敏度高。同时,还对应力传感中的布拉格波长蓝移现象作了定性的解释。
     在本文第四部分将光通过倏逝波耦合法输入到半导体纳米线里,研究纳米线的光电导效应。发现相对于体材料来说,半导体纳米线中的非本征光电导效应得到很大的增强。同时当入射光波长增加时,发现了负光电导效应和光电导淬灭效应。通过研究光电导与输入光功率的关系和时间响应特性,对这些非本征光电导效应做了定性分析和解释。最后从昆虫小眼的光检测结构中受到启发,利用在高温生长过程中移动蒸发源的方法,制备了类仿生结构的带隙梯度联系变化的CdSSe纳米线。基于本征光电导效应和光电导淬灭效应,在这些带隙梯度变化的CdSSe纳米线中实现了从可见到近红外区的宽光谱响应。
     在本文第五部分,提出用一维金属纳米线来制备表面等离激元(SPP)型传感器。首先对比了介质纳米线和金属纳米线中导波特性,指出了SPP型传感器的高灵敏和快响应潜在优势。然后把银纳米线放在对湿度敏感的PAM薄膜上,发现银纳米线对外界湿度的响应时间在几个ms量级,比PAM纳米线对湿度的响应快1到2个数量级。接着利用表面镀有钯膜的金纳米线来对氢气进行检测,发现金纳米线中1530nm探测光的透过率变化达到13dB,大大高于目前报道的基于钯的光学传感器的结果。最后研究了单晶的钯纳米线对氢气的响应,发现钯纳米线中有明显的滞后现象,在同一氢气浓度下的光强差可达20dB。该现象表明单晶钯纳米线有很好的储氢特性,有可能发展基于SPP的逻辑线路器件。
It is promising to develop more miniature, more function and high density nanophotonic sensing and detection devices by combining the optical fiber technique" and nanotechnique.
     The first part in this thesis is about the waveguiding properties of the single photonic nanowires. Firstly we compared the direct irradiation and waveguiding methods. Then we investigate the unique properties in waveguiding nanowires, such as the highly tunable evanescent wave fraction, high spatial resolution and tunable mode polarization, tailorable waveguide dispersion.
     The second part is about the optical sensing using waveguiding single polymer nanowires. We fabricated low-optical loss polymer nanowires by directly drawing from polymer solutions. The polymer nanowires were functionalized by doping with dyes or blending with solvated polymers before the drawing process. By waveguiding excitation light along the nanowires, we demonstrated that the interaction of light with nanowires is enhanced over3orders of magnitude compared with the irradiating excitation. Intriguing advantages such as enhanced excitation efficiency, low excitation power operation down to nW levels and high photostability are obtained. On the basis of the optical response of waveguiding polymer single nanowires when exposed to specimens, functionalized polymer nanowires were used for humidity sensing with a response time of30ms and for NO2and NH3detection down to subparts-per-million level. Selective detection of gas mixture of ammonia and humidity with ppm sensitivity were also demonstrated by using dual-wavelength analysis.
     The third part is about the photodetection using waveguiding single semiconductor nanowires. We demonstrated a large defect-induced sub-bandgap photoresponse in CdS nanowires over a broad spectral range. We also demonstrated infrared quenching of photoconductivity in CdSe single nanowires. Furthermore, inspired by natural ommatidium of compound eyes of insects, we also developed a source-moving thermal evaporation route and first realized the growth of a novel CdSSe alloy nanowires. Along the length of these achieved nanowires, the composition can be continuously tuned from pure CdS at one end to pure CdSe at the other end of the same wire. Via waveguiding excitation, we combined the intrinsic photoconductive effect and the infrared quenching of photoconductivity effect in the same structural schemes and demonstrated response from400nm to1.5-μm wavelength in composition-graded CdSSe alloy single nanowires.
引文
1. Mynbaev D. K. and Scheiner L. L., Fiber-Optic Communications Technology. Prentice Hall:Upper Saddle River,2002.
    2. Udd E., Fiber Optical Sensors:An Introduction for Engineers and Scientists. Wiley:New York,1991.
    3.廖延彪,光纤光学.清华大学出版社:2000.
    4.孙宝元,传感器及其应用.机械工业出版社:2004.
    5.吴重庆,光波导理论.清华大学出版社:2000.
    6.徐公权,光纤通信技术.机械工业出版社:2002.
    7. Xia Y, Yang P., Sun Y, Wu Y, Mayers B., Gates B., Yin Y, Kim F., and Yan H., One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.2003,15,353-389.
    8. Comini E., Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 2006,568, 28-40.
    9. Huang Z. M., Zhang Y. Z., Kotaki M., and Ramakrishna S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol.2003,63,2223-2253.
    10. Li Y, Qian F., Xiang J., and Lieber C. M., Nanowire electronic and optoelectronic devices. Mater. Today 2006,9,18-27.
    11. Senesac L., and Thundat T. G, Nanosensors for trace explosive detection. Mater. Today 2008,11,28-36.
    12. Yan R., Gargas D., and Yang P., Nanowire photonics. Nat. Photon 2009,3, 569-576.
    13. Foster M. A., Turner A. C., Lipson M., and Gaeta A. L., Nonlinear optics in photonic nanowires. Opt. Express 2008,16,1300-1320.
    14. Kong J., Franklin N. R., Zhou C., Chapline M. G, Peng S., Cho K., and Dai H., Nanotube molecular wires as chemical sensors. Science 2000,287,622-625.
    15. Collins P. G, Bradley K., Ishigami M., and Zettl A., Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000,287,1801-1804.
    16. Qi P., Vermesh O., Grecu M., Javey A., Wang Qi., and Dai H., Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett.2003,3,347-351.
    17. Cui Y., Wei Q. Q., Park H. K., and Lieber C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001,293,1289-1292.
    18. Kind H., Yan H., Messer B., Law M., and Yang P., Nanowire ultraviolet photodetectors and optical switches. Adv. Mater.2002,14,158-160.
    19. Law M., Kind H., Messer B., Kim F., and Yang P., Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed.2002, 41,2405-2408.
    20. Kolmakov A., Zhang Y. X., Cheng G. S., and Moskovits M., Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater.2003,15,997-1000.
    21. Wan Q., Li Q. H., Chen Y. J., Wang T. H., He X. L., Li J. P., and Lin C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire. Appl. Phys. Lett. 2004,84,3654.
    22. Im Y, Lee C., Vasquez R. P., Bangar M. A., Myung N. V., Menke E. J., Penner R. M., and Yun M., Investigation of a single Pd nanowire for use as a hydrogen sensor Small 2006,2,356-358.
    23. Favier F., Walter E. C., Zach M. P., Benter T., and Penner R. M., Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 295,2227-2231.
    24. Huang J. X., Virji S., Weiller B. H., and Kaner R. B., Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc.2003,125,314-315.
    25. Liu H. Q., Kameoka J., Czaplewski D. A., and Craighead H. G., Polymeric nanowire chemical sensor. Nano Lett.2004,4,671-675.
    26. Tan W., Shi ZY, Smith S., Birnbaum D., and Kopelman R., Submicrometer intracellular chemical optical fiber sensors. Science 1992,258,778-781.
    27. Polynkin P., Polynkin A., Peyghambarian N., and Mansuripur M., Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett.2005,30,1273-1275.
    28. Villatoro J., and Monzon-Hernandez D., Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express 2005,13, 5087-5092.
    29. Sirbuly D. J., Tao A., Law M., Fan R., and Yang P., Multifunctional nanowire evanescent wave optical sensors. Adv. Mater.2007,19,61-66.
    30. Bube R. H., Photoelectronic Properties of Semiconductors. Cambridge University Press:1992.
    31. Li S. S., Semiconductor physical electronics. Springer-Verlag:Berlin,2006.
    32. Soci C., Zhang A., Xiang B., Dayeh S. A., Aplin D. P. R., Park J., Bao X. Y, Lo Y. H., and Wang D., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007,7,1003-1009.
    33. Jiang Y, Zhang W. J., Jie J. S., Meng X. M., Fan X., and Lee S. T., Photoresponse properties of CdSe singlenanoribbon photodetectors. Adv. Funct. Mater.2007,17, 1795-1800.
    34. Gao T., Li Q. H., and Wang T. H., CdS nanobelts as photoconductors. Appl. Phys. Lett.2005,86,173105.
    35. Jie J. S., Zhang W. J., Jiang Y., Meng X. M., Li Y. Q., and Lee S. T. Photoconductive characteristics of singlecrystal CdS nanoribbons. Nano Lett.2006,6, 1887-1892.
    36. Hayden O., Agarwal R., and Lieber C. M, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater.2006,5,353-356.
    37. O'Brien G. A., Quinn A. J., Tanner D. A., and Redmond G., A single polymer nanowire photodetector. Adv. Mater.2006,18,2379-2383.
    38. Tang Q., Li L., Song Y., Liu Y., Li H., Xu W., Liu Y., Hu W., and Zhu D., Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater.2007,19,2624-2628.
    39. Tong L., Gattass R. R., Ashcom J. B., He S. L., Lou J. Y., Shen M. Y, Maxwell I., and Mazur E., Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003,426,816-819.
    40. Tong L. M., Hu L. L., Zhang J. J., Qiu J. R., Yang Q., Lou J. Y, Shen Y. H., He J. L., and Ye Z. Z., Photonic nanowires directly drawn from bulk glasses. Opt. Express 2006,14,82-87.
    41. Law M., Sirbuly D. J., Johnson J. C., Goldberger J., Saykally R. J., and Yang P. D., Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305,1269-1273.
    42. Vlasov Y A., and McNab S. J., Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004,12,1622-1631.
    43. Zhao Y. S., Peng A., Fu H., Ma Y., and Yao J., Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater.2008,20,1661-1665.
    44. Sanders A. W., Routenberg D. A., Wiley B. J., Xia Y., Dufresne E. R., and Reed M. A., Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett.2006,6,1822-1826.
    45. Pan Z. W., Dai Z. R., and Wang Z. L., Nanobelts of semiconducting oxides. Science 2001,291,1947-1949.
    46. Camposeo A., Benedetto F. D., Stabile R., Cingolani R., and Pisignano D., Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett.2007,90,143115.
    47. Camposeo A., Benedetto F. D., Stabile R., Neves A. A. R., Cingolani R., and Pisignano D., Laser emission from electrospun polymer nanofibers. Small 2009,5, 562-566.
    48. Harfenist S. A., Cambron S. D., Nelson E. W., Berry S. M., Isham A. W., Crain M. M., Walsh K. M., Keynton R. S., and Cohn R. W., Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers. Nano Lett.2004,4, 1931-1937.
    49. Xing X., Wang Y., and Li B., Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt. Express 2008,16,10815-10822.
    50. O'Carroll D., Lieberwirth I., and Redmond G, Melt-processed polyfluorene nanowires as active waveguides. Small 2007,3,1178-1183.
    51. Pagliara S., Camposeo A., Polini A., Cingolani R., and Pisignano D., Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab Chip 2009, 9,2851-2856.
    52. Moran-Mirabal J. M., Slinker J. D., DeFranco J. A., Verbridge S. S., Ilic R., Flores-Torres S., Abruna H., Malliaras G. G., and Craighead H. G, Electrospun light-emitting nanofibers. Nano Lett.2007,7,458-463.
    53. Liu H., Edel J. B., Bellan L. M., and Craighead H. G, Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2006,2,495-499.
    54. Xing X., Zhu H., Wang Y, and Li B., Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Lett.2008,8,2839-2843.
    55. Zhang C., Zou C.-L., Yan Y, Hao R., Sun F.-W., Han Z.-F., Zhao Y S., and Yao J., Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc.2011,133,7276-7279.
    56. Gu F., Zhang L. Yu, H., Fang W., Bao J., and Tong L., Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation. Nanotechnology 2011,22,425201.
    57. Gu F., Yu H., Wang P., Yang Z., and Tong L., Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano 2010,4,5332-5338.
    58. Lakowicz J. R., Principles of Fluorescence Spectroscopy; 3rd ed. Springer-Verlag: Berlin, Heidelberg,2006.
    59. Skoog D. A., West D. M., Holler F. J., and Crouch S. R., Fundamental of Analytical Chemistry. Brooks Cole:2004.
    60. Snyder A. W., and Love J. D., Optical waveguide theory. Chapman and Hall: New York,1983.
    61. Tong L., Lou J., and Mazur E., Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 2004,12, 1025-1035.
    62. Lou J. Y., Tong L. M. and Ye Z. Z., Dispersion shifts in optical nanowires with thin dielectric coatings. Opt. Express 2006,14,6993-6998.
    63. Agrawal G. P., Nonlinear Fiber Optics,4th ed. Elsevier:Singapore,2007.
    64. Boyd R. W., Nonlinear Optics,3rd ed. Academic Press:2003; Vol. Boston.
    65. Shen Y. R., The Principle of Nonlinear Optics. Wiley:New York,1984.
    66. Coen S., Chau A. H. L., Leonhardt R., Harvey J. D., Knight J. C., Wadsworth W. J., and Russell P. S. J., Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B 2002, 19,753-764.
    67. Foster M. A., Moll K. D., and Gaeta A. L., Optimal waveguide dimensions for nonlinear interactions. Opt. Express 2004,12,2880-2887.
    68. Gu F., Yu H., Fang W., and Tong L., Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping. Opt. Express 2012,20, 8667-8674.
    69. Kivshar Y. S., Nonlinear optics:the next decade. Opt. Express 2008,16, 22126-22128.
    70. Knight J. C., and Skryabin D. V., Nonlinear waveguide optics and photonic crystal fibers. Opt. Express 2007,15,15365-15376.
    71. Leon-Saval S. G., Birks T. A., Wadsworth W. J., Russell P. St. J., and Mason M. W., Supercontinuum generation in submicron fibre waveguides. Opt. Express 2004, 12,2864-2869.
    72. Lin Q., Painter O. J., and Agrawal G. P., Nonlinear optical phenomena in silicon waveguides:modeling and applications. Opt. Express 2007,15,16604-16644.
    73. Wolchover N. A., Luan F., George A. K., Knight J. C., and Omenetto F. G., High nonlinearity glass photonic crystal nanowires. Opt. Express 2007,15,829-833.
    74. Abeeluck A. K., Headley C., and Jorgensen C. G., High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Opt. Lett.2004,29,2163-2165.
    75. Afshar V S., Zhang W. Q., Ebendorff-Heidepriem H., and Monro T. M., Small core optical waveguides are more nonlinear than expected:experimental confirmation. Opt. Lett.2009,34,3577-3579.
    76. Birks T. A., Wadsworth W. J., and Russell P. S., Supercontinuum generation in tapered fibers. Opt. Lett.2000,25,1415-1417.
    77. Corkum P. B., Ho P. P., Alfano R. R., and Manassah J. T., Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors. Opt. Lett. 1985,10,624-626.
    78. Ranka J. K., Windeler R. S., and Stentz A. J., Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 2000,25,25-27.
    79. Yeom D.-I., Magi E. C., Lamont M. R. E., Roelens M. A. F., Fu L., and Eggleton B. J., Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett.2008,33,660-662.
    80. Bures J., and R. Ghosh, Power density of the evanescent field in the vicinity of a tapered fiber.J. Opt. Soc. Am. A 1999,16,1992-1996.
    81. Gu F., Wang P., Yu H., Guo B., and Tong L., Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation. Opt. Express 2011,19,10880-10885.
    82. Huang K., Yang S., and Tong L., Modeling of evanescent coupling between two parallel optical nanowires.Appl. Opt.2007,46,1429-1434.
    83. Gu F., Yin X., Yu H., Wang P., and Tong L., PANI-PS single-nanowire devices for highly selective optical detection of gas mixtures. Opt. Express 2009,17, 11230-11235.
    84. Gu F., Zhang L., Yin X., and Tong L., Polymer single-nanowire optical sensors. Nano Lett.2008,8,2757-2761.
    85. Gu F., Yang Z., Yu H., Xu J., Wang P., Tong L., and Pan A., Spatial bandgap engineering along single alloy nano wires. J. Am. Chem. Soc.2011,133,2037-2039.
    86. Ma H., Jen A. K.-Y., and Dalton L. R., Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater.2002,14,1339-1365.
    87. Kasarova S. N., Sultanova N. G, Ivanov C. D., and Nikolov I. V., Analysis of the dispersion of optical plastic materials. Opt. Mater.2007,29,1481-1490.
    88. Chen Y, Ma Z., Yang Q., and Tong L. M., Compact optical short-pass filters based on microfibers. Opt. Lett.2008,33,2565-2567
    89. Urquhart P., Review of rare earth doped fiber lasers and amplifiers. Proc. IEE, Part J1988,135,385-407.
    90. Benedetto F. D., Camposeo A., Pagliara S., Mele E., Persano L., Stabile R., Cingolani R., and Pisignano, D., Patterning of light-emitting conjugated polymer nanofibres. Nat. Nanotechnol 2008,3,614-619.
    91. O'Carroll D., Lieberwirth I., and Redmond G, Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol.2007,2, 180-184.
    92. Matias I. R., Arregui F. J., Corres,J. M., and Bravo J., Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings. IEEE Sens. J.2007,7,89-95.
    93. Hernandez-Ramirez F., Taranco'n A., Casals O., Arbiol J., Romano-Rodriguez A., and Morante J. R., High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuators B 2007,121,3-17.
    94. Matsuguchi M., Okamoto A., and Sakai Y, Effect of humidity on NH3 gas sensitivity of polyaniline blend films. Sens. Actuators B 2003,94,46-52.
    95. Vijayan A., Fuke M., Hawaldar R., Kulkarni M., Amalnerkar D., and Aiyer R. C., Optical fibre based humidity sensor using Co-polyaniline clad. Sens. Actuators B 2008,129,106-112.
    96. Barryb R. A., and Wiltzius P., Humidity-sensing inverse opal hydrogels. Langmuir 2006,22,1369-1374.
    97. Kemp N. T., McGrouther D., Cochrane J. W., and Newbury R., Bridging the gap: polymer nanowire device. Adv. Mater.2007,19,2634-2638.
    98. Jang J., Ha J., and Cho J., Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater.2007,19,1772-1775.
    99. Pud A., Ogurtsova N., Korzhenkob A., and Shapovala G, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci.2003,28,1701-1753.
    100. Christie S., Scorsone E., Persaud K., and Kvasnik F., Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens. Actuators B Chem.2003,90,163-169.
    101. Elizalde-Torres J., Hu H. L., and Garcia-Valenzuela A., NO2-induced optical absorbance changes in semiconductor polyaniline thin films. Sens. Actuators B Chem. 2004,95,218-226.
    102. Nicho M. E., Trejo M., Garcia-Valenzuela A., Saniger J. M., Palacios J., and Hub H., Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sens. Actuators B Chem.2001,76,18-24.
    103. Yan X. B., Han Z. J., Yang Y., and Tay B. K., NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sens. Actuators B Chem.2007,123,107-113.
    104. Virji S., Fowler J. D., Baker C. O., Huang J. X., Kaner R. B., and Weiller B. H., Polyaniline nanofiber composites with metal salts:chemical sensors for hydrogen sulfide. Small 2005,1,624-627.
    105. Ra H. W., Choi K. S., Kim J. H., Hahn Y. B., and Im Y. H., Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 2008,4, 1105-1109.
    106. Zheng G. F., Patolsky F., Cui Y., Wang W. U., and Lieber C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005,23,1294-1301.
    107. McAlpine M. C., Ahmad H., Wang D. W., and Heath J. R., Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater.2007,6,379-384.
    108.饶云江,王义平,朱涛,光纤光栅原理及应用科学出版社:2006.
    109.张自嘉,光纤光栅理论基础与传感技术.科学出版社:2009.
    110.赵勇,光纤光栅及其传感技术.国防工业出版社:2007.
    111.Rao Y.-J., In-fibre Bragg grating sensors. Meas. Sci. Technol.1997,8,355-375.
    112.Hill K. O., and Meltz G., Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol.1997,15,1263-1276.
    113.Brambilla G., and Payne D. N., The ultimate strength o glass silica nanowires. Nano Lett.2009,9,831-835.
    114.Silva E. C. C. M., Tong L., Yip S., andVIiet K. J. Van Size effects on the stiffness of silica nanowires. Small 2006,2,239-243.
    115.Peters K., Polymer optical fiber sensors. Smart Mater. Struct.2011,20,013002.
    116.Liang W., Huang Y, Xu Y, Lee R. K., and Yariv A., Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett.2005,86,151122.
    117.Zhang Y, Lin B., Tjin S. C., Zhang H., Wang G., Shum P., and Zhang X., Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express 2010,18,26345-2650.
    118.Fang X., Liao C. R., and Wang D. N., Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett.2010,35,1007-1009.
    119.Liu Y X., Meng C., Zhang A. P., Xiao Y, Yu H. K., and Tong L. M., Compact microfiber Bragg gratings with high-index contrast. Opt. Lett.2011,36,3115-3117.
    120. Ofir Y., Moran I. W., Subramani C., Carter K. R., and Rotello V. M., Nanoimprint lithography for functional three-dimensional patterns. Adv. Mater.2010, 22,3608-3614.
    121. Kim D.-H., Chin W.-J., Lee S.-S., Ahn S.-W., and Lee K.-D., Tunable polymeric Bragg grating filter using nanoimprint technique. Appl. Phys. Lett.2006,88, 071120.
    122. Chou S. Y., Krauss P. R., and Renstrom P. J., Imprint lithography with 25-Nanometer resolution. Science 1996,272,85-87.
    123. Erdogan T., Fiber grating spectra.J. Lightwave Technol.1997,15, 1277-1294.
    124. Kiesel S., Peters K., Hassan T., and Kowalsky M., Behaviour of intrinsic polymer optical fibre sensor for large-strain applications. Meas. Sci. Technol.2007,18, 3144-3154.
    125. Newnham R. E., Properties of Materials:Anisotropy Symmetry, Structure. Oxford Univ. Press:London,2005.
    126. Ohkita H., Ishibashi K., Tsurumoto D., Tagaya A., and Koike Y., Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule. Appl. Phys. A 2005,81,617-620.
    127. Gates B.D., Xu Q., Love J. C., Wolfe D. B., and Whitesides G. M., Unconventional nanofabrication. Annu. Rev. Mater. Res.2004,34,339-372.
    128. Thourhout D. V., and Roels J., Optomechanical device actuation through the optical gradient force. Nat. Photon.2010,4,211-217.
    129. Wong S. S., Joselevich E., Woolley A. T., Cheung C. L., and Lieber C. M., Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998,394,52-55.
    130. Vogel V., and Sheetz M., Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol.2006,7,265-275.
    131. Palik E. D., Handbook of Optical Constants of Solids. Academic Press: Boston,1991.
    132. Pan A., Liu D., Liu R., Wang F., Zhu X., and Zou B., Optical waveguide through CdS nanoribbons. Small 2005,7,980-983.
    133. Kouklin N., Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Adv. Mater.2008,20,2190-2194.
    134. He Z., Jie J., Zhang W., Zhang W., Luo L., Fan X., Yuan G, Bello I., and S.-T. Lee, Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 2009,5,345-350.
    135. Lin D., Wu H., and Pan W.,, GaN nanofibers based on electrospinning facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv. Mater.2007,19,3968-3972.
    136. Hou Q.-F., Wang X.-L., Xiao H.-L., Wang C.-M., Yang C.-B., and Li J.-M., Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN. Chin. Phys. Lett.2010,27,057104.
    137. Cai S., Parish G., Umana-Membreno G. A., Dell J. M., and Nener B. D., Optical quenching of photoconductivity in undoped n-GaN. J. Appl. Phys.2004,95, 1081-1088.
    138. Huang Z. C., Mott D. B., Shu P. K., Zhang R., Chen J. C., and Wickenden D. K., Optical quenching of photoconductivity in GaN photoconductors. J. Appl. Phys. 1997,82,2707-2709.
    139. Lin T. Y, Yang H. C., and Chen Y. F., Optical quenching of the photoconductivity in n-type GaN. J. Appl. Phys.2000,87,3404-3408.
    140. Ursaki W., Tiginyanu I. M., Ricci P. C., Anedda A., Hubbard S., and Pavlidis D., Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J. Appl. Phys.2003,94,3875-3882.
    141. Bube R. H., Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide. Phys. Rev.1955,99, 1105-1116.
    142. Grabner L., Optical quenching of photoconductivity near the band edge in CdS. Phys. Rev. Lett.1965,14,551-554.
    143. Kang Y., Liu H., Morse M., Paniccia M. J., Zadka M., Litski S., Sarid G., Pauchard A., Kuo Y, Chen H., Zaoui W. S., Bowers J. E., Beling A., McIntosh D. C., Zheng X., and Campbell J. C., Monolithic germanium silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photon 2009,3,59-63.
    144. Assefa S., Xia F., and Vlasov Y. A., Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 2010,464, 80-84.
    145. Ahn D., Hong C., Liu J., Giziewicz W., Beals M., Kimerling L. C., and Michel J., High performance, waveguide integrated Ge photodetectors. Opt. Express 2007,15,3916-3921.
    146. Guo Z., Zhao D., Liu Y., Shen D., Zhang J., and Li B., Visible and ultraviolet light alternative photodetector based on ZnO nanowire n-Si heterojunction. Appl. Phys.Lett.2008,93,163501.
    147. Mondal S. P., and Ray S. K., Enhanced broadband photoresponse of Ge CdS nanowire radial heterostructures. Appl. Phys. Lett.2009,94,223119.
    148. Wei W., Bao X., Soci C., Ding Y, Wang Z.,and Wang D., Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano Lett.2009,9,2926-2934.
    149. Lee L. P., and Szema R., Inspirations from biological optics for advanced photonic systems. Science 2005,310,1148-1150.
    150. Bandai K., Arikawa K., and Eguchi E., Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity. J. Comp. Physiol. A 1992,171,289-297.
    151. Arikawa K., and Stavenga D. G., Random array of colour filters in the eyes of butterflies. J. Exp. Biol.1997,200,2501-2506.
    152. Stavenga D. G., Colour in the eyes of insects. J. Comp. Physiol. A 2002,188, 337-348.
    153. Jeong K., Kim J., and Lee L. P., Biologically inspired artificial compound eyes. Science 2006,312,557-561.
    154. Klowden M. J., Physiological Systems in Insects 2nd. Elsevier:Amsterdam, 2007.
    155. Zelhof A. C., Hardy R. W., Becker, A. and Zuker C. S., Transforming the architecture of compound eyes. Nature 2006,443,696-699.
    156. Zhuang X., Ning C. Z., and Pan A., Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater.2012,24,13-33.
    157. Liu Y, Zapien J. A., ShanYY, Geng C.Y., Lee C. S., and Lee S.T., Wavelength controlled lasing in ZnxCd1-x S single crystal nanoribbons. Adv. Mater. 2005,17,1372-1377.
    158. Kuykendall T., Ulrich P., Aloni S., and Yang P.,, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater.2007,6, 951-956.
    159. Gong X., Tong M., Xia Y., Cai W., Sun Moon J., Cao Y., Yu G., Shieh C., Nilsson B., and Heeger A. J.,, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325,1665-1667.
    160. Clifford J. P., Konstantatos G., Johnston K. W., Hoogland S., Levina L., and Sargent E. H.,, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol.2009,40-44.
    161. Kim C. J., Lee H. S., Yang Y. J., Lee R. R., Lee J. K., and Jo M. H., On-nanowire band-graded Si:Ge photodetectors. Adv. Mater.2011,23,1025-1029.
    162. Barnes W. L., Dereux A., and Ebbesen T. W., Surface plasmon subwavelength optics. Nature 2003,424,824-830.
    163.顾本源,表面等离子体亚波长光学原理和新颖效应.物理2007,36,280-287.
    164. Lal S., Link S., and Halas N. J., Nano-optics from sensing to waveguiding. Nat. Photon 2007,1,641-648.
    165. Stewart M. E., Anderton C. R., Thompson L. B., Maria J., Gray S. K., Rogers J. A., and Nuzzo R. G, Nanostructured plasmonic sensors. Chem. Rev.2008,108, 494-521.
    166. Calander N., Molecular detection and analysis by using surface plasmon resonances. Curr. Anal. Chem.2006,2,203-211.
    167. Liu N., Tang M. L., Hentschel M., Giessen H., and Alivisatos A. P., Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater.2011, 70,631-636.
    168. Sirbuly D. J., Letant S. E., and Ratto T. V., Hydrogen sensing with subwavelength Optical waveguides via porous silsesquioxane-palladium nanocomposites. Adv. Mater.2008,20,4724-4727.
    169. Lou J. Y., Tong L. M., and Ye Z. Z., Modeling of silica nanowires for optical sensing. Opt. Express 2005,13,2135-2140.
    170. Huberta T., Boon-Brettb L., Blackb G, and Banach U., Hydrogen sensors-A review. Sens. Actuators B 2011,157,329-352.
    171. Guo X., Qiu M., Bao J. M., Wiley B. J., Yang Q., Zhang X. N., Ma Y. G., Yu H. K., and Tong L. M., Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett.2009,9,4515-4519.
    172. Yan R. X., Pausauskie P., Huang J. X., and Yang P. D., Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America 2009,106, 21045-21050.
    173. Dong C. H., Ren X. F., Yang R., Duan J. Y, Guan J. G, Guo G. C., and Guo G. P., Coupling of light from an optical fiber taper into silver nanowires. Appl. Phys. Lett. 2009,95,221109.
    174. Wild B., Cao L., Sun Y, Khanal B. P., Zubarev E. R., Gray S. K., Scherer N. F., and Pelton M., Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires. ACS Nano 2012,6,472-482.
    175. Yoo Y, Yoon I., Lee H., Ahn J., Ahn J.-P., and Kim B., Pattern-selective epitaxial growth of twin-free Pd nanowires from supported nanocrystal seeds. ACS Nano 2010,4,2919-2927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700